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Abstract: We introduce new features of the connection between entanglement induced by interaction and geometric phase acquired
by a composite quantum system. Geometric phase, that reflects Bell anglebetween input and output photons in atom-cavity interaction,
for a bipartite system under the inuence of a dielectric of Lorentzian permittivity, is examined. We show that, with adjustment of
Bell angle, typical features of atom-cavity entanglement can be obtainedby considering a three- level appropriately positioned with
respect to macroscopic bodies. We find that, due to the strong non-Markovian memory effects, phase Rabi oscillations, a principal
signature of strong symmetrically or antisymmetrically photons evolution, are stimulated with atom farther from a medium with low
oscillation frequency. On death of Rabi oscillations, which means symmetric entangled photons, a strong long-time-scale atom-cavity
entanglement can be produced, specially, below the band gap region where the radiative decay dominates. This feature conicts the case
of pure vacuum where atom-cavity entanglement decays exponentially.The feature that, our system is acting as a beam splitter (BS), is
also, in detail, discussed. The results are of strong applications in construction of the universal quantum logic gates.

Keywords: Geometric phase, Entanglement, Three-level atom, Bell angle, Vacuumfield, dielectric media, spontaneous decay rate,
lineshift.

1 Introduction

It has long been realized that the decay rate of an excited
atom is not an immutable property, but that it can be
modified by the cavity mode structure [1,2]. Generally
called the Purcell effect[1], the phenomenon is
qualitatively explained by the fact that the local
environment modies the strength and distribution of the
vacuum electromagnetic modes with which the atom can
interact, resulting indirectly in the alteration of atomic
spontaneous emission properties. The possibility to
control atomic spontaneous emission was shown
theoretically for various cavity structures [3,4,5,6,7],
optical fibers [8], photonic crystals [9], semiconductor
quantum dots [10]. From statistical mechanics it is clear
that dissipation is unavoidably connected with the
appearance of a random force which gives rise to an
additional noise source of the electromagnetic field.
Hence, any quantum theory that is based on the
assumption of a real permittivity can only be valid for
narrow-bandwidth fields far from medium resonances

where absorption can safely be disregarded. In
experiments, however, using optical instruments
(dielectrics-matters), such as beam splitters or cavities,
requires careful examination with regard to their action on
the light under study. Thus, depending on the specic
configuration of inhomogeneities, the atomic spontaneous
decay rate may both increase or decrease compared with
that of the same atom placed in free space according to
the modications in the photonic density of states due to
the presence of dielectric-bodies[3]. This is the result of
non-Markovian memory effects arising from the
frequency variation of the photonic density of states near
the dielectric [4,6]. In this letter we have two essentials
aims: first, we wish to shed light on the relationship
between geometric phase and entanglement in term of
such a modified distribution of the vacuum
electromagnetic modes. Second, answer the important
question: can the unusual vacuum help on the generation
of entanglement between the system parts for sufficiently
long time. Generation of entanglement [11] in quantum
systems has been a subject of intense theoretical and
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experimental study motivated by both the fundamental
issue and potential applications in quantum-information
processing tasks [12]. In order to implement those tasks,
one hopes that entanglement needed to be maintained for
sufficiently long time to fulfill the design. Usually
attempts are made to minimize the environmental effects
[13,14,15,16,17]. Quite counterintuitively, in certain
situations one can take advantage of the spontaneous
emission for entanglement generation [18]. Moreover,
entanglement is connected to the geometric phase (GP),
acquired by cyclic or non-cyclic adiabatic evolutions. It
found that, because of entanglement, the geometric phase
is very different from that of the non-entangled case [19].
In the last ten years, a major thrust of many proposals
have been devoted for the exploration of the connection
between GPs and entanglement [19,20,21,22,23,24,25,
26,27], due to its strong applications in the quantum
information processing and quantum computation [28],
specially in the construction of the universal quantum
logic gates [29]. It was the first time to introduce the
concept of GP by Pancharatnam [30] in his study of
interference of light in distinct states of polarization. Its
quantal counterpart was discovered by Berry [31], who
proved the existence of GP in cyclic adiabatic evolutions.
This was generalized to the case of nonadiabatic [32] and
noncyclic [33] evolutions. Since the GP for a pure state is
a nonintegrable quantity and depends only on the
geometry of the path traced in the projective Hilbert
space, it acts as a memory of a quantum system.
Geometric phase [34] is one of the few approaches by
which one may realize fault tolerant [28] quantum
computation in addition to the fact that it is resilient to
decoherence [35].

