The Semi normed space defined by χ sequences

Nagarajan Subramanian ${ }^{1, *}$, Pannerselvam Thirunavukarasu ${ }^{2}$ and Ramachandraiyer Babu ${ }^{3}$
${ }^{1}$ Department of Mathematics, SASTRA University,Thanjavur-613 401, India
${ }^{2}$ P. G. and Research Department of Mathematics, Periyar E. V. R. College (Autonomous), Trichy-620 023, India
${ }^{3}$ Department of Mathematics, Shanmugha Polytechnic College,Thanjavur-613 401, India

Received: 2 Feb. 2013, Revised: 5 Mar. 2013, Accepted: 8 Mar. 2013
Published online: 1 Jul. 2013

Abstract: In this waper introduce the sequence spaces $\chi(p, \sigma, q, s)$,

$\Lambda(p, \sigma, q, s)$ and define a semi normed space (X, q) semi normed by q. We study some properties of these sequence spaces and obtain some inclusion relations.

Keywords: Chi sequence, Analytic sequence, Invariant mean, Semi norm

1 Introduction

A complex sequence, whose k th term is x_{k}, is denoted by $\left\{x_{k}\right\}$ or simply x. Let ϕ be the set of all finite sequences. A sequence $x=\left\{x_{k}\right\}$ is said to be anlaytic if $\sup _{k}\left(\left|x_{k}\right|\right)^{\frac{1}{k}}<\infty$. The vector space of all analytic sequences will be denoted by Λ. A sequence x is called chi sequence if $\lim _{k \rightarrow \infty}\left(k!\left|x_{k}\right|\right)^{\frac{1}{k}}=0$. The vector space of all chi sequences will be denoted by χ. Let σ be a one-one mapping of the set of positive integers into itself such that $\sigma^{m}(n)=\sigma\left(\sigma^{m-1}(n)\right), m=1,2,3, \ldots$.

A continuous linear functional ϕ on Λ is said to be an invariant mean or a σ-mean if and only if (1) $\phi(x) \geq 0$ when the sequence $x=\left(x_{n}\right)$ has $x_{n} \geq 0$ for all $n(2) \phi(e)=$ 1 where $e=(1,1,1, \ldots)$ and (3) $\phi\left(\left\{x_{\sigma}(n)\right\}\right)=\phi\left(\left\{x_{n}\right\}\right)$ for all $x \in \Lambda$. For certain kinds of mappings σ, every invariant mean ϕ extends the limit functional on the space C of all real convergent sequences in the sense that $\phi(x)=\lim x$ for all $x \in C$. Consequently $C \subset V_{\sigma}$, where V_{σ} is the set of analytic sequences all of those σ-means are equal.

$$
\text { If } x=\left(x_{n}\right) \text {, set } T x=(T x)^{1 / n}=\left(x_{\sigma}(n)\right) \text {. It can be }
$$ shown that

$V_{\sigma}=x=\left(x_{n}\right): \lim _{m \rightarrow \infty} t_{m n}\left(x_{n}\right)^{1 / n}=L$ uniformly in n,
$L=\sigma-\lim _{n \rightarrow \infty}\left(x_{n}\right)^{1 / n}$ where

$$
\begin{equation*}
t_{m n}(x)=\frac{\left(x_{n}+T x_{n}+\ldots+T^{m} x_{n}\right)^{1 / n}}{m+1} \tag{2}
\end{equation*}
$$

Given a sequence $x=\left\{x_{k}\right\}$ its nth section is the sequence
$x^{(n)}=\left\{x_{1}, x_{2}, \ldots, x_{n}, 0,0, \ldots\right\}, \delta^{(n)}=(0,0, \ldots, 1,0,0, \ldots)$, 1 in the nth place and zeros elsewhere. An FK-space (Frechet coordinate space) is a Frechet space which is made up of numerical sequences and has the property that the coordinate functionals $p_{k}(x)=x_{k}(k=1,2, \ldots)$ are continuous.

