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Abstract: The problem of statistical modelling and identifying the significant variabléarge data sets is common nowadays. This
paper deals with the statistical analysis of two large dimensional data sefgstheconduct a seismic hazard sensitivity analysis
using seismic data from Greece acquired during the years-126®3, and then analyze Trauma data collected in an annual registry
conducted during the year 2005 by the Hellenic Trauma and Emergemger$ Society involving 30 General Hospitals in Greece.
The main purpose of both analyses is to extract high-level knowledgiadodomain user or decision-maker. Eight non parametric
classifiers derived from data mining methods (Multilayer Perceptroh$(NNeural Networks, Radial Basis Function Neural (RBFN)
Networks, Bayesian Networks, Support Vector Machines (SVMsxdifiaation and Regression Tree (C&RT), Chi-square Automatic
Interaction Detection (CHAID), C5.0 algorithm and Quick, Unbiased cigffit Statistical Tree (QUEST)) are employed in this work,
and are compared to Logistic Regression éhwhorm SVM in terms of overall classification accuracy, sensitivitycHjpity, and Area
under the ROC curve (AUROC). The goal of this paper is twofold; asesimportance of several input variables in order to detect
the possible risk factors of large earthquakes or to prevent traunthsgead examine which classifiers are most suited for a large
dimensional data analysis, detecting effectively complex nonlinear netdtiips and potentially lead to more accurate predictions.

Keywords: Atrtificial Neural Networks, Bayesian Networks, Decision Trees, eaBimensional Data, Logistic Regression, Model
selection, Sensitivity Analysis, Support Vector Machines
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1 Introduction

Several variable selection methods have been developedha/tast decade to cope with statistical modelling prolslem
for large dimensional data. The main goal in such problents &elect correctly and parsimoniously the features that
influence significantly the response variable. In respamsec¢h problems, Data Mining (DM) techniques are widely used
for extracting nontrivial, implicit and previously unknovinformation from massive databases, and effectivelyyapg!

it for decision making or prediction. Large dimensionaliahte selection problems arise from diverse fields of sa@snc
such as seismology (see, for exampl&Z][and [11]), geosciences (see, for exampl&])[and biomedicine (see, for
example, 7).

Koukouvinos et al.28] have already dealt with the problem of high-dimension&@re& data analysis by employing
statistical methods such as the nonconcave penalizedhlilkel methods and best subset techniques which were then
compared to decision tree methods. Classical variabletsmlemethods, statistics and soft computing techniques ha
been studied extensively to analyze earthquake data eexdmple, 1], [42] and [40Q]). Bayesian networks2@] and
Artificial Neural Networks (ANNS) (see, for exampl&q], [3] and [30]) have been widely developed for dealing with
nonlinear seismic data. Recent research has targeted @ data mining techniquestf], computational seismic
algorithms B4], and new ANN approaches (see, for examp5],[ [26] and [12]) for earthquake hazard analysis.
Methods of analysis such as Support Vector Machines (SVMs}#l at an early stage9[. In this study, we compare
several DM techniques with SVMs and ANNSs, which are parédyl suited for our analysis, since both are flexible
models that can cope with complex nonlinear relationsHgk [
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DM also plays a significant role in large dimensional meddzth analysis since modern hospitals are well equipped
with data collection devices, and achieve to collect andeshuge database8Z]. Currently, many studies have been
carried out and focused on DM applications for biomedic#hdaalysis, for example se€][[14], [10], [37], [39], and
[27]. In this study, DM techniques are performed for trauma daiaysis, and are compared to SVMs and ANNs in order
to generate a predictive model that can be applied for piediand classification of new data.

In this paper, our aim is twofold, namely, to build a meaningind parsimonious model by estimating several
seismological or medical parameters, and figure out the bietween statistics and data mining for analyzing two
important real life problems; earthquake prediction aadrna death prediction. However, analyzing real data isafte
complex and laborious process because it is difficult or @vgrossible to establish a physical relationship that cotse
a collection of inputs to a particular target or outcor@]] The main goal is to identify those factors that may coniigb
to a large earthquake or a trauma death, and the explordtibie avay they could do this. This can not be accomplished
by using traditional variable selection techniques whifteroneglect some underlying factors. The innovative reatdr
our study lies on the comparison of several high-powered dahing techniques that enabled us to deal with mass of
seismic and medical data and effectively analyze two réaplioblems. After performing model selection, we compute
several classification metrics and graphics, includingstiresitivity analysis procedure.

