

Journal of Analysis & Number Theory An International Journal

http://dx.doi.org/10.12785/jant/010201

The Semi normed space defined by χ sequences

Nagarajan Subramanian^{1,*}, Pannerselvam Thirunavukarasu² and Ramachandraiyer Babu³

¹ Department of Mathematics, SASTRA University, Thanjavur–613 401, India

² P. G. and Research Department of Mathematics, Periyar E. V. R. College (Autonomous), Trichy-620 023, India

³ Department of Mathematics, Shanmugha Polytechnic College, Thanjavur–613 401, India

Received: 2 Feb. 2013, Revised: 5 Mar. 2013, Accepted: 8 Mar. 2013 Published online: 1 Jul. 2013

Abstract: In this paper we introduce the sequence spaces $\chi(p, \sigma, q, s)$, $\Lambda(p, \sigma, q, s)$ and define a semi normed space (X, q) semi normed by q. We study some properties of these sequence spaces and obtain some inclusion relations.

Keywords: Chi sequence, Analytic sequence, Invariant mean, Semi norm

1 Introduction

A complex sequence, whose *k*th term is x_k , is denoted by $\{x_k\}$ or simply *x*. Let ϕ be the set of all finite sequences. A sequence $x = \{x_k\}$ is said to be anlaytic if $\sup_k (|x_k|)^{\frac{1}{k}} < \infty$. The vector space of all analytic sequences will be denoted by Λ . A sequence *x* is called chi sequence if $\lim_{k\to\infty} (k!|x_k|)^{\frac{1}{k}} = 0$. The vector space of all chi sequences will be denoted by χ . Let σ be a one-one mapping of the set of positive integers into itself such that $\sigma^m(n) = \sigma(\sigma^{m-1}(n)), m = 1, 2, 3, \dots$

A continuous linear functional ϕ on Λ is said to be an invariant mean or a σ -mean if and only if (1) $\phi(x) \ge 0$ when the sequence $x = (x_n)$ has $x_n \ge 0$ for all n (2) $\phi(e) = 1$ where e = (1, 1, 1, ...) and (3) $\phi(\{x_{\sigma}(n)\}) = \phi(\{x_n\})$ for all $x \in \Lambda$. For certain kinds of mappings σ , every invariant mean ϕ extends the limit functional on the space *C* of all real convergent sequences in the sense that $\phi(x) = \lim x$ for all $x \in C$. Consequently $C \subset V_{\sigma}$, where V_{σ} is the set of analytic sequences all of those σ -means are equal.

If $x = (x_n)$, set $Tx = (Tx)^{1/n} = (x_{\sigma}(n))$. It can be shown that

 $L = \sigma - \lim_{n \to \infty} (x_n)^{1/n}$ where

$$t_{mn}(x) = \frac{(x_n + Tx_n + \dots + T^m x_n)^{1/n}}{m+1}$$
 (2)

Given a sequence $x = \{x_k\}$ its *n*th section is the sequence

 $x^{(n)} = \{x_1, x_2, \dots, x_n, 0, 0, \dots\}, \delta^{(n)} = (0, 0, \dots, 1, 0, 0, \dots), 1$ in the *n*th place and zeros elsewhere. An FK-space (Frechet coordinate space) is a Frechet space which is made up of numerical sequences and has the property that the coordinate functionals $p_k(x) = x_k$ ($k = 1, 2, \dots$) are continuous.

2 Definitions and Preliminaries

Definition 1. The space consisting of all those sequences xin w such that $(k!|x_k|)^{\frac{1}{k}} \to 0$ as $k \to \infty$ is denoted by χ . In other words $(k!|x_k|)^{1/k}$ is a null sequence χ is called the space of chi sequences. The space χ is a metric space with the metric $d(x,y) = \{\sup_k (k!|x_k - y_k|)^{\frac{1}{k}}, k = 1, 2, 3, ...\}$ for all $x = \{x_k\}$ and $y = \{y_k\}$ in χ .

 $V_{\sigma} = x = (x_n) : \lim_{m \to \infty} t_{mn} (x_n)^{1/n} = L \text{ uniformly in } n, \quad (1)$

^{*} Corresponding author e-mail: nsmaths@yahoo.com

Definition 2. The space consisting of all those sequence x in w such that $(\sup_{k} (|x_k|)^{\frac{1}{k}}) < \infty$ is denoted by Λ . In other words $(\sup_{k} (|x_k|)^{\frac{1}{k}})$ is a bounded sequence.

