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Abstract: We extensively investigate robust sparse two dimensional principal component analysis (RS2DPCA) that makes the best
of semantic, structural information and suppresses outliers in this paper. The RS2DPCA combines the advantages of sparsity, 2D
data format and L1-norm for data analysis. We also prove that RS2DPCA can offer a good solution of seeking spare 2D principal
components. To verify the performance of RS2DPCA in object recognition, experiments are performed on three famous face databases,
i.e. Yale, ORL, and FERET, and the experimental results show that the proposed RS2DPCA outperform the same class of algorithms
for face recognition, such as robust sparse PCA, L1-norm-based2DPCA.
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1 Introduction

As a class of traditional data analysis approach, subspace
learning is an active direction in pattern recognition and
computer vision. Most of these approaches, e.g. principal
component analysis (PCA), independent component
analysis (ICA), and manifold learning algorithms, when
combined with sparsity, they have shown state-of-the-art
results [1]. This is due to the fact that the sparse
representation can uncover the semantic information
more than compact high-fidelity information of data. The
semantic information, especially for image data, maybe
has more important than the compact high-fidelity
information in pattern recognition [2].

PCA is a traditional and popular data analysis
approach which is widely used in computer vision, and
pattern recognition, etc. [3]. However, traditional PCA for
image data has three disadvantages. First, it suffers from
the so-called curse of dimensionality and tracking with
high-dimensional samples directly is also
computationally expensive, especially in face recognition
and gait recognition etc. Thanks to two dimensional
PCA(2DPCA) and MPCA etc. [4,5], this problem can be
dealt with efficiently. Furthermore, directly operating 2D
data with the matrix algebra methods is much simpler and
structural information of the original data can be

preserved sufficiently, bringing more important and
efficient features for image object recognition [4,6].

Second, the abovementioned semantic information
can not be extracted in traditional PCA. The key idea
behind PCA is to reduce the dimensionality of the
high-dimensional data consisting of a larger number of
interrelated variables, while holding as much as possible
the variation present in these data. So, in the low
dimensional linear subspace expanded by the principal
components, the data structure of the original data space
can preserve the compact high-fidelity information of
data. Each component of PCA is a linear combination of
all the original data variables. All loadings in this
combination are general non-zeros. This is due to the fact
that the traditional PCA lack semantic information. For
example, in gene expression analysis, each variable might
express a specific gene, and the interpretation of principal
components will be easy if the components have many
zero loadings[7]. Therefore, sparse PCA (SPCA) and its
variants is an attractive topic [8,9,10]in virtue of its
component has fewer non-zero loadings. Furthermore, for
the underlying principle of traditional PCA, it is based on
L2-norm that definitely suffers from the outliers.
Fortunately, this robust problem can be alleviated with the
use of L1-norm [11,12], leading to the L1-norm-based
PCA methods(PCAL1) or called robust PCA (RPCA)
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methods. In nature, L1-norm is also an appropriate
measure to a model, where the noise follows the Laplace
distribution [3]. Moreover, in some special applications
like cellular automata model in which translations can
only occur along unit direction, using L1-norm to
measure the fit of a subspace is more natural [3].

L1-norm-based 2DPCA (2DPCAL1) [13] can
overcome the first and third disadvantages theoretically. It
not only is robust to outliers because of using L1-norm,
but also suppresses the ”dimensionality curse” by virtue
of directly operating 2D date. Recently, a robust sparse
PCA (RSPCA) based on L1-norm has been proposed in
[7]. RSPCA seeks the directions of feature space, where
the L1-norm dispersion of the input data is maximized as
large as possible, instead of the L2-norm dispersion
employed by traditionally aforementioned SPCA
methods. RSPCA combine the merits of sparsity and
L1-norm to subdue the second and third disadvantages .
Inspired by these, we proposed the robust sparse
2DPCA(RS2DPCA) in our early work [14]. Though the
proposed RS2DPCA can efficiently overcome the
weaknesses of traditional PCA by virtue of sparsity, 2D
data format, and L1-norm, the theory analysis is not
investigated and the large scale experiments are still
lacking. In this paper, we give more theory analysis and
more experimental results for object recognition.

