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Abstract: The problem of statistical modelling and identifying the significant variables inlarge data sets is common nowadays. This
paper deals with the statistical analysis of two large dimensional data sets; wefirstly conduct a seismic hazard sensitivity analysis
using seismic data from Greece acquired during the years 1962−2003, and then analyze Trauma data collected in an annual registry
conducted during the year 2005 by the Hellenic Trauma and Emergency Surgery Society involving 30 General Hospitals in Greece.
The main purpose of both analyses is to extract high-level knowledge for the domain user or decision-maker. Eight non parametric
classifiers derived from data mining methods (Multilayer Perceptrons (MLP) Neural Networks, Radial Basis Function Neural (RBFN)
Networks, Bayesian Networks, Support Vector Machines (SVMs), Classification and Regression Tree (C&RT), Chi-square Automatic
Interaction Detection (CHAID), C5.0 algorithm and Quick, Unbiased, Efficient Statistical Tree (QUEST)) are employed in this work,
and are compared to Logistic Regression andℓ1-norm SVM in terms of overall classification accuracy, sensitivity, specificity, and Area
under the ROC curve (AUROC). The goal of this paper is twofold; assess the importance of several input variables in order to detect
the possible risk factors of large earthquakes or to prevent trauma deaths, and examine which classifiers are most suited for a large
dimensional data analysis, detecting effectively complex nonlinear relationships and potentially lead to more accurate predictions.
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1 Introduction

Several variable selection methods have been developed over the last decade to cope with statistical modelling problems
for large dimensional data. The main goal in such problems isto select correctly and parsimoniously the features that
influence significantly the response variable. In response to such problems, Data Mining (DM) techniques are widely used
for extracting nontrivial, implicit and previously unknown information from massive databases, and effectively applying
it for decision making or prediction. Large dimensional variable selection problems arise from diverse fields of sciences,
such as seismology (see, for example, [32] and [11]), geosciences (see, for example, [2]) and biomedicine (see, for
example, [27]).

Koukouvinos et al. [28] have already dealt with the problem of high-dimensional seismic data analysis by employing
statistical methods such as the nonconcave penalized likelihood methods and best subset techniques which were then
compared to decision tree methods. Classical variable selection methods, statistics and soft computing techniques have
been studied extensively to analyze earthquake data (see, for example, [1], [42] and [40]). Bayesian networks [29] and
Artificial Neural Networks (ANNs) (see, for example [15], [3] and [30]) have been widely developed for dealing with
nonlinear seismic data. Recent research has targeted on novel data mining techniques [47], computational seismic
algorithms [34], and new ANN approaches (see, for example, [25], [26] and [12]) for earthquake hazard analysis.
Methods of analysis such as Support Vector Machines (SVMs) are still at an early stage [9]. In this study, we compare
several DM techniques with SVMs and ANNs, which are particularly suited for our analysis, since both are flexible
models that can cope with complex nonlinear relationships [20].

∗ Corresponding author e-mail:parpoula.ch@gmail.com, drosou.kr@gmail.com, ckoukouv@math.ntua.gr

c© 2013 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/jsap/020303


204 C. Parpoula et al: Large-Scale Statistical Modelling via Machine Learning Classifiers

DM also plays a significant role in large dimensional medicaldata analysis since modern hospitals are well equipped
with data collection devices, and achieve to collect and store huge databases [52]. Currently, many studies have been
carried out and focused on DM applications for biomedical data analysis, for example see [6], [14], [10], [37], [38], and
[27]. In this study, DM techniques are performed for trauma dataanalysis, and are compared to SVMs and ANNs in order
to generate a predictive model that can be applied for prediction and classification of new data.

In this paper, our aim is twofold, namely, to build a meaningful and parsimonious model by estimating several
seismological or medical parameters, and figure out the linkbetween statistics and data mining for analyzing two
important real life problems; earthquake prediction and trauma death prediction. However, analyzing real data is often a
complex and laborious process because it is difficult or evenimpossible to establish a physical relationship that connects
a collection of inputs to a particular target or outcome [50]. The main goal is to identify those factors that may contribute
to a large earthquake or a trauma death, and the exploration of the way they could do this. This can not be accomplished
by using traditional variable selection techniques which often neglect some underlying factors. The innovative nature of
our study lies on the comparison of several high-powered data mining techniques that enabled us to deal with mass of
seismic and medical data and effectively analyze two real life problems. After performing model selection, we compute
several classification metrics and graphics, including thesensitivity analysis procedure.

The rest of this paper is organized as follows. In Section 2, we describe briefly the considered classifiers. In Section 3,
we perform the classifier-based analyses, and then carry outa comparative study to evaluate the merits of each employed
method. We also describe the performance criteria used for the evaluation of the employed methods. Finally, in Section 4,
the obtained results are discussed and some concluding remarks are made.

2 Classifiers

2.1 Logistic regression (LR)

A LR model in which the response variabley has only two possible outcomes, denoted by 0 and 1, is considered. We now
present the LR model used in our comparative study.

Suppose there aren experimental runs with a binary response. If we arbitrarilywrite y=1 for a success andy=0 for a
failure, then we are truly modeling the mean responseP(xi), whereP(xi) is the success probability andxi denotes the set
of covariates or regressors at theith data point. The logistic model forP(xi) is then given by

P(xi) = 1/(1+e−x′iβ ),

where the termx′iβ= β0+β1xi1+...+ βmxim is the linear link function. For more details on the LR model,we refer the
interested reader to [36].

2.2 Decision Trees (DT)

Decision tree algorithms repeatedly split the data set according to a criterion that maximizes the separation of the data,
resulting in a tree-like structure which includes only the important attributes that really contribute to the decisions making.
This greedy construction process of decision trees gives the opportunity to develop classification models that may be used
to predict or classify future data sets, according to a number of provided decision rules. In this study, we focus on four
widely used decision tree algorithms, named as Classification and Regression Tree (C&RT) [7], C5.0 [41], Chi-square
Automatic Interaction Detection (CHAID) [24], and Quick, Unbiased, Efficient Statistical Tree (QUEST) [31].

2.3 Artificial Neural Networks (ANNs)

Among the emerging scientific methods for data analysis, computational intelligence methods such as ANNs [44] find
applications in seismic data analysis. ANNs are widely usedin data mining methodology for revealing hidden non-
linear relationships among data [49]. Two ANN algorithms are tested in this paper: Multilayer Perceptron (MLP) and
Radial-Basis Function Network (RBFN). MLP is a general purpose feedforward network [21] that uses the classical back
propagation algorithm based on a deterministic gradient descent algorithm in order to optimize the error function. RBFN
is based on a clustering procedure for computing distances among each input vector and the center, represented by the
radial unit [33], [23].