Definition 3.Let p,q be semi norms on a vector space X. Then p is said to be stronger than q if whenever (x_n) is a sequence such that $p(x_n) \rightarrow 0$, then also $q(x_n) \rightarrow 0$. If each is stronger than the other, then p and q are said to be equivalent.

Lemma 1.Let p and q be semi norms on a linear space X. Then p is stronger than q if and only if there exists a constant M such that $q(x) \le Mp(x)$ for all $x \in X$.

Definition 4.*A* sequence space *E* is said to be solid or normal if $(\alpha_k x_k) \in E$ whenever $(x_k) \in E$ and for all sequences of scalars (α_k) with $|\alpha_k| \leq 1$, for all $k \in N$.

Definition 5.*A sequence space E is said to be monotone if it contains the canonical pre-images of all its step spaces.*

Remark. From the above two definitions, it is clear that a sequence space E is solid implies that E is monotone.

Definition 6.*A sequence E is said to be convergence free if* $(y_k) \in E$ *whenever* $(x_k) \in E$ *and* $x_k = 0$ *implies that* $y_k = 0$.

Let $p = (p_k)$ be a sequence of positive real numbers with $0 < p_k < \sup p_k = G$. Let $D = \max(1, 2^{G-1})$. Then for $a_k, b_k \in C$, the set of complex numbers for all $k \in N$ we have

$$|a_k + b_k|^{1/k} \le D\left\{|a_k|^{1/k} + |b_k|^{1/k}\right\}$$
(3)

Let (X,q) be a semi normed space over the field C of complex numbers with the semi norm q. The symbol $\Lambda(X)$ denotes the space of all analytic sequences defined over X. We define the following sequence spaces:

$$\Lambda(p,\sigma,q,s) = \left\{ x \in \Lambda(X) : \sup_{n,k} k^{-s} \left[q\left(|x_{\sigma^{k}(n)}|^{1/k} \right) \right]^{p_{k}} < \infty \right.$$

uniformly in $n \ge 0$,

$$s \ge 0 \bigg\}$$

$$\chi(p, \sigma, q, s) = \left\{ x \in \chi(X) : k^{-s} \left[q \left(|x_{\sigma^k(n)}|^{1/k} \right) \right]^{p_k} \to 0, \\ as \ k \to \infty \right\}$$

uniformly in $n \ge 0$,

 $s \ge 0 \Big\}$

3 Main Results

Theorem 1. $\chi(p, \sigma, q, s)$ is a linear space over the set of complex numbers.

Proof.It is routine verification. Therefore the proof is omitted.

Theorem 2. $\chi(p, \sigma, q, s)$ *is a paranormed space with*

$$g^{*}(x) = \left\{ \sup_{k \ge 1} k^{-s} \left[q \left(\sigma^{k}(n)! |x_{\sigma^{k}(n)}| \right)^{\frac{1}{k}} \right], \text{ uniformly in } n > 0 \right\}$$

where $H = \max\left(1, \sup_{k} p_{k} \right).$

*Proof.*Clearly g(x) = g(-x) and $g(\theta) = 0$, where θ is the zero sequence. It can be easily verified that $g(x + y) \leq g(x) + g(y)$. Next $x \to \theta$, λ fixed implies $g(\lambda x) \to 0$. Also $x \to \theta$ and $\lambda \to 0$ imply $g(\lambda x) \to 0$. The case $\lambda \to 0$ and x fixed implies that $g(\lambda x) \to 0$ follows from the following expressions.

$$g(\lambda x) = \left\{ \sup_{k \ge 1} k^{-s} \left[q\left(|x_{\sigma^k(n)}|^{1/k} \right) \right] \text{ uniformly in } n, m \in N \right\}$$
$$g(\lambda x) = \left\{ \left(|\lambda|^{1/k} r \right)^{p_m/H} : \sup_{k \ge 1} k^{-s} \left[q\left(\sigma^k(n)! |x_{\sigma^k(n)}| \right)^{1/k} \right],$$
$$r > 0, \text{ uniformly in } n, m \in N \right\}.$$

where $r = \frac{1}{|\lambda|^{1/k}}$. Hence $\chi(p, \sigma, q, s)$ is a paranormed space. This completes the proof.

Theorem 3. $\chi(p, \sigma, q, s) \cap \Lambda(p, \sigma, q, s) \subseteq \chi(p, \sigma, q, s)$.

Proof.It is routine verification. Therefore the proof is omitted.

Theorem 4. $\chi(p, \sigma, q, s) \subset \Lambda(p, \sigma, q, s)$.