However, bipartite system is of great importance in
quantum computation, such as the transfer of quantum
information, the construction of entanglement as well as
the realizations of logic operations. GPs have been
studied for entangled bipartite systems. These include
qubits precessing in magnetic fields [23] and general
evolution[25] both without interaction (fixed
entanglement) and various specic Hamiltonians for
bipartite systems with interactions (changing
entanglement) [36,37]. It has been shown [23,25] in
bipartite systems that even if there are no interactions
during the evolution, fixed entanglement affects the
geometric phase. These facts together give rise to a
question about the way by which entanglement can affect
the GP and its motion in bipartite systems under the
inuence of neighboring dielectrics. Many authors [23,24,
25] have focus on the entanglement dependence of the
geometric phase for subsystem and the coupling effect on
the geometric phase for subsystem under adiabatic
evolution. In Ref.[38], the authors proposed an efficient
scheme for implementation of two-qubit nonconventional
geometric quantum gates, based on a dissipative
large-detuning interaction of two three-level atoms with a
cavity mode is initially in the vacuum state. To the best of
our knowledge, the treatment of such problem within the

framework of exact quantum electrodynamics (QED) in
dispersing and absorbing media, has so far never been
considered in references. A much richer range of
phenomena is to be expected when allowing for the
presence of dispersing and absorbing media, where a
complex interplay of the electric properties of the atom
and the bodies influences the functional dependence of
the atom-eld interaction. Our approach, which has the
advantage of being simple and applicable to different
congurations of three-level systems, renders general
expressions for the three-atom wave vector, as shown in
Secs. II-IV. A denition to both Berry phase and
entanglement measure we are going to use is given in
Secs. V and VI, respectively. In Sec. VII, applications to
the general results are examined for an atom placed in
free space as well as in front of a dielectric half-space
including our numerical calculation and discussion are
also reported. A summary and conclusions are given in
Sec. VIII.

2 General Formalism

For an atom at a given positionrA that interacts with the
electromagnetic eld in the presence of a dispersing and
absorbing dielectric medium, in the electric dipole
approximation, the overall system can be described by the
multi-polar coupling Hamiltonian[3,39],

Ĥ =
∫

d3r
∫ ∞

0
dω h̄ω f̂†(r ,ω) · f̂(r ,ω)

+∑
k

h̄ωkŜAkk − d̂A · Ê(rA) (1)

Here, the bosonic fieldsf̂(r ,ω) and f̂†(r ,ω) are
canonically conjugate variables of the system which
consists of the electromagnetic field and body (including
the dissipative system responsible for absorption) and
satisfy the well-known commutation relations

[

f̂m(r ,ω), f̂†
n(r

′,ω ′)
]

= δmnδ (ω −ω ′)δ (r − r ′) (2)

[

f̂m(r ,ω), f̂n(r ′,ω ′)
]

=
[

f̂†
m(r ,ω), f̂†

n(r
′,ω ′)

]

= 0. (3)

where, theŜAkk′ ≡ |k〉AA〈k′| are the atomic flip operators
for the atom with|k〉A being the energy eigenstate of the
atom, and d̂A = ∑k,k′ d̂Akk′ ŜAkk′ is the electric
dipole-moment operator of the atom
(d̂Akk′ =A 〈k|d̂A|k′〉A).
Further, the operator of the medium-assisted electric field
operator Ê(r) in terms of the variableŝf(r ,ω) and
f̂†(r ,ω) as follows:

Ê(r) =
∫ ∞

0
dω Ê(r ,ω)+h.c., (4)
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Ê(r ,ω) = i
√

h̄
ε0π

ω2

c2

∫

d3r ′
√

εI(r ′,ω) GGG(r , r ′,ω) . f̂(r ′,ω)

(5)
whereGGG(r , r ′,ω) is the classical Green tensor satisfying
the equation

[ω2

c2 ε(r ,ω)−∇×∇×
]

GGG(r , r ′,ω) =−δ (r − r ′) (6)

and satisgfies the boundary condition at infinity, i. e.,

GGG(r , r ′,ω)→ 0 if | r − r ′ |→ ∞. (7)

with spatially varying complex permittivity
ε(r ,ω) = Reε(r ,ω)+ iImε(r ,ω) by which the dielectric
body is expressed.

3 Dynamic of A Pumped Three-LevelΛ -Type
Atom

Consider aΛ -type three-level atom located at a distance
zA from a surface of one-dimensional infinitely long
single-wall dielectric layer. We assume that the atomic
transition|2〉 → |3〉 is strongly coupled to the eld modes
via the dipoled̂23. Moreover, an external (classical) pump
eld, with initial phaseφL , frequencyωL and intensity
described by the Rabi frequencyΩL , is applied to the
atomic transition|1〉 → |2〉. The study of the influence of
external fields is key issue because using driving elds one
can reach high level of control of the systems state. The
one-dimensional version of the Hamiltonian (1) in the
rotating-wave approximation reads

Ĥ =
∫

dz
∫ ∞

0
dω h̄ω f̂ †(r,ω) f̂ (r,ω)+ h̄ω0Ŝ22

−
[

d23Ŝ23Ê(+)(zA)+H.c.

]

− h̄ΩL

2

[

Ŝ21 e−i(ϑL+ωLt)+H.c.

