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Abstract: In this paper, we consider the symmetric cone linear programming(SCLP), by using the Jordan-algebraic technique, we
extend the generalized proximal point method in linear programming and semidefinite programming to the SCLP. Under some
reasonable conditions, we obtain the convergence of primal central paths associated to the symmetric cone distance function.
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1 Introduction

Let A = (V,◦,〈·, ·〉) be a Euclidean Jordan algebra(see
Section 2 for the definition), where(V,〈·, ·〉) is a finite
dimensional inner product space over the real fieldR and
”◦” denotes the Jordan product which will be defined in
the next section. LetK be the symmetric cone inV and
denotex �K 0 for x ∈ K , we consider the symmetric
cone linear programming (SCLP) with the primal form:

(P) mincT x, s.t. A x = b,x �K 0,

where the data consist ofc ∈ R
n, b ∈ R

m and a linear
operatorA : V → R

m, the primal variable isx ∈ V. The
associated dual problem to (P) is

(D) maxbT y, s.t. A ∗y+ s = c,s �K 0,

where A ∗ : Rm → V denotes the adjoint application
associated toA and (s,y) ∈ V × R

m are the dual
variables. We denote the primal and dual feasible sets as
F (P) = {x ∈ V : A x = b,x �K 0} and
F (D) = {(s,y) ∈ V × R

m : A ∗y + s = c,s �K 0},
respectively. The interior of primal and dual feasible sets
are denoted byF ◦(P) = {x ∈ V : A x = b,x ≻K 0} and
F ◦(D) = {(s,y) ∈ V×R

m : A ∗y+ s = c,s ≻K 0}, and
the primal and dual optimal sets are denoted byF ∗(P)
andF ∗(D).

Throughout this paper, we assume that the following
two conditions hold in the statements of our results.

A1) A : V→ R
m is a surjective linear operator;

A2) F 0(P) 6=∅ andF 0(D) 6=∅.

Assumption A1 is convenient to ensure that the dual
variables s and y are in one-to-one correspondence.
Assumption A2 ensures that both (P) and (D) have
optimal solutions, the optimal values are equals and its
solutions sets are bounded.

Nesterov and Todd[1] first proposed this optimization
problem under the name of convex programming for
self-scaled cones, and established polynomial complexity
of primal-dual interior-point method applied to this
problem using the so-called NT direction. It is well
known that symmetric cone programming (SCP) includes
linear programming (LP), semidefinite programming
(SDP) and second order cone programming (SOCP) as
special cases. Thus, some efficient methods in LP and
SDP have been extended to the programming problems
over symmetric cones. Faybusovich [2] first extended
primal-dual IPMs to SCP through Euclidean Jordan
algebraic tools. Schmieta and Alizadeh [3] proved
polynomial iteration complexities for variants of the
short-, semi-long-, and long-step path-following
algorithms over symmetric cones. Vieira[4], [5] proposed
primal-dual IPMs for SCP based on the kernel functions.
Recently, Wang and Bai [6] generalized Darvays
full-Newton step primal-dual path-following IPM for LP
in [7] and presented a new full NT step primal-dual
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path-following IPM for SCP. Liu et al. [8] and Zhang and
Zhang [9] proposed IPMs with the second-order corrector
step for SCP and showed the polynomial convergence.

In this paper, we consider extending the well known
interior point method-generalized proximal point method
in LP (Linear Programming) and SDP (Semidefinite
Programming) to the SCLP. This idea has, at first,
appeared in Iusem et al. [10], they have proved this
connection among central path and generalized proximal
point sequence in some special cases, including linear
programming. On the other hand, Doljansky and Teboule
[11] introduced a generalized proximal method for
unconstrained convex SDP problems and established its
convergence properties. Recently, the method was
extended to SDP by Ferreira, Oliveira and Silva [12] and
Several works dealing with this issue include Aulender
and Teboulle [13] and Mosheyev and Zibulevski [14].
More recently, Chen and Pan [15] considered an
entropy-like proximal algorithm for convex symmetric
cone programming in the form:

min f (x), s.t. x �K 0,

where f : V → (−∞,+∞] is a closed proper convex
function.