The ANN used in this study is a standard three-layered network with an input, a hidden, and an output layer. The
input layer consists of 9 input neurons representing the risk factors (predictor variables), the hidden layer consistsof 3
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hidden neurons, and the output layer consists of one output neuron modelling the dichotomous outcome (valued as 1
for the positive response, and 0 for the negative response).Since there does not exist a commonly accepted theory for
predetermining the optimal number of neurons in the hidden layer, we follow a trial-and-error process and several number
of units in the hidden layer are examined, such as 3, 5, 7 and 9.The number of neurons in the hidden layer is set to 3
empirically, e.g., by two-fold cross-validation. For bothANNs the network is trained on the training set, and accuracyis
estimated based on the test set. For a detailed description of ANNs, the interested reader may refer to [4].

2.4 Bayesian Network Models

A Bayesian network is a parameter learning structure that provides a succinct way of describing the joint probability
distribution for a given set of random variables. A Bayesiannetwork is a graphical probability model that displays
variables (often referred to as nodes) in a dataset and the probabilistic, or conditional, independencies between them
[16]. In this study, we focus on the Tree Augmented Naive Bayes (TAN) network that is primarily used for classification.
The TAN creates a simple Bayesian network model that is an improvement over the standard Naive Bayes model. This is
because it allows each predictor to depend on another predictor in addition to the target variable, thereby increasing the
classification accuracy.

2.5 Support Vector Machines (SVMs)

SVMs are a comparatively new classification technique basedon ideas originated in statistical learning theory [46], [8].
SVMs are a supervised learning method that generates input-output mapping functions from a set of training data.
Specifically, the training vectors are mapped into a high-dimensional feature space so that data points can be categorized.
Since in our study we deal with a binary classification problem, the two groups are separated in a higher-dimension
hyper-plane accordingly to a decision function. The optimal, in terms of classification performance, hyper-plane is the
one with the maximal margin of separation between the two classes [46]. SVMs use either linear and non-linear kernel
functions to transform input data to a high-dimensional feature space in which the input data become more separable
compared to the original input space.

Though several kernels such as Laplace, Bessel, Anova, and Spline have been proposed by researchers [22], in this
study we examine the following four basic kernels, which arethe most widely used and are defined as:

1.Linear:K(xi ,x j) = xT
i x j ;

2.Polynomial:K(xi ,x j) = (γxT
i x j +coe f0)d;

3.Gaussian Radial Basis Function:K(xi ,x j) = exp(−γ‖xi −x j‖
2);

4.Sigmoid:K(xi ,x j) = tanh(γxT
i x j +coe f0)

whereγ > 0, coef0 and d (degree) are kernel parameters.
We examine different kernel functions in order to obtain thebest model, as they each use different algorithms and

parameters. The goal is to find the optimum balance between a wide margin and a small number of misclassified data
points. Each kernel function has a regularization penalty parameter (known asC) which controls the trade-off between
these two values. We need to experiment with different values of this and other kernel parameters in order to find the best
model, which means that training a SVM for the above kernels requires the setting of 1, 4, 2, and 3 parameters respectively.

Although SVMs are commonly developed as a method of finding the maximal margin hyperplane, SVMs can also
be formulated as a regularized function estimation problem, corresponding to a hinge loss function plus anℓ1-norm
or anℓ2-norm regularization term on the fitted coefficients [51]. The Least Absolute Shrinkage and Selection Operator
(LASSO) method [45] is a common approach in regression for parameter estimation. Bradley and Mangasarian (1998) [5]
adapted theℓ1-regularization (LASSO) to SVM. Zhu et al. (2003) [53] extended the idea of usingℓ1-norm constraints for
automatical variable selection to classification problemsby proposing anℓ1-norm SVM. Fung and Mangasarian (2004)
[17] proposed a fastℓ1 SVM modification using a newton linear programming SVM. Recently, Wang et al. (2006) [48]
adapted the elastic net penalty term [54] to SVMs by using a mix of theℓ1-norm and theℓ2-norm penalties. The elastic net
SVM is especially useful for cases in which the number of the relevant variables exceeds the sample size. Theℓ1-norm
SVM is suitable for our real data analyses (seismic and trauma), since the dimension of the data is not larger than the
number of training samples [51].
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3 Comparative Analysis - Results

3.1 Model Evaluation

Assessing the reliability of classifier algorithms is essential to ensure data quality. The most common criterion to assess
the quality of a classification model is discrimination which measures how well the two classes in the data set are
separated [49]. We consider the four most commonly used measures of discrimination for evaluating the performance of
the employed methods. Initially, the accuracy is used as first criterion. Accuracy is defined as the percentage of correct
classified records in training, test or validation set for every used method. The other two criteria used are the sensitivity
and specificity which are two statistical measures of the performance of a binary classification test and are closely related
to the concepts of Type I and Type II errors. Sensitivity measures the proportion of actual positives which are correctly
identified as such whereas specificity measures the proportion of negatives which are correctly identified. Another
popular statistical tool for describing accuracy is the Receiver Operating Characteristic (ROC) curve [39]. An ROC curve
by definition is used to evaluate the performance of a system with dichotomous outcomes. Traditionally, the Area Under
the ROC Curve (AUROC) is used as a summary index of test accuracy [19], and is useful as a descriptive of overall test
performance.

More precisely, given a classifier and a record, there are four possible scenarios. Positive records are correctly predicted
as positive (True Positive-TP), positive records are incorrectly identified as negative (False Negative-FN), negative records
are classified as positive ones (False Positive-FP) and finally negative records are correctly identified as negative (True
Negative-TN). Using a two-by-two confusion matrix we can easily represent these possible outcomes and compute the
four measures, since they are defined as follows:

Accuracy (ACC)= TP+TN
TP+FP+TN+FN

Sensitivity = TP
TP+FN = 1-Type II error

Specificity = TN
TN+FP= 1-Type I error

The ROC curve calculates the Sensitivity= 1-False NegativeRate as a function of (1-Specificity)= False Positive Rate for
all the possible cutoffs. In our study, the models’ performance is assessed by calculating and comparing the AUROCs.