]

(8)

4 Equation of Motion

For the atom at timet = 0 is prepared in a superposition of
its two classically pumped levels|1〉 → |2〉,

| ψ(0)〉=C1(0) | 1〉+C2(0) | 2〉 (9)

where the rest of the system, that consists of the
electromagnetic field and the medium, is in vacuum,
〉 | {0}〉, the state vector of the overall system at later time
t ≥ 0 can be expanded as

| ψ(t)〉=C1(t) | 1〉 | {0}〉+C2(t) e−iω0t | 2〉 | {0}〉

+
∫

dz
∫ ∞

0
dω C3(z,ω, t) e−iωt | 3〉 f̂ †(z,ω) | {0}〉 (10)

where we assumed that the frequencies of the atomic
transitions |2〉 → |1〉 and |2〉 → |3〉 are the same;
ω21 = ω23 = ω0 and f̂ †(z,ω) | {0}〉 represents the
single-quantum excited state of the combined
field-medium system. It is not difficult to prove that the
Schr̈odinger equation for|ψ(t)〉 leads to the following
system of (integro-)differential equations for the
probability amplitudesC1(t),C2(t) andC3(z,ω, t) as

Ċ1(t) = i
ΩL

2
eiϑL ei∆LtC2(t) (11)

Ċ2(t) = i ΩL
2 e−iϑL e−i∆ptC1(t)− d23√

h̄ε0π
∫

dz
∫ ∞

0 dω ω2

c2

√

Imε(z,ω)

GGG(zA,z,ω) C3(z,ω, t) e−i(ω−ω0)t (12)

Ċ3(z,ω, t) =
d32√
h̄ε0π

ω2

c2

√

Imε(z,ω)

GGG∗(zA,z,ω) C2(t) ei(ω−ω0)t (13)

with
∆L = ωL −ω0 (14)

Substituting the formal solution of Eq. (13) with the initial
conditionC3(z,ω,0) = 0

C3(z,ω, t) =
d32√
h̄ε0π

ω2

c2

√

Imε(z,ω)

GGG∗(zA,z,ω)
∫ t

0
dt ′ C2(t

′) ei(ω−ω0)t
′

(15)

and that of Eq. (11), with the initial conditionC1(t = 0) =
C1(0), into Eq. (12), and employing the integral relation

ω2

c2

∫

dzε ′′(z,ω) G(zA,z,ω)G∗(zA,z,ω)= Im G(zA,zA,ω)

(16)
we arrive at

Ċ2(t) = i
ΩL(t)

2
e−iϑL e−i∆ptC1(t)+

∫ t

0
dt ′ K(t, t ′) C2(t

′)

(17)
with the kernel function at the positionzA

K(t, t ′) =− |d23|2
h̄ε0πc2

∫ ∞

0
dω ω2Im

GGG(zA,zA,ω) e−i(ω−ω0)(t−t ′) (18)

It is worth noting that all the matter parameters that are
relevant for the atomic evolution are contained, via the
Green tensor, in the kernel function Eq. (18).
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5 Geometric Phase

For a normalized pure state given a with density matrix
ρ(t) = |ψ(t)〉〈ψ(t)|, the nonadiabatic geometric of
quantum evolution of a system between states|ψ(t)〉 and
|ψ(t ′)〉 is dened by [31]

Φt = arg〈ψ(t ′)|ψ(t)〉+ i
∫ t

0
〈ψ(t ′)|V †(t)V (t)|(t ′)〉dt,

(19)
where,V (t) is the time-dependent unitary operator. If that
parallel transport〈ψ(t ′)|V †(t)V (t)|(t ′)〉= 0, the geometric
phase is just the total phase

Φt = arg〈ψ(t ′)|ψ(t)〉, (20)

Accordingly, for a pure projectors with〈ψ(0)|ψ(t)〉 6= 0,
the associated geometric phase is defined as[21]

Φt = arg〈ψ(0)|ψ(t)〉, (21)

One may measureΦt in interferometry as a relative phase
shift in the interference pattern characterized by
βeiφ = 〈ψ(0)|ψ(t)〉, where β = |〈ψ(0)|ψ(t)〉| is the
visibility [ 40]. Here, an exact expression of the associated
geometric phase can be obtained as

Φt = arg(C∗
1(0)C1(t)+C∗

2(0)C2(t)e−iω0t) =−arctan

(

Y (t)
X(t)

)

,

(22)
with

X(t)+ iY (t) = Re(C∗
1(0)C1(t)+C∗

2(0)C2(t)e
−iω0t)

+iIm(C∗
1(0)C1(t)+C∗

2(0)C2(t)e
−iω0t) (23)

6 The Reduced Density Operator and
Entanglement Measure

A major thrust of current research is to nd an efficient and
quantitative measure of entanglement for bipartite system.
The concurrence [41,42], negativity, [43] and relative
entropy [44] are some of these measures. Also, one of
these approaches that based on the eigenvalue spectra of
the system density matrices is entropy method [45,46,
47]. Entropy, known as von Neumann entropy [45], is
related to the density matrix, which provides a complete
statistical description of the system. It is a commonly
accepted fact that von Neumann entropy [45] is the
unique entanglement measure for bipartite systems in a
pure state [48]. From the viewpoint of the Phoenix-Knight
[46] entropy formalism, we have investigated the
quantum entropy and entanglement of the present system.
In order to calculate the entropyS(t), we must obtain the
eigenvalues of the reduced density operator. Recalling Eq.
(10), the full density matrixρ(t) = |(t)〉〈(t)|, needed for

calculating the reduced density matrixρA(t), after the
tracing of the reservoir variables, is expressed as

