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Abstract: The Gamma functionΓ (s)(−r) is defined byΓ (s)(−r) = N − limε→0

∫∞
ε

t−r−1 lns t e−t dt for r, s = 0, 1, 2, . . . ,

whereN is the neutrix having domainN ′ = {ε : 0 < ε < ∞} with negligible functions finite linear sums of the functions
ελ lns−1 ε, lns ε : λ < 0, s = 1, 2, . . . and all functions which converge to zero in the normal sense asε tends to zero. In the classical

senseGamma functions is not defined for the negative integer. In this study, it is proved thatΓ (−r) = (−1)r

r!
φ(r) − (−1)r

r!
γ for

r = 1, 2, . . . , whereφ(r) =
∑r

i=1
1
i
. Further results are also proved.
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1. Introduction

In mathematics, there are several special functions that
have particular significance and many applications. One
of the well known such function is the Gamma functions,
see for example, [3]. The gamma functionΓ (x) is consid-
ered as a generalization of the factorial andΓ (x) is usually
defined forx > 0 by the integral

Γ (x) =
∫ ∞

0

tx−1e−t dt.

In the classical sense sinceΓ (0) =
Γ (1)

0
, then it follows

thatΓ (n) is not defined for integersn ≤ 0. However the
extension formula gives finite values forΓ (z), for<(z) ≤
0 sinceΓ (z) is analytic everywhere except atz = 0,−1,−2, ...,
and the residue atz = k is given by

Resz=kΓ (z) =
(−1)k

k!
.

Now if we considerx > 0, then it follows that

Γ (x + 1) = xΓ (x). (1)

Now the equation (1) can then be used to defineΓ (x) for
x < 0 andx 6= −1,−2, . . . and further this is one of the

most important formulas that was satisfied by the Gamma
function.

It follows easily by induction that if−n < x < −n + 1
then

Γ (x) =
∫ ∞

0

tx−1
[
e−t −

n−1∑

i=0

(−t)i

i!

]
dt.

Note that in the classical senseGamma functions is not
defined for the negative integers. It was then proved in [2]
that

Γ (s)(x) = N−lim
ε→0

∫ ∞

ε

tx−1 lnr t e−t dt

for s = 0, 1, 2, . . . andx 6= 0,−1,−2, . . . . This suggested
thatΓ (s)(−r) could be defined by

Γ (s)(−r) = N−lim
ε→0

∫ ∞

ε

t−r−1 lns t e−t dt (2)

for r, s = 0, 1, 2, . . . , whereN is the neutrix, see [1], hav-
ing domainN ′ = {ε : 0 < ε < ∞} with negligible
functions finite linear sums of the functions

ελ lns−1 ε, lns ε : λ < 0, s = 1, 2, . . .
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and all functions which converge to zero in the normal
sense asε tends to zero. It was proved that the neutrix limit
in equation (1) existed forr, s = 0, 1, 2, . . . ., see [11,13].

We note that, Jack Ng and van Dam applied the neutrix
calculus, in conjunction with the Hadamard integral, de-
veloped by van der Corput, to the quantum field theories,
in particular, to obtain finite results for the coefficients in
the perturbation series. They also applied neutrix calculus
to quantum field theory, and obtained finite renormaliza-
tion in the loop calculations, see [4] and [5].

Now by using the equation (2) as a definition, the follow-
ing theorem was proved in [2], but we give here a simpler
proof.

Theorem 1. TheΓ (s)(0) exists and given by

Γ (s)(0) =
Γ (s+1)(1)

s + 1
(3)

for s = 0, 1, 2, . . . . In particular,

Γ (0) = Γ ′(1) = −γ, (4)

whereγ denotes Euler’s constant which is defined as

γ = lim
n→∞

n∑

k=1

(
1
k
− ln(n)

)
.