3.2 Classifier Performance for Seismic Data

In this section, we compare several classifiers from the machine learning field, and then report the results of the modelling
process. To provide an unbiased estimate of each model’s discrimination, the performance criteria values are calculated
from a data set not used in the model building process. Usually, a portion of the original data set, called the test set, is put
aside for this purpose [13]. A classifier should present high values of ACC, sensitivity, specificity and AUROC, and the
model’s generalization performance is often estimated by the holdout validation (i.e., train/test split) [20]. Here, we deal
with a high-dimensional data set consisting of 10333 earthquakes, that is split randomly into a training set, containing
75% of cases (7749) and the test set, containing 25% of cases (2584) in order to evaluate the performance of classifiers
on new data. For the partitioning, the total observations are randomly selected to create the training and the test sets,
according to their predefined size.

The examined data set consists of the response variabley that refers to the earthquake’s Magnitude coding as 0,1
(magnitude> 6.5: 1, otherwise: 0), where the magnitude scale is used to express the seismic energy released by each
earthquake, 9 statistically significant factors obtained by the performance of the variable selection techniques in [28], and
10333 instances. The names of these factors are included in the Appendix Section. The analysis was carried out using
the SPSS 17.0 and SPSS Clementine 12.0 statistical software. The interested reader may refer to [43] for the MATLAB
implementation of theℓ1-norm SVM.

3.2.1 LR for Seismic Data

The estimated model derived from LR methodology is:

1.8814-1.5934*x1+0.4791*x2+0.4844*x4+0.9662*x5+ 1.2827*x7 -0.1536*x8 -2.3002*x9-1.3152*x10+1.3955x11
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Fig. 1: ROC curve for the estimated LR model (seismic)

Fig. 1 displays the ROC curve for the estimated LR model. The further the curve lies above the reference line, the
more accurate the test. The AUROC achieved the high value of 0.90.

All variables are ranked from the 1st to the 9th according to the value of the test statistic (i.e., according to their
significance/contribution into the model). We note, that this procedure was applied to all methods, and no differences on
the ranking were observed. The final arrangement was obtained from all statistical analysis methods simultaneously. So
the final setting to order from the most to the least significant variable is:x1, x7, x11, x5, x9, x2, x10, x4, x8.

We observe here that the most significant factor for seismological data was found to be the variable “year”. Specifically,
according to its negative coefficient in the model we conclude that in the last years, earthquakes of lower magnitude were
observed. This correlation between “year” and “magnitude”, may indicate a periodicity in seismic activity and it needs
further investigation from seismologists. This issue is very crucial on earthquake prediction and estimation of earthquake
effects on building, and in last decades many researchers have focused on this. The second statistically significant factor

is “hyper distance”, which is the Euclidean distance, meaning hyper distance=
√

(epicenterx)2+(epicentery)2. These
two geographical characteristics of epicenter may be useful for determining areas that present high hazard for strong
earthquakes. Seismologists are very interested in studiesabout such areas since they can combine these ones with their
findings about tectonic plates. Taking into consideration these features and the time moments that energy releases through
earthquakes, researchers have useful information for earthquake prediction. One more important factor is “depth”. The
result is presumable since it is well known that the strongerearthquake activity is observed in the external surface of
Earth. Among the 9 factors including in the data set, there are factors that are intrinsic to the earthquake, such as the depth
(x11), geologic characteristics such as, the hyper distance (x7) and geographical characteristics, such as the latitude (x4),
the azimuth (x8), the ordinate of the epicenter (x9) and the abscissa of epicenter (x10).

3.2.2 DT for Seismic Data

C5.0 algorithm has clearly better classification accuracy,sensitivity, and specificity which reaches the absolute percentage
of 100% for the training and the test set. Comparing CHAID andC&RT, the first one has more correctly classified records
in test set (99.35%) whereas the corresponding percentagesfor training set are the same for both classifiers. CHAID
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Table 1: Advanced comparison of decision trees performance (seismic)
ACC SENSITIVITY SPECIFICITY

Classifier Training set Test set Training set Test set Training set Test set
C5.0 100% 100% 100% 100% 100% 100%

CHAID 99.24% 99.35% 99.7% 99.72% 98.05% 98.49%
C&RT 99.24% 99.25 % 98.95% 99.14% 100% 100%
QUEST 99.07% 98.85 % 97.64% 97.89% 97.43% 97.95%

Fig. 2: ROC Curves derived from decision trees (seismic)

has adequate specificity whereas the same measure for C&RT is100%, which means that the classifier recognizes all
actual negatives; in other words this means that C&RT has lowType I error rate. This measure alone does not tell us
how well the classifier recognizes positive cases and so it isnecessary to take into consideration both sensitivity of the
used classifiers. When the two algorithms are evaluated against the sensitivity, CHAID has clear advantage having highest
percentages, which means that the Type II error rates are lower than the ones of C&RT algorithm. QUEST has the worst
performance compared to C5.0, CHAID and C&RT in terms of ACC,sensitivity and specificity. Fig. 2 displays the ROC
curves derived from all decision tree algorithms. The AUROCis 1, 1, 0.98 and 0.95 for the C5.0, CHAID, C&RT and
QUEST respectively. In general, C5.0 and CHAID seem to outperform C&RT, and then follows the QUEST with the
worst performance criteria values.

3.2.3 ANNs for Seismic Data

Table 2: Estimated Accuracy of ANNs (seismic)
Method Hidden Units Estimated Accuracy (%)
RBFN 3 83.51
RBFN 5 81.23
RBFN 7 80.53
RBFN 9 81.70
MLP 3 97.69
MLP 5 97.5
MLP 7 97.45
MLP 9 97.33

We examine several number of units such as 3, 5, 7 and 9 in the hidden layer in order to determine the optimal number
of neurons in the hidden layer. Table 2 shows the estimated accuracy of binary classification by ANNs with 3, 5, 7 and 9
units in the hidden layer for each MLP and RBFN method. The number of neurons in the hidden layer is set to 3 since
this value is found to be optimal resulting in higher estimated accuracy for both MLP and RBFN methods.