The main motivation of this paper is to develop the
convergence of primal central paths associated to the
symmetric cone distance functions for symmetric cone
programming. Furthermore, we consider the generalized
proximal point method with the distance function and
establish the convergence of primal sequence.

The organization of this paper is as follows. In Sec.2,
we review some basic concepts and materials on
Euclidean Jordan algebra which are needed in the
analysis of the generalized proximal point methods. In
Sec.3, we list some good properties of the distance-like
function in the symmetric coneK . Furthermore, the
detailed introduction and convergence analysis of the
generalized proximal methods are given in Sec.4

2 Preliminaries on Euclidean Jordan algebra

This section recalls some concepts and results on
Euclidean Jordan algebras that will be used in the
subsequent sections. More detailed expositions of
Euclidean Jordan algebras can be found in Koecher’s
lecture notes [16] and Faraut and Korányi’s monograph
[17].

Let V be an n-dimensional vector space over the field
of real numbers endowed with a bilinear mapping(x,y)→
x ◦ y : V×V. For a givenx ∈ V, let L (x) be the linear
operator ofV defined by

L (x)y := x◦ y for everyy ∈ V.

The pair(V,◦) is calleda Jordan algebra if, for all x, y ∈
V, it holds that:

(i) x◦ y = y◦ x,

(ii) x◦ (x2◦ y) = x2◦ (x◦ y), wherex2 := x◦ x.

In a Jordan algebra(V,◦), x ◦ y is said to be the
Jordan product of x andy. Note that a Jordan algebra is
not associative, i.e.,x◦ (y◦ z) = (x◦ y)◦ z may not hold in
general. If for some elemente ∈ V, x◦ e = e◦ x = x for all
x ∈V, thene is called aunit element of the Jordan algebra
(V,◦). For x ∈ V, let ζ (x) be the degree of the minimal
polynomial of x, which can be equivalently defined as

ζ (x) := min{k : {e,x,x2, · · · ,xk} are linearly dependent}.

Then therank of (V,◦), with a unit elemente ∈V, defined
over the real fieldR is called aEuclidean Jordan algebra
or formally real Jordan algebra, if there exists a positive
definite symmetric bilinear form onVwhich is associative;
in other words, there exists onV an inner product denoted
by 〈·, ·〉V such that for allx, y, z ∈ V:

(iii) 〈x◦ y,z〉V = 〈y,x◦ z〉V.

In a Euclidean Jordan algebraA = (V,◦,〈·, ·〉V), we
define the set of squares as

K := {x2 : x ∈ V}.

By [17], K is a symmetric cone. This means thatK is a
self-dual closed convex cone with nonempty interior and
for any two elementsx, y ∈ int(K ), there exists an
invertible linear transformationT : V → V such that
T (K ) = K andT (x) = y.

Recall that an elementc ∈ V is said to beidempotent
if c2 = c. Two idempotentsc and q are said to be
orthogonal if c ◦ q = 0. So {c1,c2, · · ·ck} is a complete
system of orthogonal idempotents if

c2
j = c j, c j ◦ ci = 0 i f j 6= i f or all i, j = 1,2, . . . ,k,

and
k

∑
k=1

c j = e.

An idempotent is said to beprimitive if it is nonzero and
cannot be written as the sum of two other nonzero
idempotents. We call a complete system of orthogonal
primitive idempotents aJordan frame. Then we have the
following spectral decomposition theorem.

2.1. [[11], Theorem III. 1.2] Suppose that
A = (V,◦,〈·, ·〉V) is a Euclidean Jordan algebra and the
rank of A is r. Then for anyx ∈ V, there exists aJordan
frame {c1,c2, . . . ,cr} and real numbers
λ1(x),λ2(x), . . . ,λr(x), arranged in the decreasing order
λ1(x) ≥ λ2(x) ≥ . . . ≥ λr(x), such thatx = ∑r

j=1 λ j(x)c j.

The numbersλ j(x) (counting multiplicities), which are
uniquely determined byx, are called the eigenvalues;
∑r

j=1 λ j(x)c j the spectral decomposition ofx, and
tr(x) = ∑r

j=1 λ j(x) the trace ofx.
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From [[11],Theorem III,1.2], a Jordan algebra(V,◦)
with a unit elemente ∈ V is Euclidean if and only if the
symmetric bilinear formtr(x ◦ y) is positive definite.
Therefore, we may define another inner product onV by

〈x,y〉 := tr(x◦ y) f or all x, y ∈ V.