Proof. We have∫ ∞

ε

t−1 lns te−t dt =
1

s + 1

∫ ∞

ε

e−t d lns+1 t

=
e−ε lns+1 ε

s + 1
+

1
s + 1

∫ ∞

ε

lns+1 te−t dt

and so

Γ (s)(0) = N−lim
ε→0

∫ ∞

ε

t−1 lns te−t dt

=
1

s + 1

∫ ∞

0

lns+1 te−t dt =
Γ (s+1)(1)

s + 1
,

proving equation (3). SinceΓ (s+1)(1) is defined in the
normal sense,Γ (s)(0) is therefore defined fors = 0, 1, 2, . . . .
The equation (4) follows on noting thatΓ ′(1) = −γ.

The following theorem was also proved in [2], but we again
give here a simpler proof.

Theorem 2. Forr = 1, 2, . . ., Γ (−r) is given by

Γ (−r) =
(−1)r

rr!
− 1

r
Γ (−r + 1). (5)

Proof. We have∫ ∞

ε

t−r−1e−t dt = −1
r

∫ ∞

ε

e−t dt−r

=
ε−re−ε

r
− 1

r

∫ ∞

ε

t−re−t dt

and so

Γ (−r) = N−lim
ε→0

∫ ∞

ε

t−r−1e−t dt

=
(−1)r

rr!
− 1

r

∫ ∞

0

t−re−t dt

=
(−1)r

rr!
− 1

r
Γ (−r + 1),

proving equation (4) forr = 1, 2, . . . .

2. Main Results

We now prove some further results for the Gamma func-
tion.

Theorem 3. Forr = 1, 2, . . . , Γ (−r) exists and given by

Γ (−r) =
(−1)r

r!
φ(r) +

(−1)r

r!
Γ (0)

=
(−1)r

r!
φ(r)− (−1)r

r!
γ (6)

whereφ(r) =
∑r

i=1
1
i .

Proof. Whenr = 1, equation (6) reduces to equation (5)
and so equation (6) holds whenr = 1. Now assume that
equation (6) holds for somer. Then using equation (5) and
our assumption, we have

Γ (−r − 1) =
(−1)r+1

(r + 1)(r + 1)!
− 1

(r + 1)
Γ (−r)

=
(−1)r+1

(r + 1)(r + 1)!
+

(−1)r+1

(r + 1)!
φ(r)− (−1)r+1

(r + 1)!
γ

=
(−1)r+1

(r + 1)!
φ(r + 1)− (−1)r+1

(r + 1)!
γ

and so equation (6) is true forr + 1. Equation (6) now fol-
lows by induction forr = 1, 2, . . . .

In the next we prove the existence of the derivative for
Γ (−r).

Theorem 4. The derivative is given by

Γ ′(−r) =
r∑

i=1

(−1)r

ir!
φ(i)− (−1)r

r!
φ(r)γ (7)

for r = 1, 2, . . . .

Proof. We have
∫ ∞

ε

t−r−1 ln t e−t dt = −1
r

∫ ∞

ε

ln t e−t dt−r

=
1
r

ln ε e−εε−r − 1
r

∫ ∞

ε

(t−r ln t e−t − t−r−1 e−t) dt
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and it follows that

Γ ′(−r) = N−lim
ε→0

∫ ∞

ε

t−r−1 ln te−t dt

= 0− 1
r
Γ ′(−r + 1) +

1
r
Γ (−r) (8)

for r = 1, 2, . . . .

Now assume that equation (7) holds for somer. Then from
our assumption and equations (6) and (8), we have

Γ ′(−r − 1) = − 1
r + 1

Γ ′(−r) +
1

r + 1
Γ (−r − 1)

=
r∑

i=1

(−1)r+1

i(r + 1)!
φ(i)− (−1)r+1

(r + 1)!
φ(r)γ

+
(−1)r+1

(r + 1)(r + 1)!
φ(r + 1)− (−1)r+1

(r + 1)(r + 1)!
γ

=
r+1∑

i=1

(−1)r+1

i(r + 1)!
φ(i)− (−1)r+1

(r + 1)!
φ(r + 1)γ

and so equation (7) holds forr + 1. Equation (7) now fol-
lows by induction.