MLP network has clearly higher classification accuracy compared to RBFN and Bayesian network for the training and
the test set. Furthermore, MLP network achieves excellent results for specificity, and reaches the absolute percentageof
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Table 3: Advanced comparison of networks performance (seismic)
ACC SENSITIVITY SPECIFICITY

Classifier Training set Test set Training set Test set Training set Test set
MLP (Neural Net 1) 97.46% 97.37% 100 % 100 % 91.08% 91.65 %

Bayesian Network 87.65% 88.73 % 89.96 % 91.21 % 81.85 % 83.53 %
RBFN (Neural Net 2) 83.4% 84.11% 84.01 % 84.82 % 81.85% 82.57 %

Fig. 3: Bayesian Network (seismic)

Fig. 4: ROC Curves derived from networks (seismic)

100% for sensitivity. Fig. 3 illustrates the Bayesian network for the 9 statistically significant variables. Fig. 4 displays the
ROC curves derived from MLP, RBFN and Bayesian networks. TheAUROC is 0.94, 0.93 and 0.86 for the MLP, Bayesian
and RBFN network respectively. In general, MLP network technique outperforms Bayesian network, and then follows
RBFN taking into consideration all sets resulting from partitioning.
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3.2.4 SVMs for Seismic Data

Besides the kernel function, the regularization parameterC and the value of gammaγ are selected from several candidates,
and the one that results in the best performance is chosen. Ifthe kernel type is set to polynomial or sigmoid the parameter
bias sets the coef0 value in the kernel function and the default value 0 is suitable in most cases. The parameter degree
is enabled only if kernel type is set to polynomial and controls the complexity (dimension) of the mapping space (in our
study we set the valued = 3).

The regularization parameterC controls the trade-off between maximizing the margin and minimizing the training
error term. This value should normally be between 1 and 10 inclusive. Increasing the value improves the classification
accuracy for the training data, but this can also lead to overfitting. The gamma value should normally be between 3/k
(=0.333) and 6/k (=0.666), wherek is the number of input fields (9 in our study).

SVM parameter selection can be viewed as an optimization process, since a grid search method is performed to control
parametersC andγ, and obtain the best possible model. Table 4 and 5 show the results of a grid-based search for our data
set using the four kernels. In this comparative study, the best model with the highest estimated accuracy is obtained using
C= 10 andγ = 0.66 for all considered kernels. After detecting the best regularization parameters, we train our final model
and estimate the predictive accuracy.

Table 4: Results of grid search for Gaussian radial basis function (seismic)
Predictive Accuracy (%)

Gaussian RBF
0.34 c=1 c=2 c=3 c=4 c=5 c=6 c=7 c=8 c=9 c=10

Training Set 86.24 87.33 87.81 88.05 88.31 88.45 88.62 88.6988.83 88.94
Test set 86.44 86.98 87.45 87.76 88.03 88.3 88.53 88.76 88.9689.23

0.35 c=1 c=2 c=3 c=4 c=5 c=6 c=7 c=8 c=9 c=10
Training Set 86.51 87.47 87.9 88.24 88.39 88.56 88.66 88.83 89.01 89.13

Test set 86.48 87.1 87.6 87.99 88.22 88.53 88.76 89.07 89.3589.42
0.4 c=1 c=2 c=3 c=4 c=5 c=6 c=7 c=8 c=9 c=10

Training Set 86.96 87.73 88.13 88.44 88.54 88.85 89.01 89.1189.25 89.49
Test set 86.94 87.52 87.95 88.22 88.8 89.07 89.42 89.42 89.6989.89

0.45 c=1 c=2 c=3 c=4 c=5 c=6 c=7 c=8 c=9 c=10
Training Set 87.19 87.95 88.44 88.61 88.89 89.14 89.29 89.5189.71 89.89

Test set 87.18 87.87 88.18 88.88 89.27 89.46 89.73 89.85 89.85 89.97
0.5 c=1 c=2 c=3 c=4 c=5 c=6 c=7 c=8 c=9 c=10

Training Set 87.45 88.13 88.54 88.91 89.18 89.4 89.64 89.95 90.14 90.36
Test set 87.45 87.07 88.61 89.31 89.46 89.73 89.97 89.97 90 90.31

0.55 c=1 c=2 c=3 c=4 c=5 c=6 c=7 c=8 c=9 c=10
Training Set 87.58 88.45 88.78 89.2 89.46 89.8 90.07 90.29 90.43 90.56

Test set 87.64 88.26 89.07 89.46 89.73 90.04 90 90.43 90.5990.78
0.6 c=1 c=2 c=3 c=4 c=5 c=6 c=7 c=8 c=9 c=10

Training Set 87.9 88.51 89.28 89.37 89.85 90.07 90.36 90.42 90.66 90.94
Test set 87.72 88.49 89.35 89.66 89.97 90.12 90.47 90.66 90.78 91.24

0.65 c=1 c=2 c=3 c=4 c=5 c=6 c=7 c=8 c=9 c=10
Training Set 88.02 88.71 89.22 89.76 90.03 90.38 90.54 90.8591.02 91.15

Test set 87.87 89 89.5 89.93 90.2 90.55 90.78 91.2 91.4491.67
0.66 c=1 c=2 c=3 c=4 c=5 c=6 c=7 c=8 c=9 c=10

Training Set 87.96 88.73 89.25 89.81 90.09 90.42 90.6 90.89 91.01 91.24
Test set 87.87 88.96 89.54 89.97 90.39 90.59 90.78 91.28 91.44 91.82

Table 5: Results of grid search for sigmoid, linear and polynomial kernel (seismic)
Predictive Accuracy (%)

Sigmoid c=1 c=2 c=3 c=4 c=5 c=6 c=7 c=8 c=9 c=10
Training Set 71.7 71.71 71.71 71.72 71.72 71.72 71.72 71.71 71.71 71.74

Test set 68.38 68.46 68.46 68.5 68.5 68.46 68.46 68.46 68.4668.5
Linear c=1 c=2 c=3 c=4 c=5 c=6 c=7 c=8 c=9 c=10

Training Set 83.76 83.93 84 84.08 84.15 84.13 84.13 84.15 84.13 84.18
Test set 83.92 84.23 84.35 84.54 84.54 84.62 84.62 84.66 84.784.73

Polynomial c=1 c=2 c=3 c=4 c=5 c=6 c=7 c=8 c=9 c=10
Training Set 88.34 89.23 90.26 90.96 91.34 91.65 91.96 92.1392.52 92.87