Object recognition is now becoming a very active
research subject. It includes many fields, such as face
recognition and gait recognition. Various types of object
recognition approaches have been presented [15,16,17].
Among these, subspace methods have received incessant
attention for a long time. While subspace methods have
been studied intensively recently, updated research results
are emerging from the areas of tensor analysis(including
2D data based), sparse representation, manifold learning,
matrix factorization, and matrix completion [18,19,20,
21,5,22,23]. Here we apply RS2DPCA to face
recognition, and show its inspiring application prospect in
pattern recognition and computer vision.

The rest of this paper is organized as follows. In section
2, RS2DPCA is described, and we give the theory analysis
about RS2DPCA in detail. Furthermore, we introduce it to
object recognition in this section. The experimental results
on true data, i.e. three famous public face databases, are
shown in section 3. The last section concludes RS2DPCA
and discusses the future works.

2 Robust sparse 2DPCA

In this section, we extend RSPCA to RS2DPCA and
analyze it in detail[14].

Algorithm Description RS2DPCA can be depicted as
the following optimization problem.

W ∗ = argmax
w

N

∑
i=1

||AiW ||1 =
N

∑
i=1

m

∑
j=1

|ai
jW | (1)

subject toW TW = Im, ||W ||1 < t.
Where| · ||1 denotes theℓ1-norm of a matrix or vector,

andN is the size of the given data respectively.Im denotes
the m rank unit matrix.

The data Ai =
[

(ai
1)

T · · ·(ai
j)

T · · ·(ai
m)

T
]T

∈ Rm×n(

m×n)is the image size). For face data,Ai(i = 1,2, · · · ,N)
means the image data.

Obtaining the optimal solution of (1) is a very hard
work. So, as PCA-L1 did, we simply replace (1) by some
easier problem to solve as below:

w∗ = argmax
w

N

∑
i=1

||Aiw||1 =
N

∑
i=1

m

∑
j=1

|ai
jw| (2)

subject toW TW = Im, ||W ||1 < t.
It is obvious that solving (2) is much easier than (1).

Unfortunately, it is difficult to find optimal solution
because it contains sparsity constraint and absolute value
operation. Now, we firstly introduce a good solution for
(2), then give the successive greedy solutions of (2) to
give a good approximation for (1). The algorithms for
solving the optimization problem (2) are described as
Algorithm a and b.

Algorithm a: RS2DPCA for one sparse PC

1.Initialize w(0). Normalize w(0) , i.e. set

w(0) = w(0)
||w(0)||2

andt = 0.

2.Set u = (u1,u2, · · · ,um)
T =

N
∑

i=1

n
∑
j=1

pi j(t)aiT
j , where

pi(t) =

{

1, i f ai
jw(t)≥ 0

−1, i f ai
jw(t)< 0

.

3.Set be the(k+ 1)− th largest entry of|u| . Then, let
t = t +1. wl(t) = sgn(u)(|ul |− v)+for l = 1,2, · · · ,m .

Here (x)+ =

{

x,x > 0
0,x ≤ 0 and sgn(x) =







1,x > 0
0,x = 0
−1,x < 0

denote the threshold and sign function respectively.
Normalizew(t) , i.e. setw(t) = w(t)

||w(t)||2
.

4. (a)If w(t) 6= w(t −1) , go to 2.
(b)Else if there existsi such thatai

jw(t) = 0 andai
j is

not a zero vector, setw(t) = wT (t)+∆w
||wT (t)+∆w||

, and go to
2. Here∆w is a small nonzero random vector.

(c)Setw∗ = w(t) and stop.