By the associativity oftr(·) [[11], Proposition II.4.3], the
inner product〈·, ·〉 is associative,i.e., for allx, y, z ∈ V,
there holds that〈x, y ◦ z〉 = 〈y, x ◦ z〉. Thus, the operator
L (x) for eachx ∈V is symmetric with respect to the inner
product< ·, ·> in the sense that

〈L (x)y, z〉= 〈y, L (x)z〉 ∀ y, z ∈ V.

Let ‖ · ‖ be the norm onV induced by the inner product
〈·, ·〉, i.e.,

‖x‖ :=
√

〈x,x〉= (
r

∑
j=1

λ 2
j (x))

1/2 ∀ x ∈ V,

and denote byλmin(·) and λmax(·) the smallest and the
largest eigenvalue ofx, respectively.

Let g : R→ R be a scalar-valued function. Then, it is
natural to define a vector-valued function associated with
the Euclidean Jordan algebra(V,◦,〈·, ·〉V) by

gsc := g(λ1(x))c1+g(λ2(x))c2+ · · ·+g(λr(x))cr, (1)

where x ∈ V has the spectral decomposition
x = ∑r

j=1 λ j(x)c j. This function is called the L̈owner
operator [15] and was shown to have the following
important property.
Lemma2.1. [[18],Theorem13] For anyx = ∑r

j=1 λ j(x)c j,
let gsc be defined by (1). Then gsc is (continuously)
differentiable at x if and only if g is (continuously)
differentiable at allλ j(x). Furthermore, the derivative of
gsc at x, for anyh ∈ V, is given by

(gsc)′(x)h =
r

∑
j=1

g′(λ j(x))〈c j,h〉c j

+ ∑
1≤ j<l≤r

4[λ j(x),λl(x)]gc j ◦ (cl ◦h)
(2)

with

[λ j(x),λl(x)]g := (g(λ j(x))−g(λl(x)))/(λ j(x)−λl(x))

∀ j, l = 1,2, . . . ,r and j 6= l.

In particular, we introduce the inverse function

x−1 = λ−1
1 (x)c1+λ−1

2 (x)c2+ · · ·+λ−1
r (x)cr,

f or all λi(x) 6= 0.
(3)

3 Properties of Distance-like Function

To design the algorithm, we introduce the distance-like
function as follows (see [15]):

H(x,y) : = tr(x◦ lnx− x◦ lny+ y− x),

∀x ∈ int(K ), y ∈ int(K )
(4)

Adding H(x,x0) in the objective function of (P), we
obtain its penalized version

(Pµ) mincT x+µH(x,x0) s.t. A x = b, x ≻K 0, µ > 0.
(5)

wherex ≻K 0 means thatx ∈ int(K ), x0 ≻K 0 is a given
point.

So the primal central path to the problem(P), with
respect to the functionH(x,x0) is the set of points
{x(µ) : µ > 0}. wherex(µ) is defined as

(x(µ)) = arg min
x≻K 0

{cT x+µH(x,x0) : A x = b}, µ > 0.

(6)
For the discussion of next section, we propose the

favorable properties of the distance measure H, and the
following two technical lemmas will be used, the first
lemma is given by M.Baes [19].

Lemma3.1 For any x, y ∈ V, we have
tr(x◦ y)≤ ∑r

j=1 λ j(x)λ j(y) = λ (x)T λ (y), whereλ (x) and
λ (y) are the spectral vectors ofx andy, respectively.

Lemma3.2[[15], Lemma 3.2] For anyx ∈ int(K ), let
Φ(x) := tr(x◦ lnx). Then, we have the following results.
(i) Φ(x) is the spectral function generated by the
symmetric entropy function

φ(u) =
r

∑
j=1

u j lnu j ∀ u ∈ R
r
+. (7)

(ii) Φ(x) is continuously differentiable on int(K ) with
∇Φ(x) = lnx+ e.
(iii) The functionΦ(x) is strictly convex overK .