The rest of this paper is organized as follows. In Sectionedascribe briefly the considered classifiers. In Section 3,
we perform the classifier-based analyses, and then carg cunparative study to evaluate the merits of each employed
method. We also describe the performance criteria usetiéoevaluation of the employed methods. Finally, in Section 4
the obtained results are discussed and some concludingkeara made.

2 Classifiers

2.1 Logistic regression (LR)

A LR model in which the response varialjiéas only two possible outcomes, denoted by 0 and 1, is camesidé/e now
present the LR model used in our comparative study.

Suppose there areexperimental runs with a binary response. If we arbitrasitite y=1 for a success angk=0 for a
failure, then we are truly modeling the mean respdPsg), whereP(x;) is the success probability axddenotes the set
of covariates or regressors at ilie data point. The logistic model fé1(x) is then given by

P(x) = 1/(1+eF),

where the termx 3= Bo+fiXi1+...+ BmXim is the linear link function. For more details on the LR modeg refer the
interested reader t3f)].

2.2 Decision Trees (DT)

Decision tree algorithms repeatedly split the data setrdawg to a criterion that maximizes the separation of thadat
resulting in a tree-like structure which includes only timpbrtant attributes that really contribute to the decisioraking.
This greedy construction process of decision trees givespiportunity to develop classification models that may feelus
to predict or classify future data sets, according to a nuroberovided decision rules. In this study, we focus on four
widely used decision tree algorithms, named as Classificatnd Regression Tree (C&RTJ][ C5.0 [41], Chi-square
Automatic Interaction Detection (CHAIDPH], and Quick, Unbiased, Efficient Statistical Tree (QUES3Y][

2.3 Artificial Neural Networks (ANNS)

Among the emerging scientific methods for data analysis,pedational intelligence methods such as ANMd][find
applications in seismic data analysis. ANNs are widely usedata mining methodology for revealing hidden non-
linear relationships among datd9. Two ANN algorithms are tested in this paper: Multilayer&sptron (MLP) and
Radial-Basis Function Network (RBFN). MLP is a general msgofeedforward networl[l] that uses the classical back
propagation algorithm based on a deterministic gradiestel® algorithm in order to optimize the error function. RBF
is based on a clustering procedure for computing distances@ each input vector and the center, represented by the
radial unit B3], [23].

The ANN used in this study is a standard three-layered nétwith an input, a hidden, and an output layer. The
input layer consists of 9 input neurons representing thefastors (predictor variables), the hidden layer consi$t3
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hidden neurons, and the output layer consists of one ouguion modelling the dichotomous outcome (valued as 1
for the positive response, and 0 for the negative respoSsege there does not exist a commonly accepted theory for
predetermining the optimal number of neurons in the hiddgar we follow a trial-and-error process and several numbe
of units in the hidden layer are examined, such as 3, 5, 7 ainth® number of neurons in the hidden layer is set to 3
empirically, e.g., by two-fold cross-validation. For badhNs the network is trained on the training set, and accuiscy
estimated based on the test set. For a detailed descrigtiNNs, the interested reader may refer #.[

2.4 Bayesian Network Models

A Bayesian network is a parameter learning structure thatiges a succinct way of describing the joint probability
distribution for a given set of random variables. A Bayesimtwork is a graphical probability model that displays
variables (often referred to as nodes) in a dataset and titmabpilistic, or conditional, independencies between them
[16]. In this study, we focus on the Tree Augmented Naive Bayad\jhetwork that is primarily used for classification.
The TAN creates a simple Bayesian network model that is andugment over the standard Naive Bayes model. This is
because it allows each predictor to depend on another poediicaddition to the target variable, thereby increasimg t
classification accuracy.

2.5 Support Vector Machines (SVMs)

SVMs are a comparatively new classification technique basedeas originated in statistical learning theo#g][ [8].
SVMs are a supervised learning method that generates smiptit mapping functions from a set of training data.
Specifically, the training vectors are mapped into a highatisional feature space so that data points can be categioriz
Since in our study we deal with a binary classification profl¢he two groups are separated in a higher-dimension
hyper-plane accordingly to a decision function. The oplirmaterms of classification performance, hyper-plane & th
one with the maximal margin of separation between the twssela46]. SVMs use either linear and non-linear kernel
functions to transform input data to a high-dimensionatema space in which the input data become more separable
compared to the original input space.

