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Abstract: The nonlinear oscillator problem has extensive applications. In this paper, we examined the modified homotopy perturbation
method to obtain the solution of the problem and to reduce thecomputational efforts. For the accuracy purpose the Laplace transform
and Pade approximation have also been used. We construct thedeformation equations by two components of the homotopy series,
then by means of the Laplace transform the obtain solution isconverted to series form and Pade approximation is exploited to increase
the accuracy of the achieved result. The computational efforts are significantly reduced. And, the calculated analyticsolutions are in
excellent agreement with the numerical solutions.
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1 Introduction

The most common methods for constructing
approximate and analytical solutions to nonlinear
oscillatory equations are the perturbation method. In the
past few decades, new perturbation methods and
non-perturbative methods are proposed. A review of the
recently developed analytical methods is given in review
article and the comprehensive book by He [1-2]. There
also exists considerable number of works dealing with the
problem of approximate analytical solution of nonlinear
oscillators by using different methodologies. For
example, the energy method [3-4], homotopy perturbation
method [5-10], the variational iteration method [11-12],
the Lindstedt-Poincare methods [13-14], the variational
methods [15-16], the parameter-expanding method
[17,18], the Adomian Pade approximation [19] and the
differential Transformation method [20]. Our main
concern in this paper to find the approximate analytical
solutions for the nonlinear equation

ü+α u̇ = γ f (u, u̇), (1)

With initial conditions

u(0) = a, u̇ = b. (2)

where the over dot denotes differentiation with respect
to time and and are arbitrary parameters.

In the present study, we used a modified version of
homotopy perturbation method which is based on two
components of homotopy series. The two components
HPM [21-22] provides an efficient analytical solution
without any transformation, Adomian polynomials,
complicated Lagrange Multiplier with repeated
integration process and independent of the solution of
functional differential equation for finding each
component of the solution. In order to improve the
accuracy of the solution, we first apply the Laplace
transformation then convert the transformed series into a
meromorphic function by forming the Pade
approximants, and finally adopt an inverse Laplace
transform to obtain an analytic solution. Finally,
numerical comparison has been made between the
proposed approach and the Runge-Kutta method.
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2 Analysis of the method

Let us consider the nonlinear differential equation

A (u) = f (z), zεΩ , (3)

whereA is operator,f is a known function andu is
a sought function. Assume that operatorA can be written
as:

A (u) = L (u)+N (u), (4)

whereL is the linear operator andN is the nonlinear
operator. Hence, equation (4) can be rewritten as follows:

L (u)+N (u) = f (z), zεΩ . (5)

We define an operatorH as:

H (v; p) = (1− p)(L (v)−L (v0))+ p(A (v)− f ), (6)

where pε[0,1] is an embedding or homotopy
parameter,v(z : p) : Ω × [0,1] → R and u0 is an initial
approximation of solution of the problem in equation(6)
can be written as:

H (v; p) = L (v)−L (u0)+ p(N (v)− f (z)) = 0, (7)

Clearly, the operator equationsH (v,0) = 0 and
H (v,1) = 0 are equivalent to the equations
L (v)− L (u0) = 0 and A (v)− f (z) = 0 respectively.
Thus, a monotonous change of parameterp from zero to
one corresponds to a continuous change of the trivial
problem L (v) − L (u0) = 0 to the original problem.
OperatorH (v, p) is called a homotopy map. Next, we
assume that the solution of equationH (v, p) can be
written as a power series in embedding parameterp, as
follows:

v = v0+ pv1, (8)

Now let us write the equation(7) in the following form

L(v) = u0(z)+ p( f −N(v)− u0(z)), (9)

By applying the inverse operator,L −1 to both sides of
the equation(9), we have

v = L
−1u0(z)+ p(L −1 f −L

−1N(v)−L
−1u0(z)), (10)