In lemma 3.2, we can know that the vector-valued
function x ◦ lnx is the L̈owner function gsc(x),
i.e.,gsc = x ◦ lnx. Clearly, gsc is well-defined for any
x ∈ K and

gsc(x) = x◦ lnx =
r

∑
j=1

λ j(x) ln(λ j(x))c j.

Therefore,

Φ(x)= tr(x◦ lnx)= tr(gsc(x))=
r

∑
j=1

λ j(x) ln(λ j(x))= φ(λ (x)).

Next we introduce the properties of the distance-like
function H. These properties play a crucial role in the
convergence analysis of the central path in the following
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section, the proof can be found in [12].

Lemma3.3 Let H(x,y) be defined by (4). Then the
following results hold.
(i) H(x,y) is continuous onK × int(K ) andH(·,y) is
strictly convex for anyy ∈ int(K ).
(ii) For any fixed y ∈ int(K ), H(x,y) is continuously
differentiable onint(K ) with

∇xH(x,y) = lnx− lny.

(iii) H(x,y) ≥ 0 for any x ∈ K and y ∈ int(K ), and
H(x,y) = 0 if and only if x = y.
(iv) For fixed y ∈ int(K ), the level sets
LH(x,γ) := {x ∈ K |H(x,y) ≤ γ} are bounded for all
γ ≥ 0.

4 Generalized Proximal Point Method

From(6), we know thatx(µ) is the solution of the
problem (Pµ). For the convergence analysis of the
generalized proximal methods, we first introduce the
following theorem.
Lemma4.1 The primal central path defined by (6) is well
defined and is inF 0(P).

Proof. For anyµ > 0 we defineΨµ : int(K )→ R by

Ψµ(x) = cT x+µtr(x◦ lnx− x◦ lnx0+ x0− x).

From Lemma3.3(i), we know that the functionΨµ(x) is
strictly convex and extends continuously toK with the
convention that 0◦ ln0 = 0. Its gradient is given by
∇Ψµ(x) = c + µ ln(x)− µ ln(x0) by using Lemma3.3(ii)

and the unique minimizer ise−c/µ+ln(x0).
Take x̃ ∈ F 0(P), from Lemma3.3(iv) we know that

L = {x ∈ K |Ψµ(x)≤Ψµ(x̃)} is bounded and nonempty.
Since Ψµ(x) is continuous inK , we get thatL is
compact and nonempty, sinceF (P) is closed and
nonempty, we have thatL ∩F (P) is also compact and
nonempty. Therefore, the strictly convexity ofΨµ(x)
implies that it has a unique minimizer. Thus the primal
central path is well defined.

Next it remains to show thatx(µ) ∈ F 0(P). Assume
by contradiction thatx(µ) ∈ ∂F (P) = {x �K 0,A x =
b,x ∈ bd(K )}. Define

zε = (1− ε)x(µ)+ ε x̃

whereε ∈ (0,1). Then, as ˜x ∈ F 0(P), x(µ) ∈ ∂F (P),
ε ∈ (0,1) and F 0(P) is convex, we conclude that
zε ∈ F 0(P) for all ε ∈ (0,1). Now combining definitions
of x(µ) and zε with convexity of Ψµ(·) after some
algebraic manipulation we obtain

0≤Ψµ(zε)−Ψµ(x(µ))≤ 〈∇Ψµ(zε),zε − x(µ)〉
= ε/(1− ε)〈∇Ψµ(zε), x̃− zε〉.

which implies 0≤ 〈∇Ψµ(zε), x̃− zε〉, so from Lemma3.1,
we get

0≤ 〈∇Ψµ(zε), x̃− zε〉

= 〈c+µ ln(zε)−µ ln(x0), x̃− zε〉

= µtr(x̃◦ ln(zε)− cT zε −µtr(zε ◦ ln(zε))

−µtr(x̃◦ ln(x0))+µtr(zε)◦ ln(x0))+ cT x̃

≤ µ
r

∑
i=1

λi(x̃)λi(ln(zε))−Ψµ(zε)+ cT x̃

−µtr(zε − x0+ x̃◦ ln(x0))+ cT x̃

Under the hypothesisx(µ) ∈ ∂F (P), using the fact
that zε goes tox(µ) as ε goes to 0, ˜x ≻K 0 and as the
function Ψµ is continuous, the right side of the above
inequality goes to−∞. Therefore, we get an absurd which
implies the desired result.