Though several kernels such as Laplace, Bessel, Anova, @it $iave been proposed by research2g; [in this
study we examine the following four basic kernels, whichtaeemost widely used and are defined as:

1.Linear:K(x,xj) = x"X; ;

2.PolynomialK (x;,Xj) = (yx' x; + coe f0)%;

3.Gaussian Radial Basis Functid€(x, x;) = expg(—y||x — x;|?);
4.Sigmoid:K (x;, Xj) = tanh yx' x; + coe f0)

wherey > 0, coef0 and d (degree) are kernel parameters.

We examine different kernel functions in order to obtain biest model, as they each use different algorithms and
parameters. The goal is to find the optimum balance betweeidemargin and a small number of misclassified data
points. Each kernel function has a regularization penatameter (known a€) which controls the trade-off between
these two values. We need to experiment with different \sbfehis and other kernel parameters in order to find the best
model, which means that training a SVM for the above kerregjsiires the setting of 1, 4, 2, and 3 parameters respectively

Although SVMs are commonly developed as a method of findigntiaximal margin hyperplane, SVMs can also
be formulated as a regularized function estimation probleanresponding to a hinge loss function plusrnorm
or an/2-norm regularization term on the fitted coefficierid][ The Least Absolute Shrinkage and Selection Operator
(LASSO) method45] is a common approach in regression for parameter estima@i@dley and Mangasarian (1998} [
adapted thél-regularization (LASSO) to SVM. Zhu et al. (20033 extended the idea of usimd.-norm constraints for
automatical variable selection to classification probléygroposing af1-norm SVM. Fung and Mangasarian (2004)
[17] proposed a fastl SVM modification using a newton linear programming SVM. &by, Wang et al. (2006 4[]
adapted the elastic net penalty teid][to SVMs by using a mix of thé1-norm and thé2-norm penalties. The elastic net
SVM is especially useful for cases in which the number of #levant variables exceeds the sample size./Theorm
SVM is suitable for our real data analyses (seismic and tegusince the dimension of the data is not larger than the
number of training sample&{].
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3 Comparative Analysis - Results

3.1 Model Evaluation

Assessing the reliability of classifier algorithms is essno ensure data quality. The most common criterion t@sss
the quality of a classification model is discrimination whimeasures how well the two classes in the data set are
separatedq9]. We consider the four most commonly used measures of digtation for evaluating the performance of
the employed methods. Initially, the accuracy is used asdiiterion. Accuracy is defined as the percentage of correct
classified records in training, test or validation set foergwused method. The other two criteria used are the sahsitiv
and specificity which are two statistical measures of théopeance of a binary classification test and are closelyedla
to the concepts of Type | and Type Il errors. Sensitivity nueas the proportion of actual positives which are correctly
identified as such whereas specificity measures the propodi negatives which are correctly identified. Another
popular statistical tool for describing accuracy is the &g Operating Characteristic (ROC) curd8]. An ROC curve
by definition is used to evaluate the performance of a systémdichotomous outcomes. Traditionally, the Area Under
the ROC Curve (AUROC) is used as a summary index of test acg(itf], and is useful as a descriptive of overall test
performance.

More precisely, given a classifier and a record, there anmggossible scenarios. Positive records are correctly predli
as positive (True Positive-TP), positive records are irexdly identified as negative (False Negative-FN), negatcords
are classified as positive ones (False Positive-FP) andyfinegative records are correctly identified as negativeigTr
Negative-TN). Using a two-by-two confusion matrix we casiBarepresent these possible outcomes and compute the
four measures, since they are defined as follows:

—  TP4TN
Accuracy (ACC)=1prrpiTNTEN

Sensitivity = 5= 1-Type Il error

Specificity = +xEs= 1-Type | error
The ROC curve calculates the Sensitivity= 1-False Neg&ate as a function of (1-Specificity)= False Positive Rate fo
all the possible cutoffs. In our study, the models’ perfong®is assessed by calculating and comparing the AUROCSs.

3.2 Classifier Performance for Seismic Data

In this section, we compare several classifiers from the madbarning field, and then report the results of the moaiglli
process. To provide an unbiased estimate of each modetsrdisation, the performance criteria values are caledat
from a data set not used in the model building process. Usaafiortion of the original data set, called the test setuts p
aside for this purposelB]. A classifier should present high values of ACC, sensitj\dpecificity and AUROC, and the
model’'s generalization performance is often estimatechbyhbldout validation (i.e., train/test spli§Q]. Here, we deal
with a high-dimensional data set consisting of 10333 eadhkgs, that is split randomly into a training set, contajnin
75% of cases (7749) and the test set, containing 25% of caS84)(in order to evaluate the performance of classifiers
on new data. For the partitioning, the total observatiomsrandomly selected to create the training and the test sets,
according to their predefined size.