Suppose that the initial approximation of equation (5)
has the form

u0(z) =
∞

∑
n=0

anPn(z), (11)

wherean, n = 0,1,2, ..., are unknown coefficients and
Pn(z), n = 0,1,2, ..., are specific functions on the problem.
By substituting equations(8) and (11) into the equation
(10), we get

v0+ pv1 = L
−1

( ∞

∑
n=0

anPn(z)

)

+p

(

L
−1 f −L

−1
( l

∑
n=0

vn pn
)

−L
−1

( ∞

∑
n=0

anPn(z)

))

, (12)

Equating the coefficients of like powers ofp, we get
following set of equations

p0 : v0 = L
−1
( ∞

∑
n=0

anPn(z)

)

(13)

p1 : v1 = L
−1( f )+L

−1
( ∞

∑
n=0

vn pn −L
−1

N (v0)

)

(14)

Now, if we solve these equations in such a way that .
Therefore, the approximate solution may be obtained as

u(z) = v0(z) = L
−1
( ∞

∑
n=0

anPn(z)

)

(15)

3 Implementation of the method

To obtain the solution of equation(1) by MHPM, we
construct the following homotopy:

(1− p)(Ü − u0(t))+ p(Ü +αU̇ − γ f (U,U̇)) = 0 (16)
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Applying the inverse operator,L−1(•) =
∫ t

0

∫ s
0(•)dξ ds

to the both sides of the above equation(15), we obtain

U(t) =U(0)+ tU̇(0)+
∫ t

0

∫ s

0
u0(ξ )dξ ds

−p
∫ t

0

∫ s

0
(u0(ξ )+αU̇(ξ )− γ f (U(ξ ),U̇(ξ )))dξ ds (17)

The solution of equations(1) to have the following
form

U(t) =U0(t)+ pU1(t) (18)

Substituting equation(17) in equation (16) and
equating the coefficients of like powers ofp, we get
following set of equations

U0(t) =U0+ tU̇(0)+
∫ t

0

∫ s

0
u0(ξ )dξ ds (19)

U1(t) =
∫ t

0

∫ s

0
(−u0(ξ )−αU̇0− γ f (U0,U̇0))dξ ds (20)

Assuming
u0(t) = ∑N

n=0anPn, Pn = tn, and solving the above
equation forU0(t) leads to the result

U0(t) = a+ bt+
a0

2
t2+

a1

6
t3+

a2

12
t4+ ... (21)

On using equation(20) in equation(19) we arrived at
U1(t). With vanishingU1(t), we have the coefficients
ai, i = 0,1, ...8. Therefore, we obtain the solution of
equation(11) as

u(t) = a+ bt+
a0

2
t2+

a1

6
t3+

a2

12
t4+ ... (22)

The solution of equation(1) does not exhibit behavior
for a large region. In order to improve the accuracy of the
two component solution, we implement the modification
as follows: Applying the Laplace transform to the series
solution(21), yields

L[u(t)] =
a
s
+

b
s2 +

a0

s3 +
a1

s4 +
2a2

s5 + ... (23)

For simplicity, lets = 1
t ; then

L[u(t)][m,n] =
at +A1t2+A2t3+ ...

1+B1t +B2t2+B3t3+ ...
(24)

Recallingt = 1
s , we obtain[m,n] Pade approximation

in terms ofs. By using the inverse Laplace transform to
the [m,n] Pade approximant, we obtain the desired
approximate solution of the nonlinear oscillator equation.

4 Analytical Solutions

In order to verify the procedure of the method, we
consider the following particular cases and comparison
will be made with Runge-Kutta method as well as ref.
[19-20].