Theorem 5. Fors = 1, 2, . . .,

Γ (s)(−1) =
s∑

i=1

s!
(i + 1)!

Γ (i+1)(1) + s!(γ − 1). (9)

Proof. We have∫ ∞

ε

t−2 lns t e−t dt = −
∫ ∞

ε

lns t e−t dt−1

= lns ε e−εε−1 −
∫ ∞

ε

(t−1 lns t e−t − st−2 lns−1 t e−t) dt

and it follows that

Γ (s)(−1) = N−lim
ε→0

∫ ∞

ε

t−2 lns te−t dt

= 0− Γ (s)(0) + sΓ (s−1)(−1), (10)

for s = 1, 2, . . . .

Now assume that equation (9) holds for somes. Then from
our assumption and equations (3) and (10), we have

Γ (s+1)(−1) = −Γ (s+1)(0) + (s + 1)Γ (s)(−1)

= − 1
s + 2

Γ (s+2)(1) +
s∑

i=1

(s + 1)!
(i + 1)!

Γ (i+1)(1)

+(s + 1)!(γ − 1)

=
s+1∑

i=1

(s + 1)!
(i + 1)!

Γ (i+1)(1) + (s + 1)!(γ − 1)

and so equation (9) holds fors + 1. Equation (9) now fol-
lows by induction. More generally we have the following
theorem.

Theorem 6. Fors = 1, 2, . . .,

Γ (s)(−r) +
1
r
Γ (s)(−r + 1) =

s

r
Γ (s−1)(−r). (11)

Proof. We have∫ ∞

ε

t−r−1 lns t e−t dt = −1
r

∫ ∞

ε

lns t e−t dt−r

= −1
r

∫ ∞

ε

(t−r lns t e−t − st−r−1 lns−1 t e−t) dt

+
1
r

lns ε e−εε−r

and it follows that

Γ (s)(−r) = N−lim
ε→0

∫ ∞

ε

t−r−1 lns te−t dt

= 0− 1
r
Γ (s)(−r + 1) +

s

r
Γ (s−1)(−r),

proving equation (11).

Theorem 7.

Γ (s)(−r) =
s

r!

r−1∑

i=0

(−1)i(r − i− 1)!Γ (s−1)(−r + i)

+
(−1)r

r!
Γ (s)(0)

=
s

r!

r−1∑

i=0

(−1)i(r − i− 1)!Γ (s−1)(−r + i)(12)

+
(−1)r

(s + 1)r!
Γ (s+1)(1),

for r, s = 1, 2, . . . .

Proof. Whenr = 1, equation (12) reduces to

Γ (s)(−1) = sΓ (s−1)(−1)− Γ (s)(0),

and so equation (12) holds by equation (11) whenr = 1
for s = 1, 2, . . . .

Now assume that equation (12) holds for somer ands =
1, 2, . . . . Then using equation (11) and our assumption, we
have

Γ (s)(−r − 1) =
s

r + 1
Γ (s−1)(−r − 1)− 1

r + 1
Γ (s)(−r)

=
s

r + 1
Γ (s−1)(−r − 1)

− s

(r + 1)!

r−1∑

i=0

(−1)i(r − i− 1)!Γ (s−1)(−r + i)
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− (−1)r

(r + 1)!
Γ (s)(0)

=
s

r + 1
Γ (s−1)(−r − 1)

− s

(r + 1)!

r∑

i=1

(−1)i(r − i)!Γ (s−1)(−r + i− 1)

− (−1)r

(r + 1)!
Γ (s)(0)

=
s

(r + 1)!

r∑

i=0

(−1)i(r − i)!Γ (s−1)(−r + i− 1)

+
(−1)r+1

(r + 1)!
Γ (s)(0).

and so equation (12) holds forr + 1 ands = 1, 2, . . . .
Equation (12) now follows by induction.

Further for similar results on the neutrix products of dis-
tributions, see [6], [7], [9], [12] and [13]. In particular for
the composition of singular distributions, see [16].
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