Algorithm a only can compute the first sparse PC. To
obtain wd(d > 1), the input training data should be
updated. This algorithm is depicted as follows.

Algorithm b: RS2DPCA ford(d > 1) sparse PCs
For l = 2,3, · · · ,d do

1.Updateail
j = ail−1

j −ail−1
j wl−1wT

l−1(i= 1,2, · · · ,m; j =

1,2· · · ,n), here ifl = 2, then ai1j = ai
j .

2.Apply algorithm 1 toail
j (i= 1,2, · · · ,m; j = 1,2· · · ,n).
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Algorithm Analysis To analysis the convergence of
Algorithm 1, we review Lemma 1 in [4]. Lemma 1. Given
the vector v = (v1,v2, · · · ,vd)

T , the solution of the
following optimization problem ,

max
w

wT v (3)

subject towT w = 1, ||w||1 < t. is of the following form

w∗ =
β

||β ||2
w

(4)

whereβ = (β1,β2, · · · ,βd)
T and

βi = sgn(vi)(|vi|− γ)+, i = 1,2, · · · ,d (5)

Furthermore, if the sparsity of the solutionw∗ is known to
bek beforehand, thenγ = θk+1 whereθk denotes thek−th
largest element of|v|.

Based on Lemma 1, we can prove the convergence of
w(t) by verifying the nondecreasing property of
N
∑

i=1
||Aiw(t)||1 with respect tot as follows:

N

∑
i=1

||Aiw(t)||1 =
N

∑
i=1

m

∑
j=1

|ai
jw(t)|

=
N

∑
i=1

n

∑
j=1

pi j(t)a
iT
j w(t)

≥
N

∑
i=1

n

∑
j=1

pi j(t −1)aiT
j w(t)

≥
N

∑
i=1

n

∑
j=1

pi j(t −1)aiT
j w(t −1)

=
N

∑
i=1

n

∑
j=1

|aiT
j w(t −1)|

=
N

∑
i=1

||Aiw(t −1)||1

According to the fact thatpi j(t)aiT
j w(t) ≥ 0 hold for

all i and j, the first inequality is evident. According to
Lemma 1, for anyt , w(t) is the k-sparse unit vector
which maximizes the inner product of
w(t)T v(t −1) = w(t)v(t −1)T (Herev can be regarded as
u in Algorithm 1. So the second inequality holds. From
the above results, the value ofw is updated towards a
good solution.

Two points about RS2DPCA should be noted. On one
hand, RS2DPCA can only offer the local maximum ofw ,
and the global optimal solution may not be obtained. On
the other hand, the projected vectors{wl}

d
l=1 , obtained

by Algorithm 2, are not orthogonal to each other. Despite
of these weaknesses, the proposed algorithm show its
efficiency in seeking good robust sparse 2D PCs for face
recognition.

Object Recognition using RS2DPCA In object
recognition, a feature matrixYi = [yi1yi2 · · ·yid ] for each
training sample can be obtained by
yik = Xiwl , l = 1,2, · · · ,d . Here, {wl}

d
l=1 denotes the

projected vectors in RS2DPCA.
In the same way, we can also get a feature matrix

Yt = [yt1yt2 · · ·ytd ] for each testing sample after the
transformation by RS2DPCA. Then, a nearest neighbor
classifier based on the matrix distance is used for
classification.

c = argmind(Yt ,Yi)

= argmin
d

∑
k=1

‖ytk −yik‖2 (6)

where d(Yt ,Yi) =
d
∑

k=1
‖ytk− yik‖2 c ∈ [1,2, · · · ,N] ,

and the distance betweenYc andYt is minimal. Then,Yt
belongs to the class whereYc belongs to. This
classification measure is based on the Yang distance[10].