ρA(t) =





ρ11(t) ρ12(t) 0
ρ21(t) ρ22(t) 0

0 0 ρ00(t)



 (24)

where

ρ11(t) = |C1(t)|2, ρ12(t) =C1(t)C∗
2(t) = ρ∗

21(t), ρ22(t) = |C2(t)|2
(25)

and

ρ00(t) =
|d32|2

h̄ε0πc2

∫ ∞

0
dωω2

G(zA,zA,ω)

∣

∣

∣

∣

∫ t

0
dt ′C2(t

′)e(ω−ω0)t
′
∣

∣

∣

∣

2

(26)

In deriving ρ00(t), Eq. (26), we have used the integral
relation (16). It is apparent that, the nal expression of
ρ00(t) depends on the form of the Green tensor
ImG(zA,zA,ω). In terms of the eigenvalues,
chiy,(y = 1,2,3), entropy can be dened as follows [46,49]

S(ρA) =−
3

∑
y=1

χy ln χy (27)

where χy,(y = 1,2,3) are the roots of the charactersic
equation of degree three

χ3− [ρ11+ρ22+ρ00]χ2+[ρ11ρ22+ρ00(ρ11+ρ22)−|ρ12|2]χ2

+(|ρ12|2ρ00−ρ11ρ22ρ00) = 0 (28)

The reduced density matrix is, however, calculated in a
general form, hence, entropy of the system can be easily
copmuted. The results will depend crucially on the shape
of the kernel (18). To gain clearer insight, a comparison
between various shapes of the kernel (18) is, however,
efficient. This is precisely what is done in the next
sections.

7 Applications

7.1 Three-level atom in free space near a
perfectly reecting mirror

Besides the free space being interesting in its own right, it
will be useful to compare and interpret the outcomes in the
following sections. In free space, the excitation spectrum
turns into a quasi-discrete set of lines of mid-frequencies
k centered about the atomic transition frequencyωk ≈ ω00
. Thus, the Green tensorG(zA,zA,ω), is replaced by the
vacuum Green tensor;G(zA,zA,ω0) [4,5], where

ImGV (zA,zA,ω0) =
ω0

6πc
I (29)
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thus, the kernel Eq. (18) becomes

K(t, t ′) =− |d23|2
h̄ε0πc2

ω0

6πc

∫ ∞

0
dωk ω2

k e−i(ωk−ω0)(t−t ′) (30)

In this case the Weisskopf-Wigner approximation [50] is
applied to obtain forC2(t), Eq. (17),

Ċ2(t) = i
ΩL

2
e−iϑL e−i∆ptC1(t)−Γ 32

0 C2(t) (31)

with the free-space spontaneous emission rate for the
transition|2〉 → |3〉

Γ 32
0 =

|d23|2ω3
0

3h̄ε0πc3 (32)

It is not difficult to obtain the amplitudesC2(t) andC1(t)
from equations (11) and (31), using the initial conditions
C1(t = 0) =C1(0) andC2(t = 0) =C2(0), as

C2(t) = ∑i exit (xi+i∆L)C2(0)+i
ΩL
2 e−iϑLC1(0)

(xi−x j)
, i, j = 1,2; i 6= j

(33)

e−i∆LtC1(t) = ∑i exit [xi+Γ 32
0 ]C1(0)+i

ΩL
2 eiϑLC2(0)

(xi−x j)
, i, j = 1,2; i 6= j

(34)
with

x1,2 =−Γ 32
0 + i∆L

2
± 1

2

√

(Γ 32
0 − i∆L)2−Ω 2

L (35)

If the classical pump laser field is resonance with the
atomic transition frequencyω0 ; ∆L = 0, we have

x1,2 =−Γ 32
0

2
± 1

2

√

(Γ 32
0 )2−Ω 2

L (36)

As we seek for omparison, we will consider the case
when ΩL = Γ 32

0 . In this case the double root are
x1,2 = −Γ 32

0 /2 which yield for the amplitudesC2(t) and
C1(t) the expressions

C j(t) = e−
Γ 32
0
2 t

[

C j(0)+(−1) j+1 Γ 32
0
2 t

(

C j(0)+(−1) j+1ie(−1) j+1hφLCk(0)

)]

,

j,k = 1,2; j 6= k (37)

Performing time integral in Eq. (26) with help of Eq. (37),
recalling the vacuum Green tensor, Eq. (29), a somewhat
lengthy calculations of frequency integral, using the initial
conditionC2(0) = 1√

2
=C1(0)eiφ , yields

ρ00(t) =
(

1−e−Γ 32
0 t

)

− (Γ 32
0 )2t2(1+cosϑ)

2
e−Γ 32

0 t (38)

0 2 4 6 8 10
0

0.2

0.4

0.6

a

Γ
0
32 t

0 2 4 6 8 10
−2

−1

0

1

2
b

Γ
0
32 t

Φ
t

Fig. 1: (a) State|2〉 Population,|C2|2 [blue, ϑ = π/2] and
[magenta,ϑ =−π/2] and entropy, S [red,ϑ = π/2] and [green,
ϑ =−π/2], (b) the Berry phase t [blue,ϑ = π/2] and [magenta,
ϑ =−π/2], againstΓ32t for atom in free space withΩL/Γ32= 1.