Test set 88.45 89.11 90.55 91.13 91.71 91.98 92.13 92.44 92.75 93.26

The SVM with a polynomial kernel has clearly higher classification accuracy compared to theℓ1-norm SVM and the
SVMs with RBF, linear and sigmoid kernel for the training andthe test set. Furthermore, the polynomial SVM achieved
the highest values for sensitivity and specificity. The Gaussian SVM (RBF) outperforms the linear SVM and theℓ1-norm
SVM in terms of ACC, sensitivity and specificity, and then follows the sigmoid SVM. Fig. 5 displays the ROC curves
derived from all SVMs with the four considered kernels, and Fig. 6 displays theℓ1-norm SVM. The AUROC is 0.98,
0.97, 0.90, 0.62 for the SVMs with a polynomial, RBF, linear and sigmoid kernel respectively. The AUROC for the
ℓ1-norm SVM takes the lowest value equal to 0.59. Theℓ1-norm SVM performs almost similarly to the linear SVM in
terms of ACC, sensitivity and specificity. Note here, that the ℓ1-norm SVM identifies all 11 possible risk factors of large
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Table 6: Advanced comparison of SVMs performance (seismic)
ACC SENSITIVITY SPECIFICITY

Classifier Training set Test set Training set Test set Training set Test set
Polynomial (SVM 2) 92.86% 93.52% 95.05 % 95.97 % 87.37% 87.36%

Gaussian RBF (SVM 1) 91.24% 91.82 % 93.82 % 94.79 % 84.75 % 85.39 %
Linear (SVM 4) 84.35% 84.73% 90.76 % 92.52 % 67.51% 67.85 %
ℓ1-norm SVM 83.96% 84% 89.9% 90% 69.62% 70%

Sigmoid (SVM 3) 71.71% 68.46% 99.4 % 99.43 % 23% 14.7 %

Fig. 5: ROC Curves derived from SVMs (seismic)

Fig. 6: ℓ1-norm SVM (seismic)

earthquakes as statistically significant. Table 6 shows that theℓ1-norm SVM tends to have higher Type I errors and lower
Type II errors, in other words this means that theℓ1-norm SVM tends to declare at a higher rate inactive variables to be
active, and at a lower rate active variables to be inactive.

3.2.5 Overall Comparison for Seismic Data

Table 7 ranks the best candidate models according to the specified performance criteria, and helps the experimenter to
choose the best approach for a given analysis. Fig. 7 displays the ROC curves derived from all methods employed in this
comparative study. The further the curve lies above the reference line, the more accurate the test.
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Table 7: Advanced comparison of classifiers via overall accuracy and AUROC(presented in descending order)
Overall Accuracy % Area Under the ROC curve

Classifier Training set Test set Test set
C5.0 100% 100% 1

CHAID 99.24% 99.35% 1
C&RT 99.24% 99.25 % 0.98
QUEST 99.07% 98.85 % 0.95

Neural Net 1 (MLP) 97.46% 97.37% 0.94
SVM 2 (polynomial) 92.86 % 93.52% 0.98

SVM 1 (RBF) 91.24% 91.82% 0.97
Bayesian Network 87.65 % 88.73% 0.93

SVM 4 (linear) 84.35 % 84.73% 0.90
Logistic Regression 84.13 % 84.23% 0.90

Neural Net 2 (RBFN) 83.4% 84.11% 0.86
SVM 3 (sigmoid) 71.71 % 68.46% 0.62
ℓ1-norm SVM 83.96% 84% 0.59

Fig. 7: ROC Curves derived from all models (seismic)

3.3 Classifier Performance for Trauma Data

In this section, we deal with a large dimensional Trauma dataset consisting ofN = 8862 patients and 41 factors that
include demographic, transport and intrahospital data used to detect possible risk factors of death. According to medical
advices, all the prognostic factors should be treated equally during the statistical analysis and there is no factor that should
be always maintained in the model. The data set is split randomly into a training set, containing 75% of cases (6646)
and the test set, containing 25% of cases (2216) in order to evaluate the performance of classifiers on new data. For
the partitioning, the total observations are randomly selected to create the training and the test sets, according to their
predefined size.

For each patient the target attribute, i.e., the probability of death, is reported. This response variabley is binary,
expressed in the form of two categories, where 0 value denotes the survival, while the value of 1 denotes the death. The
names of these factors are included in the Appendix Section.The analysis was carried out using the SPSS 17.0 and SPSS
Clementine 12.0 statistical software. The interested reader may refer to [43] for the MATLAB implementation of the
ℓ1-norm SVM.

3.3.1 LR for Trauma Data

The estimated model derived from LR methodology is:

-5.97+0.72*x2+0.25*x11+0.09*x16+0.56*x20+ 0.06*x23+1.02*x25-0.16*x27+1.46*x71+1.30*x101

Fig. 8 displays the ROC curve for the estimated LR model. The further the curve lies above the reference line, the
more accurate the test. The AUROC achieved the high value of 0.986.
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Fig. 8: ROC curve for the estimated LR model (trauma)

All variables are ranked from the 1st to the 9th according to the value of the test statistic (i.e., according to their
significance/contribution into the model). The final arrangement was obtained from all statistical analysis methods
simultaneously. So the final setting to order from the most tothe least significant variable is:x71, x20, x101, x25, x11, x23,
x16, x27, x2.

3.3.2 DT for Trauma Data

Table 8: Advanced comparison of decision trees performance (trauma)
ACC SENSITIVITY SPECIFICITY

Classifier Training set Test set Training set Test set Training set Test set
C5.0 99.05% 98.96% 84.21 % 82.69 % 99.85 % 99.76 %

CHAID 98.38% 98.19 % 80.12 % 78.90% 99.36% 99.09 %
C&RT 98.54% 98.64 % 77.19 % 78.84% 99.69% 99.62 %
QUEST 98.36% 98.64 % 76.60 % 78.76% 99.54 % 99.52 %

C5.0 algorithm has clearly better classification accuracy,sensitivity, and specificity which reaches the percentage of
99% in some cases for the training and the test set. ComparingCHAID and C&RT, the second one has more correctly
classified records in both training and test set, and higher specificity which means that the classifier recognizes more
actual negatives; in other words this means that C&RT has lower Type I error rate. This measure alone does not tell us
how well the classifier recognizes positive cases and so it isnecessary to take into consideration both sensitivity of the
used classifiers. When the two algorithms are evaluated against the sensitivity, CHAID has clear advantage having highest
percentages, which means that the Type II error rates are lower than the ones of C&RT algorithm. QUEST has the worst
performance compared to C5.0, CHAID and C&RT in terms of ACC and sensitivity. QUEST has only higher percentages
of specificity compared to CHAID. Fig. 9 displays the ROC curves derived from all decision tree algorithms. The AUROC

c© 2013 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


214 C. Parpoula et al: Large-Scale Statistical Modelling via Machine Learning Classifiers

Fig. 9: ROC Curves derived from decision trees (trauma)

is 0.964, 0.964, 0.919 and 0.937 for the C5.0, CHAID, C&RT andQUEST respectively. In general, C5.0 and CHAID seem
to outperform C&RT, and then follows the QUEST with the worstperformance criteria values.