2 Definitions and Preliminaries

Definition 1.The space consisting of all those sequences x in w such that $\left(k!\left|x_{k}\right|\right)^{\frac{1}{k}} \rightarrow 0$ as $k \rightarrow \infty$ is denoted by χ. In other words $\left(k!\left|x_{k}\right|\right)^{1 / k}$ is a null sequence χ is called the space of chi sequences. The space χ is a metric space with the metric $d(x, y)=\left\{\sup \left(k!\left|x_{k}-y_{k}\right|\right)^{\frac{1}{k}}, k=1,2,3, \ldots\right\}$ for all $x=\left\{x_{k}\right\}$ and $y=\left\{\begin{array}{c}k \\ y_{k}\end{array}\right\}$ in χ.

[^0]Definition 2.The space consisting of all those sequence x in w such that $\left(\sup \left(\left|x_{k}\right|\right)^{\frac{1}{k}}\right)<\infty$ is denoted by Λ. In other words $\left(\sup _{k}\left(\left|x_{k}\right|\right)^{\frac{1}{k}}\right)$ is a bounded sequence.

Definition 3.Let p, q be semi norms on a vector space X. Then p is said to be stronger than q if whenever $\left(x_{n}\right)$ is a sequence such that $p\left(x_{n}\right) \rightarrow 0$, then also $q\left(x_{n}\right) \rightarrow 0$. If each is stronger than the other, then p and q are said to be equivalent.

Lemma 1. Let p and q be semi norms on a linear space X. Then p is stronger than q if and only if there exists a constant M such that $q(x) \leq M p(x)$ for all $x \in X$.

Definition 4.A sequence space E is said to be solid or normal if $\left(\alpha_{k} x_{k}\right) \in E$ whenever $\left(x_{k}\right) \in E$ and for all sequences of scalars $\left(\alpha_{k}\right)$ with $\left|\alpha_{k}\right| \leq 1$, for all $k \in N$.

Definition 5.A sequence space E is said to be monotone if it contains the canonical pre-images of all its step spaces.

Remark.From the above two definitions, it is clear that a sequence space E is solid implies that E is monotone.

Definition 6.A sequence E is said to be convergence free if $\left(y_{k}\right) \in E$ whenever $\left(x_{k}\right) \in E$ and $x_{k}=0$ implies that $y_{k}=$ 0 .

Let $p=\left(p_{k}\right)$ be a sequence of positive real numbers with $0<p_{k}<\sup p_{k}=G$. Let $D=\max \left(1,2^{G-1}\right)$. Then for $a_{k}, b_{k} \in C$, the set of complex numbers for all $k \in N$ we have

$$
\begin{equation*}
\left|a_{k}+b_{k}\right|^{1 / k} \leq D\left\{\left|a_{k}\right|^{1 / k}+\left|b_{k}\right|^{1 / k}\right\} \tag{3}
\end{equation*}
$$

Let (X, q) be a semi normed space over the field C of complex numbers with the semi norm q. The symbol $\Lambda(X)$ denotes the space of all analytic sequences defined over X. We define the following sequence spaces:

$$
\begin{aligned}
& \Lambda(p, \sigma, q, s)=\left\{x \in \Lambda(X): \sup _{n, k} k^{-s}\left[q\left(\left|x_{\sigma^{k}(n)}\right|^{1 / k}\right)\right]^{p_{k}}<\infty\right. \\
& \text { uniformly in } n \geq 0 \text {, } \\
& s \geq 0\} \\
& \chi(p, \sigma, q, s)=\left\{x \in \chi(X): k^{-s}\left[q\left(\left|x_{\sigma^{k}(n)}\right|^{1 / k}\right)\right]^{p_{k}} \rightarrow 0,\right. \\
& \text { as } k \rightarrow \infty \\
& \text { uniformly in } n \geq 0 \text {, } \\
& s \geq 0\}
\end{aligned}
$$

3 Main Results

Theorem 1. $\chi(p, \sigma, q, s)$ is a linear space over the set of complex numbers.

Proof.It is routine verification. Therefore the proof is omitted.