With same initial condition in C j(t) and for
ϑ = −π/2,π/2, the population|C2|2, entropy, S, and
Berry phase,Φt , againstΓ32t, are shown in Fig. (1) for an
atom in free space. We can see clearly the effect of the
damping term, exp(Γ32/2), where decay to normal
vacuum occurs after few oscillations [51], but with
different degrees according to the change inϑ . Entropy,
S, starts with rapid increase - regardless ofϑ value -
while it decays to zero slowly or rapidly depending onϑ
sign. Forϑ = π/2 all terms in Eq. (23) contribute toΦt
and the resulting phase exhibits Rabi oscillations with an
amplitude increases with time, while forϑ = −π/2, Φt
reduces toΦt = arctan[cot(ω0t/2)] that explains the so
tooth evolution of Φt with sharp peaks jump to the
opposite sign on periods ofΓ32t = nπ/2; n = 0,1,2. . . .
Note, Rabi oscillations are due to the different de-phasing
of the off-diagonal coherences caused by environmental
inuences [52]. It is worth to note that, because of the very
different evolutions of bothS andΦt , we cannot build any
insight about the connection between them. In addition, in
free space, as known, we cannot stabilize quantum
systems against environmental decoherence and, hence,
entanglement revives for short times.
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7.2 Three-level atom in placed near a planar
dielectric half-space in the weak-coupling
regime

Due to the additional noise accompanying absorption, the
photonic density of states may be modied, as a result, the
integral kernel, Eq. (18), needs to be treated
mathematically in a complete dierent way. Taking the
time integral of both sides of Eq. (17), it is not difficult to
obtain

C2(t) =C2(0)+
iΩL

2
e−iϑL

∫ t

0
dt ′ e−i∆Lt ′C1(t

′)

+
∫ t

0
dt ′ K (t, t ′) C2(t

′) (39)

with

K (t, t ′) =
|d23|2
h̄ε0π

∫ ∞

0
dω

ω2

c2 Im

GGG(zA,zA,ω)
e−i(ω−ω0)(t−t ′)−1

i(ω −ω0)
(40)

For an atom located in free-space near a dielectric, the
Green tensor for the system can be divided into two parts
[3], i. e., the vacuum Green tensor given by Eq.(29),
GV (zA,zA,ω), and the Green tensor,GR(zA,zA,ω), that
describes the effect of reflection at the surface of
discontinuouty of the body, thus

G(zA,zA,ω) = GR(zA,zA,ω)+GV (zA,zA,ω) (41)

In the weak-coupling regime, Markov approximation can
be safely applied because of ignoring the memory effects.
This assumption implies that

ei(ω0−ω)(t−t ′)−1
i(ω0−ω)

→ πδ (ω0−ω)+ iP
1

ω0−ω
(42)

thus
K (t, t ′) =−Γ 32/2+ iδω0 (43)

where the modied, by the presence of the body, decay rate
Γ 32 and the level shiftδω0 , are respectively,

Γ 32 = Γ 32
0 +

2|d23|2
h̄ε0

ω2
0

c2 Im GR(zA,zA,ω0) (44)

δω0 =
|d23|2
h̄ε0π

P

∫ ∞

0
dω

ω2

ω2
0

Im GR(zA,zA,ω)

(ω −ω0)
(45)

Obviousely, in contrast to free space, the vacuum
uctuations felt by an atom are inhomogeneously and
anisotropically changed by the presence of the bodies.
Following the approach of Dung et al., [4], and after
Recalling the Kramers-Kronig relation [3] for the Green
tensor, we may approximately rewriteδω0 as

δω0 =
|d23|2ω2

0

h̄ε0c2 ReGR(zA,zA,ω0)

−|d23|2
π

∫ ∞

0
dω

ω2

ω2
0

Im GR(zA,zA,ω)

(ω +ω0)
(46)

where the second term can be ignored as it is weakly
sensitive to the atomic transition frequency and small
compared to the rst one. Substituting (43) into (39) and
taking the time derivative of both sides with the setting of
Γ32/2= ϖ32, for simplicity, we obtain

Ċ2(t) = i
ΩL(t)

2
e−iϑL e−i∆LtC1(t)+(−ϖ32+ iδω0) C2(t)

(47)
Following the same procedure as in the previous section,
the amplitudesC1(t) andC2(t) can be obtained as

e−i∆ptC1(t) = ∑i eyit [yi−(−ϖ32+iδω0)]C1(0)+i
ΩL
2 eiϑLC2(0)

(yi−y j)
,

(48)

C2(t) = ∑i eyit (yi+i∆L)C2(0)+i
ΩL
2 e−iϑLC1(0)