Proof.It is routine verification. Therefore the proof is omitted.

Remark.[(i)] Let q_1 and q_2 be two semi norms on X, we have

- $\chi(p,\sigma,q_1,s) \bigcap \chi(p,\sigma,q_2,s) \subseteq \chi(p,\sigma,q_1+q_2,s);$ **1**.If q_1 is stronger than q_2 , then
- $\chi(p,\sigma,q_1,s) \subseteq \chi(p,\sigma,q_2,s);$ 3.If q_1 is equivalent to q_2 , then
- $\chi(p,\sigma,q_1,s) = \chi(p,\sigma,q_1,s).$

Theorem 5.*[(i)]*

Let
$$0 \leq p_k \leq r_k$$
 and $\left\{\frac{r_k}{p_k}\right\}$ be bounded. Then $\chi(r, \sigma, q, s) \subset \chi(p, \sigma, q, s);$
2. $s_1 \leq s_2$ implies $\chi(p, \sigma, q, s_1) \subset \chi(p, \sigma, q, s_2).$

Proof(Proof of (i)).

Let
$$x \in \chi(r, \sigma, q, s)$$
 (4)

$$k^{-s} \left[q \left(\sigma^k(n)! |x_{\sigma^k(n)}| \right)^{\frac{1}{k}} \right]^{r_k} \to 0 \text{ as } k \to \infty$$
 (5)

Let $t_k = k^{-s} \left[q \left(\sigma^k(n)! |x_{\sigma^k(n)}| \right)^{\frac{1}{k}} \right]^{r_k} \to 0$ and $\lambda_k = \frac{p_k}{r_k}$. Since $p_k \leq r_k$, we have $0 \leq \lambda_k \leq 1$. Take $0 < \lambda > \lambda_k$. Define $u_k = t_k$ ($t_k \geq 1$); $u_k = 0$ ($t_k < 1$); and

 $v_k = 0 \ (t_k \ge 1); \ v_k = t_k \ (t_k < 1); \ t_k = u_k + v_k \ t_k^{\lambda_k} + v_k^{\lambda_k}.$ Now it follows that

$$u_k^{\lambda_k} \le t_k \quad \text{and} \quad v_k^{\lambda_k} \le v_k^{\lambda}$$
 (6)

(i.e.)
$$t_k^{\lambda_k} \leq t_k + v_k^{\lambda}$$
 by (6)

$$k^{-s} \left[q \left(\sigma^k(n)! |x_{\sigma^k(n)}| \right)^{1/k} \right]^{\lambda_k} \leq k^{-s} \left[q \left(\sigma^k(n)! |x_{\sigma^k(n)}| \right)^{1/k} \right]^{r_k}$$

$$k^{-s} \left[q \left(\sigma^k(n)! |x_{\sigma^k(n)}| \right)^{1/k} \right]^{r_k} \leq k^{-s} \left[q \left(\sigma^k(n)! |x_{\sigma^k(n)}| \right)^{1/k} \right]^{r_k}$$

$$k^{-s} \left[q \left(\sigma^k(n)! |x_{\sigma^k(n)}| \right)^{1/k} \right]^{r_k}$$
But $k^{-s} \left[q \left(\sigma^k(n)! |x_{\sigma^k(n)}| \right)^{1/k} \right]^{r_k}$.

$$But k^{-s} \left[q \left(\sigma^k(n)! |x_{\sigma^k(n)}| \right)^{1/k} \right]^{r_k} \to 0 \text{ as } k \to \infty \text{ by (5).}$$

$$k^{-s} \left[q \left(\sigma^k(n)! |x_{\sigma^k(n)}| \right)^{1/k} \right]^{r_k} \to 0 \text{ as } k \to \infty.$$

Hence

$$x \in \chi(p, \sigma, q, s) \tag{7}$$

From (4) and (7) we get $\chi(r, \sigma, q, s) \subset \chi(p, \sigma, q, s)$. Hence the proof.

Proof(Proof of (ii)). It is routine verification. Therefore the proof is omitted.