3.3.3 ANNs for Trauma Data

Table 9: Estimated Accuracy of ANNs (trauma)
Method Hidden Units Estimated Accuracy (%)
RBFN 3 94.72
RBFN 5 94.95
RBFN 7 95.07
RBFN 9 94.99
MLP 3 98.65
MLP 5 98.76
MLP 7 98.72
MLP 9 98.75

Table 10:Advanced comparison of networks performance (trauma)
ACC SENSITIVITY SPECIFICITY

Classifier Training set Test set Training set Test set Training set Test set
MLP (Neural Net 1) 98.92% 98.92% 100 % 100 % 100 % 100 %

Bayesian Network 98.38% 96.93 % 91.81 % 85.41 % 98.73 % 98.42 %
RBFN (Neural Net 2) 94.86% 95.3 % 83.04% 83.65 % 99.77 % 99.66 %

We examine several number of units such as 3, 5, 7 and 9 in the hidden layer in order to determine the optimal number
of neurons in the hidden layer. Table 9 shows the estimated accuracy of binary classification by ANNs with 3, 5, 7 and
9 units in the hidden layer for each MLP and RBFN method. The number of neurons in the hidden layer is set to 7 for
RBFN and 5 for MLP since this value is found to be optimal resulting in higher estimated accuracy for MLP and RBFN
methods respectively.

MLP network has clearly higher classification accuracy compared to RBFN and Bayesian network for the training and
the test set. Furthermore, MLP network achieves excellent results for sensitivity and specificity, and reaches the absolute
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Fig. 10: Bayesian Network (trauma)

Fig. 11: ROC Curves derived from networks (trauma)

percentage of 100% for both training and test set. The Bayesian network has better performance compared to RBFN in
terms of ACC and sensitivity whereas it has lower percentages of specificity for both training and test set. Fig. 9 illustrates
the Bayesian network for the 41 input variables. Fig. 10 displays the ROC curves derived from MLP, RBFN and Bayesian
networks. The AUROC is 0.98, 0.937 and 0.917 for the MLP, Bayesian and RBFN network respectively. In general, MLP
network technique outperforms Bayesian network, and then follows RBFN taking into consideration all sets resulting
from partitioning.

3.3.4 SVMs for Trauma Data

Besides the kernel function, the regularization parameterC and the value of gammaγ are selected from several candidates,
and the one that results in the best performance is chosen. The gamma value should normally be between 3/k (=0.07317)
and 6/k (=0.14634), wherek is the number of input fields (41 in our trauma study). Table 11and 12 show the results
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of a grid-based search for our data set using the four kernels. In this comparative study, the best model with the highest
estimated accuracy is obtained usingC = 2 for the linear kernel,C = 1 andγ = 0.146 for the sigmoid kernel,C = 6 or 7
or 8 or 9 or 10 andγ = 0.146 for the polynomial kernel, andC = 10 andγ = 0.146 for the Gaussian RBF kernel. If the
kernel type is set to polynomial or sigmoid the parameter bias sets the coef0 value in the kernel function and the default
value 0 is suitable in most cases. The parameter degree is enabled only if kernel type is set to polynomial and is set to be
d = 3. After detecting the best regularization parameters, we train our final model and estimate the predictive accuracy.

Table 11:Results of grid search for Gaussian radial basis function (trauma)
Predictive Accuracy (%)

Gaussian RBF
0.073 c=1 c=2 c=3 c=4 c=5 c=6 c=7 c=8 c=9 c=10

Training Set 98.83 99.08 99.13 99.19 99.28 99.32 99.38 99.4199.46 99.46
Test set 98.42 98.42 98.51 98.64 98.64 98.64 98.69 98.69 98.74 98.74

0.08 c=1 c=2 c=3 c=4 c=5 c=6 c=7 c=8 c=9 c=10
Training Set 98.98 99.11 99.19 99.25 99.32 99.38 99.43 99.4699.47 99.52

Test set 98.42 98.46 98.46 98.55 98.6 98.64 98.64 98.69 98.7498.74
0.09 c=1 c=2 c=3 c=4 c=5 c=6 c=7 c=8 c=9 c=10

Training Set 98.99 99.14 99.23 99.32 99.38 99.44 99.47 99.5299.59 99.65
Test set 98.46 98.51 98.51 98.51 98.6 98.64 98.64 98.69 98.6998.74

0.1 c=1 c=2 c=3 c=4 c=5 c=6 c=7 c=8 c=9 c=10
Training Set 99.01 99.2 99.28 99.4 99.46 99.47 99.56 99.65 99.67 99.68

Test set 98.42 98.51 98.55 98.6 98.6 98.64 98.69 98.74 98.7898.78
0.11 c=1 c=2 c=3 c=4 c=5 c=6 c=7 c=8 c=9 c=10

Training Set 99.05 99.26 99.32 99.46 99.46 99.61 99.65 99.6899.68 99.71
Test set 98.51 98.55 98.6 98.64 98.64 98.69 98.74 98.76 98.7898.78

0.12 c=1 c=2 c=3 c=4 c=5 c=6 c=7 c=8 c=9 c=10
Training Set 99.05 99.29 99.37 99.46 99.56 99.65 99.68 99.7199.73 99.74

Test set 98.6 98.6 98.64 98.64 98.69 98.74 98.74 98.74 98.7898.83
0.13 c=1 c=2 c=3 c=4 c=5 c=6 c=7 c=8 c=9 c=10

Training Set 99.1 99.32 99.44 99.53 99.65 99.68 99.71 99.74 99.76 99.79
Test set 98.6 98.64 98.64 98.74 98.74 98.74 98.78 98.78 98.7898.83

0.14 c=1 c=2 c=3 c=4 c=5 c=6 c=7 c=8 c=9 c=10
Training Set 99.14 99.34 99.44 99.56 99.68 99.71 99.73 99.7799.79 99.85