Theorem 2. $\chi(p, \sigma, q, s)$ is a paranormed space with
$g^{*}(x)=\left\{\sup _{k \geq 1} k^{-s}\left[q\left(\sigma^{k}(n)!\left|x_{\sigma^{k}(n)}\right|\right)^{\frac{1}{k}}\right]\right.$, uniformly in $\left.n>0\right\}$
where $H=\max \left(1, \sup _{k} p_{k}\right)$.
Proof.Clearly $g(x)=g(-x)$ and $g(\theta)=0$, where θ is the zero sequence. It can be easily verified that $g(x+y) \leq g(x)+g(y)$. Next $x \rightarrow \theta$, λ fixed implies $g(\lambda x) \rightarrow 0$. Also $x \rightarrow \theta$ and $\lambda \rightarrow 0$ imply $g(\lambda x) \rightarrow 0$. The case $\lambda \rightarrow 0$ and x fixed implies that $g(\lambda x) \rightarrow 0$ follows from the following expressions.

$$
\begin{array}{r}
g(\lambda x)=\left\{\sup _{k \geq 1} k^{-s}\left[q\left(\left|x_{\sigma^{k}(n)}\right|^{1 / k}\right)\right] \text { uniformly in } n, m \in N\right\} \\
g(\lambda x)=\left\{\left(|\lambda|^{1 / k} r\right)^{p_{m} / H}: \sup _{k \geq 1} k^{-s}\left[q\left(\sigma^{k}(n)!\left|x_{\sigma^{k}(n)}\right|\right)^{1 / k}\right],\right. \\
r>0, \text { uniformly in } n, m \in N\} .
\end{array}
$$

where $r=\frac{1}{|\lambda|^{1 / k}}$. Hence $\chi(p, \sigma, q, s)$ is a paranormed space. This completes the proof.

Theorem 3. $\chi(p, \sigma, q, s) \cap \Lambda(p, \sigma, q, s) \subseteq \chi(p, \sigma, q, s)$.
Proof.It is routine verification. Therefore the proof is omitted.

Theorem 4. $\chi(p, \sigma, q, s) \subset \Lambda(p, \sigma, q, s)$.
Proof.It is routine verification. Therefore the proof is omitted.

Remark.[(i)] Let q_{1} and q_{2} be two semi norms on X, we have
$\underset{\text {.If }}{\chi\left(p, \underset{q_{1}}{\sigma}, q_{1}, s\right)} \bigcap_{\text {is }} \underset{\text { stronger }}{\chi\left(p, \sigma, q_{2}, s\right)} \subseteq \underset{\text { than }}{\chi\left(p, \sigma, q_{1}+q_{2}, s\right) ;} q_{2}$, then $\underset{\text { 3.If }}{\chi\left(p, \sigma, q_{1}, s\right)} \underset{q_{1}}{\chi}$ is $\underset{\text { is }}{\chi\left(p, \sigma, q_{2}, s\right) ;}$ equivalent \quad to q_{2}, \quad then $\chi\left(p, \sigma, q_{1}, s\right)=\chi\left(p, \sigma, q_{1}, s\right)$.
Theorem 5.[(i)]
Let $0 \leq p_{k} \leq r_{k}$ and $\left\{\frac{r_{k}}{p_{k}}\right\}$ be bounded. Then $\chi(r, \sigma, q, s) \subset \chi(p, \sigma, q, s)$;
2. $s_{1} \leq s_{2}$ implies $\chi\left(p, \sigma, q, s_{1}\right) \subset \chi\left(p, \sigma, q, s_{2}\right)$.

Proof(Proof of (i)).

$$
\begin{equation*}
\text { Let } x \in \chi(r, \sigma, q, s) \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
k^{-s}\left[q\left(\sigma^{k}(n)!\left|x_{\sigma^{k}(n)}\right|\right)^{\frac{1}{k}}\right]^{r_{k}} \rightarrow 0 \text { as } k \rightarrow \infty \tag{5}
\end{equation*}
$$