(yi−y j)
, i, j = 1,2, i 6= j

(49)
and, due to the unite trace,

ρ00(t) = 1−|C1(t)|2−|C2(t)|2 (50)

where

y1,2 =− (ϖ32−iδω0)+i∆l
2 ±

√

[(ϖ32− iδω0)− i∆l ]2−Ωl
(51)

7.3 Model permittivity of Drude-Lorentz type

We consider two innite half-space dielectric medium [3]
such that

ε(r ,ω) =

{

ε(ω) if z ≤ 0
1 if z > 0

(52)

To give an impression of what can be observed in real
situation, let choose a planar dielectric surface of
permittivity modeled by the widely-used-in-practice
Lorentz type as [53]

ε(ω) = 1+
ω2

p

ω2
T −ω2− iωγ

(53)

whereωT and γ are the medium oscillation frequencies
and linewidths, respectively, andωp correspond to the
coupling constants. Forz > 0, but small compared with
the wave length,kz ≪ 1, using the results obtained by
Scheel et al. [54] of the reflection part of the Green tensor
yields for the decay rate

Γ 32 ≈ 3Γ 32
0
8

(

1+ d2
z

d2

)(

c
ω0z

)3
εI(ω0)

|ε(ω0)+1|2
(54)
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Similarly, the line shift reads

δω0 =
3Γ 32

0
32

(

1+ d2
z

d2

)(

c
ω0z

)3
|ε(ω0)|2−1
|ε(ω0)+1|2

(55)
It has been shown [55] that despite being the phase gained
by a joint state, its value is fundamentally dependent on
the harmonic oscillator nature of the vibrational mode.
Because of the intra-subsystem coupling, the evolution of
the system can be very different from the free space case.
Moreover, considering the Drude-Lorentz model
stimulates important observations such that the exhibition
of a band gab between the transverse frequencyωT and

longitudinal frequency ωG =
√

ω2
T +ω2

p and

incorporation of surface-guided-waves [4].

Such an effct can give rise to strong collective effects,
which are necessarily required to generate substantial
entanglement [39]. Inside the band gap most of the energy
emitted by the atom is absorbed by the medium in the
course of time, namely, non-radiative decay dominates. It
worth to note that, when the band gap is smoothed, this
means that the fraction of light that escapes to free space
can increase, specially with increasing value ofγ/ωT , this
is simply clear from Fig. (15a), and thus radiative decay
dominates [4]. Note, inside the band gapδω0 changes its
sign asΓ32 decreases from its maximum as possible, so,
its contribution to interaction becomes weak and can be
ignored. These facts together give rise to approximate the
complex amplitudesCm(t),m = 1,2, Eqs. (48, 49) to be,
on setting∆L = 0, the same form as Eqs. (37) of free
space with the replacement of the free space decay rate
Γ 32 by ϖ32. We expect a similar behavior as in free space
but with longer time scale due to the effct of the body
expressed in the dependence ofΓ 32 on the dielectric
parameters, as seen from comparison of Figs.1, 2 and3.
When we extend the discussion to include a wider range
of the frequencyγ/ωT , namely, below, above and in the
band gap, it will be interesting to include the level shift in
our treatment. We used the same set of parameters to
picture the numerical results as mesh plots in Figs. (4-6)
where the linewidth changes asγ/ωT = 0.001,0.01 and
0.1, while a cross section from the mesh plots are given in
Fig. 7. Figures show that a similar behavior of both|C2|2
andΦt , while an opposite development ofS is noticed. In
the the absorption band region whereωG ∈ [ωT ,1.12ωT ],
regardles of the time scale, both|C2|2 and S amplitudes
damped to zero and the atom and eld are in separable
state while neighboring the band gap, the atom and the
fields are strongly correlated. The phaseΦt reaches its
negative maximum . Below the band gap, as time passes,
|C2|2 decreases slowly, while, on increasingγ/ωT , |C2|2
shows rapid increase. An opposite behavior is noticed for
entropyS below the band gap but for not high broadened
linewidth, see Fig. (6). Below and above the band gap,Φt

0
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0.015

0.02 0

10

20

30

−2

0

2

Γ
0
32 t

c

γ/ω
T

Φ
t

Fig. 2: Mesh plot of|C2|2 (a), entropy,S (b), and Berry phaseΦt
(c), as functions of the bandwidthγ/ωT andΓ 32

0 t near a planar
dielectric half-space, withΩL =ϖ32,ω0 = 1.12ωT , ωp = 0.5ωT ,
z = 0.05λT for ϑ = π/2.

exhibits opposite sharp peaks of maximum unity
disappear by increasingγ/ωT . Here, the resulting total
phase t written as a function of its maximum and
minimum of the amplitudes, influences the initial system
state|ψ(0)〉 = |a〉at |{0}〉 f to evolve antisymmetrically as
|a〉at |{0}〉 f → 1