Test set 98.6 98.69 98.74 98.74 98.74 98.74 98.78 98.83 98.8398.87
0.146 c=1 c=2 c=3 c=4 c=5 c=6 c=7 c=8 c=9 c=10

Training Set 99.19 99.37 99.5 99.64 99.71 99.71 99.74 99.79 99.85 99.85
Test set 98.69 98.74 98.74 98.74 98.74 98.74 98.78 98.78 98.83 98.87

Table 12:Results of grid search for sigmoid, linear and polynomial kernel (trauma)
Predictive Accuracy (%)

Sigmoid c=1 c=2 c=3 c=4 c=5 c=6 c=7 c=8 c=9 c=10
Training Set 95.08 94.78 94.77 94.78 94.74 94.72 94.75 94.75 94.69 94.66

Test set 95.35 95.03 95.03 95.03 94.94 94.94 94.94 94.94 94.94 94.94
Linear c=1 c=2 c=3 c=4 c=5 c=6 c=7 c=8 c=9 c=10

Training Set 98.9 98.98 98.95 98.95 98.92 98.92 98.89 98.9 98.9 98.9
Test set 98.69 98.74 98.74 98.74 98.69 98.64 98.64 98.64 98.64 98.64

Polynomial c=1 c=2 c=3 c=4 c=5 c=6 c=7 c=8 c=9 c=10
Training Set 99.56 99.71 99.79 99.88 99.91 99.94 99.94 99.94 99.94 99.94

Test set 98.55 98.24 98.37 98.42 98.51 98.55 98.55 98.55 98.55 98.55

Table 13:Advanced comparison of SVMs performance (trauma)
ACC SENSITIVITY SPECIFICITY

Classifier Training set Test set Training set Test set Training set Test set
Polynomial (SVM 2) 99.94% 98.55 % 100 % 89.69 % 99.98% 99.56 %

Gaussian RBF (SVM 1) 99.85% 98.51 % 97.66 % 89.58 % 99.96 % 99.52 %
Linear (SVM 4) 98.98% 98.74% 90 % 85.57 % 99.80 % 99.14 %
ℓ1-norm SVM 98% 99% 81.11% 81% 99.53% 100%

Sigmoid (SVM 3) 95.08% 95.35% 83.62 % 85 % 99.65 % 99.28 %

The SVM with a polynomial kernel has clearly higher classification accuracy compared to theℓ1-norm SVM and the
SVMs with RBF, linear and sigmoid kernel for the training andthe test set. Furthermore, the polynomial SVM achieved
the highest values for sensitivity and specificity. The Gaussian SVM (RBF) outperforms the linear SVM and theℓ1-norm
SVM in terms of ACC, sensitivity and specificity, and then follows the sigmoid SVM. Fig. 12 displays the ROC curves
derived from all SVMs with the four considered kernels, and Fig. 13 displays theℓ1-norm SVM. The AUROC is 0.976,
0.99, 0.98 and 0.858 for the SVMs with a polynomial, RBF, linear and sigmoid kernel respectively. The AUROC for the
ℓ1-norm SVM takes the lowest value equal to 0.627. Theℓ1-norm SVM performs almost similarly to the linear SVM
in terms of ACC, sensitivity and specificity. Theℓ1-norm SVM detected a set of 39 out of 41 variables as statistically

c© 2013 NSP
Natural Sciences Publishing Cor.



J. Stat. Appl. Pro.2, No. 3, 203-222 (2013) /www.naturalspublishing.com/Journals.asp 217

Fig. 12: ROC Curves derived from SVMs (trauma)

Fig. 13: ℓ1-norm SVM (trauma)

significant which includes the important variablesx71, x20, x101, x25, x11, x23, x16, x27, x2 previously obtained from all
statistical analysis methods. The generated model derivedfrom theℓ1-norm SVM excluded two variables as unimportant,
i.e.,x35 andx56. Note here, that theℓ1-norm SVM can recognize all actual negatives and reaches the absolute percentage
of 100% for specificity, but also has high percentages for sensitivity. Table 13 shows that theℓ1-norm SVM tends to have
lower Type I errors and higher Type II errors, in other words this means that theℓ1-norm SVM tends to declare at a lower
rate inactive variables to be active, and at a higher rate active variables to be inactive.

3.3.5 Overall Comparison for Trauma Data

Table 14 ranks the best candidate models according to the specified performance criteria, and helps the experimenter to
choose the best approach for a given analysis. Fig. 14 displays the ROC curves derived from all methods employed in this
comparative trauma study. The further the curve lies above the reference line, the more accurate the test.
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Table 14:Advanced comparison of classifiers via overall accuracy and AUROC(presented in descending order)
Overall Accuracy % Area Under the ROC curve

Classifier Training set Test set Test set
SVM 1 (RBF) 99.85% 98.51% 0.99

Logistic Regression 98.95 % 98.78% 0.986
Neural Net 1 (MLP) 98.95% 98.92% 0.98

SVM 4 (linear) 98.98 % 98.74% 0.98
SVM 2 (polynomial) 99.94 % 98.55% 0.976

C5 99.05 % 98.96% 0.964
CHAID 98.38% 98.19% 0.964
QUEST 98.36% 98.64 % 0.937

Bayesian Network 98.38% 96.93% 0.937
C&RT 98.54% 98.64 % 0.919

Neural Net 2 (RBFN) 94.86% 95.3% 0.917
SVM 3 (sigmoid) 95.08 % 95.35% 0.858
ℓ1-norm SVM 98% 99% 0.627

Fig. 14: ROC Curves derived from all models (trauma)

4 Discussion

Recent proliferation of large dimensional databases makesvariable selection crucial in model building for large databases
with complicated structure. This paper presents an extensive comparative analysis of several machine learning classifiers
on real seismological and medical data. C5.0 algorithm had the most excellent results in terms of accuracy, sensitivity
and specificity in both studies. Both CHAID and C&RT algorithms, presented very adequate results in these statistical
measures about classifiers performance, and outperformed QUEST in both seismic and trauma study. The MLP neural
network outperformed greatly the Bayesian network, and then RBFN network followed. The SVM with a polynomial
kernel had clearly better classification performance compared to theℓ1-norm SVM and the SVMs with an RBF, linear and
sigmoid kernel in both seismic and trauma study. In general,SVMs (with a polynomial, Gaussian RBF and linear kernel)
have been proven for excellent classification performance,since they were found to be more effective than LR method and
RBFN network. The RBFN network and the sigmoid SVM were observed to have the worst classification performance
for both seismic and trauma study. Theℓ1-norm SVM performed almost similarly to the linear SVM in terms of ACC,
sensitivity and specificity in both studies. Theℓ1-norm SVM did not tend to declare at a similar rate inactive variables to
be active or active variables to be inactive, hence it could not be considered conservative in this sense.