Lemma 4.1 guarantees that the primal central path to
the Problem (P), with respect to the functionH(·,x0), is
well defined and is in F0(P). So, for allµ > 0, we have
from Eq.(6) that

c+µ(ln(x(µ))− ln(x0)) = A
∗y(µ), (8)

for somey(µ) ∈ R
m.

The dual central path associated to the problem(P) is
the set of points{s(µ) : µ > 0}, wheres(µ) satisfies

s(µ) =−µ(ln(x(µ))− ln(x0)), µ > 0, (9)

or equivalently,(s(µ),y(µ)) is the unique solution of the
optimization problem

max{bT y−µtre−s/µ+ln(x0) : A
∗y+ s = c}, µ > 0.

Thus the set{(x(µ),y(µ),s(µ)) : µ > 0} denotes the
primal-dual central path and it is the unique solution of
the following system

A x = b, x ≻K 0,

A
∗y+ s = c,

s+µ ln(x)−µ ln(x0) = 0, µ > 0.

(10)

This completes the proof.�

Lemma4.2 The primal-dual central path is an analytic
curve contained inint(K )×R×K .
Proof. First we introduce the mapϒ : int(K )×R

m×K ×
R++ → R

m ×K ×K given by

ϒ (x,y,s,µ) =





A x−b
A ∗y+ s− c

µ ln(x)−µ ln(x0)+ s



 .

Note thatϒ (x,y,s,µ) = 0 is equivalent to the system
Eq.(10). Since the central path is the unique solution of
the system Eq.(10) we have that

ϒ (x(µ),y(µ),s(µ),µ) = 0, f orall µ > 0.
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So, asϒ is an analytic function the statement follows from
the implicit function theorem by showing that its Jacobian
with respect to(x,y,s) is nonsingular everywhere. To show
that the Jacobian ofϒ is nonsingular it is sufficient to prove
that its null-space is the trivial one. Assume that

∇(x,y,s)ϒ (x,y,s,µ)(u,v,w) = 0,

equivalently,

A u = 0,

A
∗v+w = 0,

µx−1◦u+w = 0.

(11)

Last equation of Eq.(11) implies thatw = −µx−1 ◦ u.
Substituting in the second equation of Eq.(11) we get
µu = x ◦ A ∗v and in view of the first equation
A (x ◦A ∗v) = 0. Finally asx ≻K 0 andA is surjective
we have thatA L (x)A ∗ is nonsingular, thus latter
equality implies thatv = 0 and consequentlyw = u = 0.
Therefore, the Jacobian ofϒ is nonsingular and the
statement follows.�

Lemma4.1 The following statements hold
(i) the function 0< µ 7→ H(x(µ),x0) is non-increasing,
(ii) the set{x(µ) : 0< µ ≤ µ̄} is bounded, for each̄µ,
(iii) all cluster points of the primal central path are
solutions of the problem (P).
Proof. (i) For allµ > 0, we know that the equation of (8)
is equivalent to

µ∇xH(x(µ),x0)) =−c+A
∗y(µ).

for somey(µ) ∈ R
m.

Takeµ1,µ2 > 0 with µ1 < µ2, sinceH is convex and
x(µ1) − x(µ2) ∈ NullA we have from the previous
equality that

µ1(H(x(µ1),x
0)−H(x(µ2),x

0))

≤ µ1〈∇xH(x(µ1),x
0)),x(µ1)− x(µ2)〉

=−cT (x(µ1)− x(µ2))

and

µ2(H(x(µ2),x
0)−H(x(µ1),x

0))

≤ µ2〈∇xH(x(µ2),x
0)),x(µ2)− x(µ1)〉

=−cT (x(µ2)− x(µ1)).

Now combining the latter two equations we obtain that
(µ1 − µ2)(H(x(µ1),x0) − H(x(µ2),x0)) ≤ 0 and as
µ1 < µ2 we have thatH(x(µ1),x0)≥ H(x(µ2),x0). So the
statement (i) is established.