2(|a〉at |{0}〉 f − i
√

3|c〉at |1〉 f ) →
1
2|a〉at(|{0}〉 f − i

√
3|1〉 f ), where |a〉at = 1√

2
(|1〉 + |2〉)

and |c〉at = 1√
2
(|3〉 + |2〉). This can be interpreted as

follows: If the initial state is taken to be|a〉at |{0}〉 f , we
can write,

c© 2013 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


42 M. S. Ateto: Geometric phase as entanglement probe in a pumped...

0

0.005

0.01

0.015

0.02 0

10

20

30

−2

0

2

Γ
0
32 t

c

γ/ω
T

Φ
t

Fig. 3: The same as Fig.2 but for ϑ =−π/2

|a〉at |{0}〉 f = cos

(

∫ t

0
dt ′Φt(t

′)

)

|a〉at |{0}〉 f

−isin

(

∫ t

0
dt ′Φt(t

′)

)

|c〉at |1〉 f (56)

If we consider,Φt(t ′) = Φt , then fortΦt = π/3, previous
results can be easily reached, which demonstrates that the
wave function behind the system acts as∼= 35% : 65%
beam splitter (BS) with Bell angle controls degree of
superpostion of photon states|{0}〉 f and |1〉 f . We,
however, have could generate a degree of entanglement
between input and output photons, a very important
question needs to be answered, that is, why the atom and
the eld remain in separable state above the band gap? The

answer is as follows: any value of the Bell angle t that
reects the degree of entanglement between input and
output photons except forΦt = 0 or ±π, means partial
overlap between the initial and final wave functions of the
system, i. e., noncyclic evolution.

Fig. 4: Mesh plot of|C2|2 (a), entropy,S (b), and Berry phaseΦt
(c), againstω0/ωT andΓ 32t near a planar dielectric half-space,
with ΩL = ϖ32,ωp = 0.5ωT ,z = 0.05λT for γ = 10−3ωT .

Hence, destructive interference is more pronounced.
As a consequence, EntropyS partially vanishes, see Figs.
(4, 5 and 7). A full cyclic evolution with long-lived
entanglement can be noticed below the band gap in Fig.
(10). It is worth mentioning that below the band gap and
at the eld resonance(ω0 ≈ ωT ) frequencies, a photon
emitted at such a frequency is typically captured by the
surface for some time, i.e., a photon absorption dominates
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[4], and hence, no interference effects could modify the
phase angle of the emitted photons as long asγ/ωT
preserved small, see Figs. (4b and 7b). In the
low-frequency region(ω0 < ωT ), where surface-guided
waves are typically excited, radiative decay dominates,
i.e., the probability of a photon being absorbed is also
small, and hence, interference effects become more
effective. This clarifies why by increasing the damping
parameter,γ/ωT , the angle between the initial and final
photon states reduced remarkably to be no longer
approachesπ, see Fig.7c, and explains why atom-eld
entanglement below band gap is more pronounced, see
Fig. (7b).

Fig. 5: The same as Fig.4 but for γ = 10−2ωT .

Fig. 6: The same as Fig.4 but for γ = 10−1ωT

Figures8-11 illustrate the dependence of|C2|2, Φt ,
andS on line shiftδω0 as well as the decay rateΓ 32 with
various values of the bandwidth parameterγ. The figures
reveal that with the decrease ofγ/ωT , rapid Rabi
oscillations are created, specially far below the band gap;
ω0 ≪ ωT , where, oscillations strongly overlap during all
time stages, due to the rapid energy transfer between the
atom and the medium to the extent that the populations of
the levels|1〉 and |2〉 overlap except for small course of
time. In this case, the initial state|a〉at |{0}〉 f evolves
eventually between symmetricall and antisymmetricall
states as|a〉at |{0}〉 f → 1

2|a〉at(|{0}〉 f ± i
√

3|1〉), thus, a
35% : 65% BS is clearly noticed. An important
observation is that, for short time scale in the
low-frequency region(ω0 < ωT ), as possible asγ/ωT is
preserved small, the population, exhibits water waves
evolution, that seems clearly as an envelope ofΦt Rabi
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Fig. 7: Cross section depicted for|C2|2 (a), entropy,S (b),
and Berry phaseΦt (c), againstω0/ωT whenΓ 32

0 t = 10.0 and
z = 0.05λT , where, red, green and black lines are forγ =
10−3ωT ,γ = 10−2ωT andγ = 10−1ωT , respectively.

oscillations. It is worth noting that, forΦt , a similar
behavior has been noticed for aΛ -type three level atom
interacts with single mode in the presence of
one-dimensional photonic band gap [20]. In such a
region, separable atom-field states are clearly produced.
On increasingγ/ωT and as time passes,Φt gradually
vanishes till disappears completely except for slightly
small region, which resluted in a long-lived atom-field
entanglement extended over all below band gap region,
compare Figs. (8) and (10), also, Figs. (11b) and (11c). In
this case, a full cyclic wave evolution is produced, where
the initial state |a〉at |{0}〉 f evolves symmetrically as
|a〉at |{0}〉 f → 1

2|a〉at(|{0}+ |1〉) , thus, a 50% : 50% BS
is clearly noticed.