4.1 Application I

Consider the vander-pol equation [20] by taking
α = 1, f (u, u̇) = γ(1− u2)u̇

ü+ u̇ = γ(1− u2)u̇ (25)

With initial conditions

u(0) = 0, u̇(0) = 2 (26)

The approximate analytical solution of equation(25)
with conditions (26) can be obtained by applying the
procedure mentioned in previous section. Assuming

u0(t) = ∑8
n=0 anPn, Pn = tn, and solving the above

equation forU0(t) leads to the result

U0(t) = 2t +
a0

2
t2+

a1

6
t3+

a2

12
t4+ ... (27)

On using equation(27) in (19), we getU1(t). With
vanishingU1(t), we have the coefficients

a0 = 2γ, a1 = 2(γ2−1), a2 = γ(γ2−10),

a3 =
γ
3
(γ4−59γ2+1), ..., i = 0,1, ...8. (28)

Therefore, we obtain the solutions of equation(25) as

u(t) = 2t + γt2−
1
3

t3−
5γ
6

t4+
1
60

t5+ ... (29)
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Fig. 1: Plots of the comparisions of RK4 and present solution of
van der pol equationt vs.u

Fig. 2: Plots of the comparisions of RK4 and present solution of
van der pol equation phase plane diagramu vs. u̇

Applying the Laplace transform to the solution (29),
yields

L[u(t)] = 2

(

1
s2 −

1
s4 +

1
s6 −

1
s8 +

1
s10 −

1
s12

)

+γ
(

2
s3 −

20
s5 +

182
s7 −

1640
s9 +

14762
s11 −

132860
s13

)

+ ...(30)

For simplicity, lets = 1
t ; then

L[u(t)] = 2(t2− t4+ t6− t8+ t10− t12)

+γ(2t3−20t5+182t7−1640t914762t11−132860t13)+ ... (31)

The [2/2] and [4/4] Pade approximation for the term
containing the linear power ofγ is

u[2/2] =
2t2

1+ t2− γt + γ2t2 (32)

u[4/4] =
2t2

1+ t2 +
2γt2

1+10t2+9t4 (33)

Recalling t = 1
s and applying the inverse Laplace

transform to the[2/2] and [4/4] Pade approximant, we
obtained the approximate solutions

u[2/2] =
−2e

t

(

γ
2−

√
−4−3γ2

2

)

+2e
t

(

γ
2+

√
−4−3γ2

2

)

√

−4−3γ2
(34)

u[4/4] =
γ
4

cos[t]−
γ
4

cos[3t]+2sin[t] (35)

The graph of the displacement is depicted in Figure
1, and phase plane diagram is sketched in Figure 2 and
compared to the fourth order Runge-Kutta method.

4.2 Application II

Consider the Unplugged van der pol equation [20] by
takingα = 1, f (u, u̇) =−γu2u̇

ü+ u̇ = γu2u̇ (36)

With initial conditions

u(0) = 1, u̇(0) = 0 (37)

The approximate analytical solution of equation(36)
with conditions (37) can be obtained by applying the
procedure mentioned in previous section. Assuming
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Fig. 3: Plots of the solution of Duffing-van der pol equation by
present method

u0(t) = ∑8
n=0 anPn, Pn = tn, and solving the above

equation for leads to the result

U0(t) = 1+
a0

2
t2+

a1

6
t3+

a2

12
t4+ ... (38)

On using equation(38) in (19), we getU1(t). With
vanishingU1(t), we have the coefficients

a0 =−1, a1 = γ, a2 =
1
2
(1− γ2),

a3 =
γ
6
(γ2−8), ..., i = 0,1, ...8. (39)

Therefore, we obtain the solutions of equation(36) as

u(t) = 1−
t2

2
+

γt3

6
+

1
24

t4(1− γ2)+
1

120
t5γ(γ2−8)+ ... (40)

Applying the Laplace transform to the solution(40), yields

L[u(t)] =
1
s
−

1
s3 +

γ
s4 −

(1− γ2)

s5

+
γ(γ2−8)

s6 −
γ4−29γ2+1

s7 + ... (41)

For simplicity, lets = 1
t ; then

L[u(t)] = t − t3+ γt4+(1− γ2)t5+ γ(γ2−8)t6

−γ(γ4−29γ2+1)t7+ ... (42)

The [4/4] Pade approximation and recallingt = 1
s and

applying the inverse Laplace transform we obtained the
approximate solutions. Figures 3 and 4 represents the
displacement of unplugged van der pol oscillator and all
of its solutions are expected to oscillate with decreasing
amplitude to zero. Ref. [19-20] derived the solutions by
modified decomposition and differential transform
method. Figures 5 and 6 represents the phase diagram of
the oscillator equation which is good agreement with
numerical solution.