(ii) Now fixed µ̄ > 0. Similar argument used to prove
item (i) implies that

µ(H(x(µ),x0)−H(x(µ̄),x0))≤−cT (x(µ)− x(µ̄))

for all 0 < µ ≤ µ̄. From item (i) we have that
0 ≤ H(x(µ),x0)− H(x(µ̄),x0) for all 0 < µ ≤ µ̄. Then
above equation implies thatcT x(µ) ≤ cT x(µ̄), for all
0< µ ≤ µ̄. So

{x(µ) : 0< µ ≤ µ̄} ⊂ {x ∈ F (P) : cT x ≤ cT x(µ̄)}.
Since F ∗(P) is bounded we have that the sublevel
{x ∈ F (P) : cT x ≤ cT x(µ̄)} is also bounded. Therefore
the statement (ii) follows from the last inclusion.

(iii) Let x̄ be a cluster point of{x(µ) : µ > 0}. First
note thatA x̄ = b, andx̄ �K 0, i.e. x̄ ∈F (P). Let {µk} be
a sequence of positive numbers such that limk→+∞ µk = 0,
and limk→+∞ x(µk) = x̄. Takex∗ a solution of (P) andx ∈
F 0(P). For ε > 0, define

y(ε) = (1− ε)x∗+ εx

Due the fact thatx∗ ∈ ∂F 0(P), x ∈ F 0(P), for ε ∈ (0,1],
from (6), we have

cT x(µk)+µkH(x(µk),x
0)≤ cT y(ε)+µkH(y(ε),x0),

or,

µk(H(x(µk),x
0)−H(y(ε),x0))≤ cT (y(ε)− x(µk)).

Now sinceH(·,x0) is convex andy(ε) ∈ F 0(P), it is easy
to conclude from above inequality that

µk〈∇xH(y(ε),x0),x(µk)− y(ε)〉 ≤ cT (y(ε)− x(µk))

Thus taking limits in the latter inequality ask → +∞. we
obtain 0≤ cT (y(ε)− x̄), in this inequality, ifε → 0, it gives
0≤ cT (x∗− x̄) or cT x̄≤ cT x∗. The statement (iii) is proved.
�

Theorem4.1 Let x̂ ∈ K be the analytic center ofF ∗(P),
i.e.,there exists the unique point satisfying

x̂ = argmin{H(x,x0) : x ∈ F
∗(P)} (12)

then limµ→0 x(µ) = x̂.
Proof. From Lemma3.3(iv), it is easy to see thatH(·,x0)
is continuous inK , with the convention 0◦ ln0= 0. Take
x̄ a cluster point of the primal central path and{µk} be a
sequence of positive numbers such that limk→+∞ µk = 0,
and limk→+∞ x(µk) = x̄. Now from Eq.(6), we have
µ∇xH(x(µk),x0) =−c+A ∗y(µk), for somey(µk) ∈ R

m.
So,

µk〈∇xH(x(µk),x
0),x−x(µk)〉= 〈−c+A

∗y(µk),x−x(µk)〉,

for all x ∈ F ∗(P), using the convexity ofH and the fact
thatx− x(µk) ∈ NullA , the latter equation becomes

µk(H(x(µk),x
0)−H(x,x0))≤ cT x− cT x(µk).

Sincex ∈ F ∗(P) and µk > 0, it follows from the latter
inequality that H(x(µk),x0) ≤ H(x,x0). Now as H is
continuous we can take limits, ask → +∞ in this
inequality to conclude thatH(x̄,x0) ≤ H(x,x0) for all
x ∈ F ∗(P). Thus any cluster point of the primal central
path satisfies Eq.(12). Therefore, since ˆx is the unique
point satisfying Eq.(12), the primal central path converges
to it and the theorem is proved.�
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Final Remarks

In this paper we have studied the convergence of primal
central paths associated to the for SCLP problems. The
asymptotic behavior of the primal and dual trajectories
associated to the distance-like function in linear program
and semidefinite programming has been studied by
Cominetti and San Martłn[20] and Ferreira[12]. We do
not have considered the behavior of the primal-dual
sequence in the generalized proximal method. Since, we
do not know how to prove the convergence of the
primal-dual sequence to the solution, and so we leave it as
an open problem.
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