The effect of the distancezA of the atom from the
plate surface supports our previous analysis. Note, the
term (≈ z−3

A ) in Eqs. (54) and (55), which is proportional
to εI(ω0), is closely related to the virtual photon emission

Fig. 8: The same as Fig.4 but when taking into account the effect
of bothΓ 32 andδω0

with subsequent medium quasiparticle excitation
(nonradiative decay), i.e., energy transfer from the atom
to the medium. Thus, we expect to achieve our goal more
simply. In Figs. (12-15), |C2|2, S, and Φt have been
pictured againstω0/ωT andzA/λT for different values of
γ/ωT . One can easily realize thatΦt undergoes fast Rabi
oscillations as long as the atom jumps to state|2〉.
Moreover, one can easily notice that|C2|2 represents a 3D
envelop of Φt in the upper half plane while similar
behavior toΦt is notice for entropyS. Above band gap,
Rabi oscillations disappear where a kind of steady
entanglement appears extended over all above band gap
region. In the corresponding regionΦt has fixed values
regardless of the distant of the atom from the medium.
Those figures shape is preserved even ifγ/ωT increses

c© 2013 NSP
Natural Sciences Publishing Cor.



Quant. Inf. Rev.1, No. 2, 35-49 (2013) /www.naturalspublishing.com/Journals.asp 45

Fig. 9: The same as Fig.8 but for γ = 10−2ωT

except for extending of the steady entanglement region
below and above band gap, see Figs. (13, 14). Hwoever, it
is clear that, depending on whetherΦt vanishes or not, we
can distinguish easily where the atom-cavity system is
entangled or separable with support of Figs. (13b,c,14b,c
and15b,c).

Moreover, such interaction setting up is potentially
interesting for its ability to process information in a novel
way and might nd application in models of quantum logic
gates. In fact, in quantum computation, operations are
performed by means of single-qubit and multiple-qubit
quantum logic gates [56]. One could use the present
model, acting as BS, to generate a C-NOT gate, i.e.,
universal quantum logic gate based on three-level atom.
In a single photon Mach-Zhender (M-Z) interferometer
[57], which provides two possible paths for a single

Fig. 10: The same as Fig.8 but for γ = 10−1ωT

photon input to be transmitted to the output, for an equal
path lengths, |a〉at |{0}〉 f → |a〉at(|{0}〉 f ± |1〉 f ), our
system can be a suitable device so that a photon input will
be counted with certainty at the detector by controlling
the adjustable parameters. However, for unequal paths,
|a〉at |{0}〉 f → 1

2|a〉at(|{0}〉 f ± i
√

3|1〉 f ), we can insert a
phase shift devices into either path and thus change the
interference conditions [57]. In this case, an additional
polarising beam splitter (PBS) is effective, where, for an
emitted photons, PBS redirects vertically polarized
photons (say in state|V 〉 ) without affecting horizontally
polarized photons ( say in state|H〉) such that a C-NOT
gate can be obtained as

α|H〉1+β |V 〉2 → α|H〉1′ +β |V 〉2′ (57)
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Fig. 11: The same as Fig.7 but when taking into account the
effect of bothΓ 32 andδω0

8 Summary and Conclusions

Based on the analysis above, our study may be considered
as a multi-functional. Under the influence of neighboring
dielectric, a system of an interacting three-level atom and
vacuum electromagnetic field, evolve as an effective
entangled two-qubit system, acts as beam splitter (BS) as
well as a tool used for testing photon-photon
entanglement and looking for an optimized connection
between atom-field entanglement and Berry phase to be
used as a typical entanglement probe.

To be quite general, we first presented a solution for
wave function, without specifying the dielectric
properties used in the neighborhood of the atom-field
interaction.

During study, the medium oscillation frequency,ωT ,
atomic transition frequency,ω0 , distance of the atom
from the dielectric surface,zA/λT and Rabi strength of

Fig. 12:Mesh plot of|C2|2 (a), entropy,S (b), and Berry phaseΦt
(c), againstω0/ωT andzA/λT near a planar dielectric half-space
whenΓ 32t = 2 andωp = 0.5ωT for γ = 10−3ωT

the driving classical,ΩL as well as its phaseωL , are
considered as our effective tools. We show that, adjusting
the Bell angle settings between the input and output
photon to symmetrically or antisymmetrically, we can
build a principal signature of strong atom-cavity
correlation. To achieve this goal, two essential scenarios
can be applied:

–For fixed position of the atom from the medium,
utilizing a medium of suitable oscillation frequency
ωT , a correct resonant atomic transition frequency can
be produced, hence, a cyclic wave evolution can be
generated, i.e, in-phase entangled photon evolution,
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Fig. 13: The same as Fig.12but for γ = 10−2ωT

specially with increased medium oscillation linewidth
γ, below and neighboring band gap, which resulted in
a strong atom-cavity entanglement can survive longer
than the corresponding in free space.

–For variant distance from the medium, atom-cavity
entanglement become more efficient. In this case, for
a distancezA ≤ λT , entanglement extended over wide
range of the ratio between the atomic transition
frequency and medium oscillation frequency,ω0/ωT ,
namely, below, above and in the band gap region.

Fig. 14: The same as Fig.12but for γ = 10−1ωT
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