Let $t_{k}=k^{-s}\left[q\left(\sigma^{k}(n)!\left|x_{\sigma^{k}(n)}\right|\right)^{\frac{1}{k}}\right]^{r_{k}} \rightarrow 0$ and $\lambda_{k}=\frac{p_{k}}{r_{k}}$. Since $p_{k} \leq r_{k}$, we have $0 \leq \lambda_{k} \leq 1$. Take $0<\lambda>\lambda_{k}$. Define $u_{k}=t_{k} \quad\left(t_{k} \geq 1\right) ; u_{k}=0 \quad\left(t_{k}<1\right) ;$ and
$v_{k}=0\left(t_{k} \geq 1\right) ; v_{k}=t_{k}\left(t_{k}<1\right) ; t_{k}=u_{k}+v_{k} t_{k}^{\lambda_{k}}+v_{k}^{\lambda_{k}}$. Now it follows that

$$
\begin{equation*}
u_{k}^{\lambda_{k}} \leq t_{k} \quad \text { and } \quad v_{k}^{\lambda_{k}} \leq v_{k}^{\lambda} \tag{6}
\end{equation*}
$$

(i.e.) $t_{k}^{\lambda_{k}} \leq t_{k}+v_{k}^{\lambda}$ by (6)

$$
\begin{gathered}
k^{-s}\left[q\left(\sigma^{k}(n)!\left|x_{\sigma^{k}(n)}\right|\right)^{1 / k}\right]^{\lambda_{k}} \leq \\
k^{-s}\left[q\left(\sigma^{k}(n)!\left|x_{\sigma^{k}(n)}\right|\right)^{1 / k}\right]^{r_{k}} \\
k^{-s}\left[q\left(\sigma^{k}(n)!\left|x_{\sigma^{k}(n)}\right|\right)^{1 / k}\right]^{p_{k} / r_{k}} \leq \\
k^{-s}\left[q\left(\sigma^{k}(n)!\left|x_{\sigma^{k}(n)}\right|\right)^{1 / k}\right]^{r_{k}} \\
k^{-s}\left[q\left(\sigma^{k}(n)!\left|x_{\sigma^{k}(n)}\right|\right)^{1 / k}\right]^{p_{k}} \leq \\
k^{-s}\left[q\left(\sigma^{k}(n)!\left|x_{\sigma^{k}(n)}\right|\right)^{1 / k}\right]^{r_{k}} . \\
\text { But } k^{-s}\left[q\left(\sigma^{k}(n)!\left|x_{\sigma^{k}(n)}\right|\right)^{1 / k}\right]^{r_{k}} \rightarrow 0 \text { as } k \rightarrow \infty \text { by (5). } \\
k^{-s}\left[q\left(\sigma^{k}(n)!\left|x_{\sigma^{k}(n)}\right|\right)^{1 / k}\right]^{p_{k}} \rightarrow 0 \text { as } k \rightarrow \infty
\end{gathered}
$$

Hence

$$
\begin{equation*}
x \in \chi(p, \sigma, q, s) \tag{7}
\end{equation*}
$$

From (4) and (7) we get $\chi(r, \sigma, q, s) \subset \chi(p, \sigma, q, s)$. Hence the proof.
$\operatorname{Proof}($ Proof of (ii)). It is routine verification. Therefore the proof is omitted.

Theorem 6.The space $\chi(p, \sigma, q, s)$ is solid and as such is monotone.

Proof.Let $\left(x_{k}\right) \in \chi(p, \sigma, q, s)$ and $\left(\alpha_{k}\right)$ be a sequence of scalars such that $\left|\alpha_{k}\right| \leq 1$ for all $k \in N$. Then
$k^{-s}\left[q\left(\sigma^{k}(n)!\left|\alpha_{k} x_{\sigma^{k}(n)}\right|\right)^{1 / k}\right]^{p_{k}} \leq$ $k^{-s}\left[q\left(\sigma^{k}(n)!\left|\alpha_{k} x_{\sigma^{k}(n)}\right|\right)^{1 / k}\right]^{p_{k}} \quad$ for \quad all $\quad k \in N$. $\left[q\left(\sigma^{k}(n)!\left|\alpha_{k} x_{\sigma^{k}(n)}\right|\right)^{1 / k}\right]^{p_{k}} \leq$
$\left[q\left(\sigma^{k}(n)!\left|\alpha_{k} x_{\sigma^{k}(n)}\right|\right)^{1 / k}\right]^{p_{k}}$ for all $k \in N$. This completes the proof.