Theorem 6.*The space* $\chi(p, \sigma, q, s)$ *is solid and as such is monotone.*

*Proof.*Let $(x_k) \in \chi(p, \sigma, q, s)$ and (α_k) be a sequence of scalars such that $|\alpha_k| \leq 1$ for all $k \in N$. Then

$$k^{-s} \left[q \left(\sigma^{k}(n)! |\alpha_{k} x_{\sigma^{k}(n)}| \right)^{1/k} \right]^{p_{k}} \leq$$

$$k^{-s} \left[q \left(\sigma^{k}(n)! |\alpha_{k} x_{\sigma^{k}(n)}| \right)^{1/k} \right]^{p_{k}} \quad \text{for all } k \in \mathbb{N}.$$

$$\left[q \left(\sigma^{k}(n)! |\alpha_{k} x_{\sigma^{k}(n)}| \right)^{1/k} \right]^{p_{k}} \leq$$

 $\begin{bmatrix} q\left(\sigma^{\kappa}(n)!|\alpha_{k}x_{\sigma^{k}(n)}|\right)\\ \left[q\left(\sigma^{k}(n)!|\alpha_{k}x_{\sigma^{k}(n)}|\right)^{1/k}\end{bmatrix}^{p_{k}} \text{ for all } k \in N. \text{ This completes} \\ \text{the proof} \end{bmatrix}$

Theorem 7.*The space* $\chi(p, \sigma, q, s)$ *are not convergence free in general.*

Proof. The proof follows from the following example.

Example 1.Let s = 0; $p_k = 1$ for k even and $p_k = 2$ for kodd. Let X = C, q(x) = |x| and $\sigma(n) = n + 1$ for all $n \in N$. Then we have $\sigma^2(n) = \sigma(\sigma(n)) = \sigma(n+1) = (n+1) + 1 = n+2$ and $\sigma^3(n) = \sigma(\sigma^2(n)) = \sigma(n+2) = (n+2) + 1 = n+3$. Therefore, $\sigma^k(n) = (n+k)$ for all $n, k \in N$. Consider the sequences (x_k) and (y_k) defined as $x_k = \left(\frac{1}{k}\right)^k \times \frac{1}{k!}$ and $(y_k) = k^k \times \frac{1}{k!}$ for all $k \in N$. (i.e.) $|x_k|^{1/k} = \frac{1}{k} \times \frac{1}{k!}$ and $|y_k|^{1/k} = \frac{1}{k} \times \frac{1}{k!}$ for all $k \in N$. Hence $|\left(\frac{1}{(n+k)}\right)^{n+k}|^{p_k} \to 0$ as $k \to \infty$. Therefore $(x_k) \in$ $\chi(p, \sigma)$. But $|\left(\frac{1}{(n+k)}\right)^{n+k}|^{p_k} \to 0$ as $k \to \infty$. Hence $(y_k) \notin$

 $\chi(p, \sigma)$. Hence the space $\chi(p, \sigma, q, s)$ are not convergence free in general. This completes the proof. \Box

References

- Y. Altin and M. Et, Generalized difference sequences spaces defined by a modulus function in a locally convex space, Soochow J. Math., 31, 233–243 (2005).
- [2] H. I. Brown, The summability field of a perfect *l-l* method of summation, J. Anal. Math., 20, 281–287 (1967).
- [3] R. Colak, M. Et, and E. Malkowsky, Some topics of sequence spaces, Lecture Notes in Mathematics, Firat University Press, Elazig, Turkey, (2004).
- [4] C. Goffman and G. Pedrick, First Course in Functional Analysis, Prentice Hall India, New Delhi, (1974).
- [5] P. K. Kamthan and M. Gupta, Sequence spaces and Series. Lecture Notes in Pure and Applied Mathematics, 65 Marcel Dekker, Inc., New York, (1981).
- [6] I. J. Maddox, Elements of Functional Analysis, Cambridge Univ. Press, (1970).
- [7] I. J. Maddox, Sequence spaces defined by a modulus, Math. Proc., Cambridge Philos. Soc., 100, 161–166 (1986).
- [8] H. Nakano, "Concave modulars", Journal of the Mathematical Society of Japan, 5, 29–49 (1953).
- [9] W. H. Ruckle, FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math., 25, 973–978 (1973).
- [10] S. M. Sirajudeen, Matrix Transformation of Co(P), $l_{\infty}(P)$, l^P and l into χ , Indian J. Pure Appl. Math., **12**, 1106–1113 (1981).
- [11] B. C. Tripathy, S. Mahanta and M. Et, On a class of generalized difference sequence space defined by modulus function, Hakkaido Math. Jour., XXXIV, 667–677 (2005).
- [12] A. Wilansky, Functional Analysis, Blaisdell Publishing Company, New York, (1964).
- [13] A. Wilansky, Summability through Functional Analysis, North Holland Mathematics Studies, North-Holland Publishing, Amsterdam, 85, (1984).