Fig. 4: Plots of the solution of Duffing-van der pol equation by
RK4 method

Fig. 5: Comparison foru versus ˙u trajectory of the Duffing-van
der pol equation by present method.

4.3 Application III

Consider the Duffing equation [20] by taking
α = 1, f (u, u̇) =−γu3

ü+ u̇ =−γu3 (43)

With initial conditions

u(0) = 0, u̇(0) = 1 (44)

Assuming
u0(t) = ∑8

n=0 anPn, Pn = tn, and solving the above
equation for leads to the result
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Fig. 6: Comparison foru versus ˙u trajectory of the Duffing-van
der pol equation by RK4 method

U0(t) = 1+
a0

2
t2+

a1

6
t3+

a2

12
t4+ ... (45)

On using equation(45) in (19), we getU1(t). With
vanishingU1(t), we have the coefficients

a0 = 0, a1 =−1, a2 = 0, a3 =
1
6
(1−6γ), a4 = 0,

a5 =
1

120
(66γ −1), , ..., i = 0,1, ...8. (46)

Therefore, we obtain the solutions of equation(43) as

u(t) = t −
t3

6
+

(1−6γ)t5

120
+

(1− γ2)t7

5040
+ ... (47)

Applying the Laplace transform to the solution(47),
yields

L[u(t)] =
1
s2 −

1
s4 +

(1−6γ)
s6 +

(66γ −1)
s8

+
756γ2−612γ +1

s10 −
33156γ2−5532γ +1

s6 + ... (48)

For simplicity, lets = 1
t ; then

Fig. 7: Plots of the solution of Duffing equation by present
method

Fig. 8: Plots of the solution of Duffing equation by RK4 method

Fig. 9: Comparison foru versus ˙u trajectory of the Duffing
equation forγ = 0.1.
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Fig. 10: Comparison foru versus ˙u trajectory of the Duffing
equation forγ = 0.2.

Fig. 11: Comparison of displacement plot for HPM versus RK4
for γ = 0.1

L[u(t)] = t2− t4+(1−6γ)t6+(66γ −1)t8

+(756γ2−612γ +1)t10+ ... (49)

The[4/4] Pade approximation and recallings = 1
t and

applying the inverse Laplace transform we obtained the
approximate solutions. The Graphs of the displacement are
depicted in Figures 7 and 8 and phase diagram are depicted
in Figures 9 and 10 and are compared with the numerical
solution.

Fig. 12: Comparison of displacement plot for HPM versus RK4
γ = 0.6

Fig. 13: Comparison of displacement plot for HPM versus RK4
γ = 0.1

Fig. 14: Comparison of displacement plot for HPM versus RK4
γ = 0.4

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


236 N. A. Khan et. al. : On Solutions of the Nonlinear Oscillatorsby Modified...

Fig. 15: Comparison of displacement plot for HPM versus RK4
γ = 0.1

Fig. 16: Comparison of displacement plot for HPM versus RK4
γ = 0.4

5 Conclusions

In this paper, the application of modified HPM was
extended to obtain analytical solution of nonlinear
oscillators. The results obtained from this method have
been compared with those obtained from numerical
method using Runge Kutta method and ref. [19-20]. The
effects of variation of the parameters on the accuracy of
the modified homotopy- perturbation method have
studied. The presented scheme provides concise and
straightforward solution to approach reliable results, and
it overcomes the difficulties that have been arisen in
conventional methods. The present method is an
extremely simple method, leading to high accuracy of the
obtained results. A numerical comparison between
classical HPM and Runge-Kutta method is depicted in
figures 11− 16. The HPM is converges in a small time
interval and computationally taken long time for large
interval. The HPM series gives reasonable results in the
small time interval.
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