Theorem 7.The space $\chi(p, \sigma, q, s)$ are not convergence free in general.

Example 1.Let $s=0 ; p_{k}=1$ for k even and $p_{k}=2$ for k odd. Let $X=C, q(x)=|x|$ and $\sigma(n)=n+1$ for all $n \in N$. Then we have $\sigma^{2}(n)=\sigma(\sigma(n))=\sigma(n+1)=(n+1)+1=n+2$ and $\sigma^{3}(n)=\sigma\left(\sigma^{2}(n)\right)=\sigma(n+2)=(n+2)+1=n+3$. Therefore, $\sigma^{k}(n)=(n+k)$ for all $n, k \in N$. Consider the sequences $\left(x_{k}\right)$ and $\left(y_{k}\right)$ defined as $x_{k}=\left(\frac{1}{k}\right)^{k} \times \frac{1}{k!}$ and $\left(y_{k}\right)=k^{k} \times \frac{1}{k!}$ for all $k \in N$. (i.e.) $\left|x_{k}\right|^{1 / k}=\frac{1}{k} \times \frac{1}{k!}$ and $\left|y_{k}\right|^{1 / k}=\frac{1}{k} \times \frac{1}{k!}$ for all $k \in N$.

Hence $\left|\left(\frac{1}{(n+k)}\right)^{n+k}\right|^{p_{k}} \rightarrow 0$ as $k \rightarrow \infty$. Therefore $\left(x_{k}\right) \in$ $\chi(p, \sigma)$. But $\left|\left(\frac{1}{(n+k)}\right)^{n+k}\right|^{p_{k}} \rightarrow 0$ as $k \rightarrow \infty$. Hence $\left(y_{k}\right) \notin$ $\chi(p, \sigma)$. Hence the space $\chi(p, \sigma, q, s)$ are not convergence free in general. This completes the proof.

References

[1] Y. Altin and M. Et, Generalized difference sequences spaces defined by a modulus function in a locally convex space, Soochow J. Math., 31, 233-243 (2005).
[2] H. I. Brown, The summability field of a perfect $l-l$ method of summation, J. Anal. Math., 20, 281-287 (1967).
[3] R. Colak, M. Et, and E. Malkowsky, Some topics of sequence spaces, Lecture Notes in Mathematics, Firat University Press, Elazig, Turkey, (2004).
[4] C. Goffman and G. Pedrick, First Course in Functional Analysis, Prentice Hall India, New Delhi, (1974).
[5] P. K. Kamthan and M. Gupta, Sequence spaces and Series. Lecture Notes in Pure and Applied Mathematics, 65 Marcel Dekker, Inc., New York, (1981).
[6] I. J. Maddox, Elements of Functional Analysis, Cambridge Univ. Press, (1970).
[7] I. J. Maddox, Sequence spaces defined by a modulus, Math. Proc., Cambridge Philos. Soc., 100, 161-166 (1986).
[8] H. Nakano, "Concave modulars", Journal of the Mathematical Society of Japan, 5, 29-49 (1953).
[9] W. H. Ruckle, FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math., 25, 973-978 (1973).
[10] S. M. Sirajudeen, Matrix Transformation of $\operatorname{Co}(\mathrm{P}), l_{\infty}(P), l^{P}$ and l into χ, Indian J. Pure Appl. Math., 12, 1106-1113 (1981).
[11] B. C. Tripathy, S. Mahanta and M. Et, On a class of generalized difference sequence space defined by modulus function, Hakkaido Math. Jour., XXXIV, 667-677 (2005).
[12] A. Wilansky, Functional Analysis, Blaisdell Publishing Company, New York, (1964).
[13] A. Wilansky, Summability through Functional Analysis, North Holland Mathematics Studies, North-Holland Publishing, Amsterdam, 85, (1984).

Proof.The proof follows from the following example.

[^0]: * Corresponding author e-mail: nsmaths@yahoo.com