Assessing the reliability of classifier algorithms is essential to ensure data quality. We used the measures of sensitivity
and specificity for the comparison of algorithms in order to provide useful results, since it is obvious that in seismologists
effort for earthquakes prediction or in health care domain effort for death prevention of trauma patients a huge problem
is arising, obligating them to be more careful in their research. In our seismic study, this obstacle is the twofold hazard
of incorrectly earthquake prediction. On one hand, if seismologists result that an earthquake may occur in specific place
and time, government should embark on a major earthquake preparedness campaign which costs and frighten citizens.
So, if this prediction does not come true, this will have great impact on economy and social life. On the other hand, if
a strong earthquake happens without prior information, this will be dangerous and result in many deaths. The value of
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this comparative study stands not only in the knowledge discovery, but also in the ability to calculate Type I and Type
II error rates for each employed method. In general, we observed that machine learning classifiers identified effectively
the most statistically important factors for model building, giving extra significance to the year of seismic activity.Due
to this result, seismologists have extra information aboutperiodicity of earthquakes, which is one of key factors for
earthquake prediction. In our trauma study, sensitivity and specificity measure the prognostic model’s ability to recognize
the patients of a certain group (survivors or non-survivors). Identifying an interpretable prognostic model allows medical
community to discover previously unknown variable relationships and explore the possible risk factors of death. In general,
we observed that machine learning classifiers identified effectively the optimal prognostic model and detected the most
statistically significant predictor variables which may assist as guidelines for improving the quality of treatment and
therefore survivability of a patient through optimal trauma management.

Neither ANNs nor SVMs are perfect. SVMs are fast in training,but require an appropriate choice of kernel function.
ANNs are slower in training, but are fast in classifying and robust to noise. ANNs have been widely developed for dealing
with nonlinear seismic or medical data. We hope this work will convince experimenters to use not only ANNs but also
SVMs for the extraction of large data set patterns in risk factors of an earthquake or a trauma death. SVMs should be
considered a powerful predictive tool to be added to standard LR methodology. Thus, one of the most promising topics
for further study is the use of the Support Vector Machines classification technique as an alternative method for supporting
seismic and medical knowledge discovery. However, some interesting points are still open and should be investigated in
the future. We are currently looking into construction problems of a search method that will automatically identify the
best kernel and its parameter settings.
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Appendix

Seismic Data
Y: magnitude(0(< 6.5), 1(>= 6.5))

–Continuous covariates:
x1: year, years
x4: lats, (latitude)
x7: hyper distance, measured in degrees (o)
x8: azimuth, measured in degrees (o)
x9: epicenterx, the ordinate of epicenter
x10: epicentery, the abscissa of epicenter
x11: depth, the earthquake depth range of 0 - 700 km

–Categorical covariates:
x2: nome, (1 to 54, all prefectures of Greece)
x5: intensity, (1 to 12 grades)

Trauma Data
Y: 0 (survival), 1 (death)

–Continuous covariates:
x1: weight, kg
x2: age, years
x3: Glasgow Coma Score, score
x4: pulse, N/min
x6: systolic arterial blood pressure, mmHg
x7: diastolic arterial blood pressure, mmHg
x8: Hematocrit (Ht), %
x9: haemoglobin (Hb), g/dl
x11: white cell count, /ml
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x15: glucose, mg %
x16: creatinine, mg %
x18: amylase, score
x20: Injury Severity Score, score
x21: Revised Trauma Score, score

–Categorical covariates:
x19: evaluation of disability (0= expected permanent big, 1= expected permanent small, 2= expected impermanent
big,
3= expected impermanent small, 4= recovery)
x23: cause of injury (0= fall, 1= trochee accident, 2= athletic, 3= industrial, 4= crime, 5= other)
x24: means of transportation (0= airplane, 1= ambulance, 2= car, 4= on foot)
x25: Ambulance (0= no, 1= yes)
x26: hospital of records
x27: substructure of hospital (0= orthopaedic, 1= CT, 2= vascular surgeon, 3= neurosurgeon, 4= Intensive Care
Unit)
x28: comorbidities (0= no, 1= yes)
x31: sex (0= female, 1= male)
x35: doctor’s speciality (0= angiochirurgeon, 1= non specialist, 2= general doctor 3= general surgeon, 4=
jawbonesurgeon,
5= gynaecologist, 6= thoraxsurgeon, 7= neurosurgeon, 8= orthopaedic, 9= urologist, 10= paediatrician, 11=
children surgeon, 12= plastic surgeon )
x36: major doctor (0= no, 1= yes)
x41: dysphoria (0= no, 1= yes)
x52: collar (0= no, 1= yes)
x55: immobility of limbs (0= no, 1= yes)
x56: fluids (0= no, 1= yes)
x64: Radiograph E.R. (0= no, 1= yes)
x66: US (0= no, 1= yes)
x67: urea test (0= no, 1= yes)
x71: destination after the emergency room (0= other hospital, 1= clinic, 2= unit of high care, 3= intensive care
unit I.C.U, 4= mortuary, 5= operating room)
x72: surgical intervention (0= no, 1= yes)
x86: arrival at emergency room (0= 00:00-04:00, 1= 04:01-08:00, 2= 08:01-12:00, 3= 12:01-16:00, 4=
16:01-18:00, 5= 18:01-20:00, 6= 20:01-24:00 )
x87: exit from emergency room (0= 00:00-04:00, 1= 04:01-08:00, 2= 08:01-12:00, 3= 12:01-16:00, 4=
16:01-18:00, 5= 18:01-20:00, 6= 20:01-24:00 )
x101: head injury (0= none, 1 =AIS6 2,2 =AIS> 2)
x102: face injury (0= none, 1 =AIS6 2,2 =AIS> 2 )
x104: breast injury (0= none, 1 =AIS6 2,2 =AIS> 2 )
x106: spinal column injury (0= none, 1 =AIS6 2,2 =AIS> 2 )
x107: upper limbs injury (0= none, 1 =AIS6 2,2 =AIS> 2)
x108: lower limbs injury (0= none, 1 =AIS6 2,2 =AIS> 2 )
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