3 Experimental results

In this section,we use three well-known face databases,
i.e. the YALE face database [24], and the ORL face
database [25], and the FERET face database [26], to
verify RS2DPCA in face recognition. On YALE and ORL
face database, we examined the system performance by
average recognition rates (ARR) and standard
deviations(SD, ), while on FERET face database, we
investigated the system performance by the recognition
rate(first hit). For comparison, the classical PCA,
PCAL1[12], RSPCA, 2DPCA, and 2DPCAL1 have also
been utilized. All programs were implemented under the
Matlab 7.0 platform.

Results on YALE Database The YALE face database
includes 11 different images of each of 15 individuals,
and the images vary in different light conditions and
facial expressions. All images were grayscaled and we
cropped and normalized them to a resolution of 66x56
pixels in our experiments. We gave the average
recognition rates (ARR) and standard deviations(SD,σ )
on the above mentioned six algorithms. We randomly
chose 3 samples per person for training, and the others for
testing. The ARR and over 10 runs were calculated, and
they were described in Fig.1, and Fig. 2.

The classification results using 3 samples per person
are shown in Fig.1 and Fig. 2. These two figures indicate
that generally the performance of 2D-based algorithms is
better than that of 1D-based, and the RS2DPCA is the best
among these shown algorithms.

Results on ORL Database The ORL face database
includes ten different images of each of 40 individuals,
and the images vary in different light conditions, facial
expressions, and sampling time etc. All images are
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Fig. 1 ARR and SD using 1D-based algorithms on YALE. (a)
ARR. ( á) SD.

grayscale and we normalized them to a resolution of
68× 58 pixels in our experiments. We randomly chose 2
samples per person for training, and the others for testing.
The ARR andσ over 10 runs were calculated, and they
are described in Fig.3 and Fig.4. These figures also
indicate that the performance of RS2DPCA is the best
among these six algorithms.

Results on FERET DatabaseFor the purpose of
applications, we tested RS2DPCA on the FERET face
database, which has been widely used to evaluate some
face recognition methods [27]. In our experiments, two
FERET image sets are used i.e. FA and FB. FA,
consisting of frontal images of 1196 individuals, is a
regular frontal face library, which was used as the gallery
set. FB, consisting of frontal images of 1195 individuals,
is an alternative frontal face library, taken seconds after
the corresponding FA, which was used as the probe set.
Before performing the experiments, all images in FA, FB
sets were rectified using the positions of the eyes,
provided by FERET, and then cropped and normalized to
the 60× 50 images. To further reduce the effect of
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Fig. 2 ARR and SD using 2D-based algorithms on YALE. (a)
ARR. ( b́) SD.

Table 1 Recognition Rates On FERET(%)

Algorithm The first hit
PCA 79.83

PCAL1 81.67
RSPCA 79.67
2DPCA 81.34

2DPCAL1 82.01
RS2DPCA 82.26

illumination, we applied the histogram equalization
method. The experimental results (the first hit) also
suggest that the recognition rates of RS2DPCA are
superior to those of the same class of algorithms.

4 Conclusion

We investigate the robust sparse 2DPCA (RS2DPCA) to
make full use of semantic, structural information, as well
as suppressing outliers. RS2DPCA employs the
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      (a)
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Fig. 3 ARR and SD using 1D-based algorithms on ORL. (a)
ARR. ( á) SD.

advantages of sparsity, 2D data format and L1-norm at the
same time. To evaluate the performance of RS2DPCA in
object recognition, we use three famous face databases,
i.e. Yale, ORL, and FERET. The experimental results
suggest that the proposed RS2DPCA can outperform the
same class of algorithms, such as RSPCA, 2DPCAL1.

Though RS2DPCA has shown promising applications
to object recognition, there are some issues to be
investigated. First, the L1-norm optimization (2) only
achieves a local optimum and finding the best parameters
(sparsity and feature dimension) is a stuffy work. Second,
robust sparse PCA based on tensor data may be
developed. Furthermore, the proposed RS2DPCA should
be further evaluated by more practical applications,
including image compression, reconstruction, and so on.
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