The examined data set consists of the response varyatlat refers to the earthquake’s Magnitude coding ds 0
(magnitude- 6.5: 1, otherwise: 0), where the magnitude scale is used tcesgphe seismic energy released by each
earthquake, 9 statistically significant factors obtaingthie performance of the variable selection techniqueg&h and
10333 instances. The names of these factors are includée iAgpendix Section. The analysis was carried out using
the SPSS 17.0 and SPSS Clementine 12.0 statistical softWagdnterested reader may refer #3] for the MATLAB
implementation of thé1-norm SVM.

3.2.1 LR for Seismic Data

The estimated model derived from LR methodology is:

1.8814-1.5934%; +0.4791%,+0.4844%,+0.9662* x5+ 1.2827%; -0.1536%g -2.3002%g-1.3152%; o+1.3955x1,
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Fig. 1: ROC curve for the estimated LR model (seismic)

Fig. 1 displays the ROC curve for the estimated LR model. Thithér the curve lies above the reference line, the
more accurate the test. The AUROC achieved the high value&6f 0

All variables are ranked from the 1st to the 9th accordingh® talue of the test statistic (i.e., according to their
significance/contribution into the model). We note, thad firocedure was applied to all methods, and no differennes o
the ranking were observed. The final arrangement was obt&iom all statistical analysis methods simultaneously. So
the final setting to order from the most to the least signifieganiable is:x1, X7, X11, X5, X9, X2, X10, X4, Xg-

We observe here that the most significant factor for seisgicdbdata was found to be the variable “year”. Specifically,
according to its negative coefficient in the model we coneltidat in the last years, earthquakes of lower magnitude were
observed. This correlation between “year” and “magnitiidedy indicate a periodicity in seismic activity and it needs
further investigation from seismologists. This issue ig/eucial on earthquake prediction and estimation of eprdfe
effects on building, and in last decades many researcheesfbaused on this. The second statistically significartiofac

is “hyper distance”, which is the Euclidean distance, meguhiyper distance- \/(epicenterszr (epicenter)\z. These

two geographical characteristics of epicenter may be Usefudetermining areas that present high hazard for strong
earthquakes. Seismologists are very interested in stathiest such areas since they can combine these ones with their
findings about tectonic plates. Taking into consideratimse features and the time moments that energy releasagithro
earthquakes, researchers have useful information fonaqaake prediction. One more important factor is “depth”eTh
result is presumable since it is well known that the stroregethquake activity is observed in the external surface of
Earth. Among the 9 factors including in the data set, theedators that are intrinsic to the earthquake, such as thinde
(x11), geologic characteristics such as, the hyper distat®eaid geographical characteristics, such as the latitube (

the azimuth X8), the ordinate of the epicentex9) and the abscissa of epicentet).

3.2.2 DT for Seismic Data
C5.0 algorithm has clearly better classification accursegsitivity, and specificity which reaches the absolutegr@age

of 100% for the training and the test set. Comparing CHAID @&dRT, the first one has more correctly classified records
in test set (99.35%) whereas the corresponding percenfagésining set are the same for both classifiers. CHAID
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Table 1: Advanced comparison of decision trees performance (seismic)

ACC SENSITIVITY SPECIFICITY
Classifier Training set Test set Training set Test set Tingiset Test set
C5.0 100% 100% 100% 100% 100% 100%
CHAID 99.24% 99.35% 99.7% 99.72% 98.05% 98.49%
C&RT 99.24% 99.25 % 98.95% 99.14% 100% 100%
QUEST 99.07% 98.85 % 97.64% 97.89% 97.43% 97.95%
ROC curves from Decision Trees
s L
S —CHAD
4; [~ C&F Tree
- — QUEST
= $BEST
=
=
s -
=
el

1-Specificity

Fig. 2: ROC Curves derived from decision trees (seismic)

has adequate specificity whereas the same measure for C&RI0%, which means that the classifier recognizes all
actual negatives; in other words this means that C&RT hasTigwe | error rate. This measure alone does not tell us
how well the classifier recognizes positive cases and soniéégssary to take into consideration both sensitivity ef th
used classifiers. When the two algorithms are evaluated stghmsensitivity, CHAID has clear advantage having highes
percentages, which means that the Type Il error rates aer lthan the ones of C&RT algorithm. QUEST has the worst
performance compared to C5.0, CHAID and C&RT in terms of A€€hsitivity and specificity. Fig. 2 displays the ROC
curves derived from all decision tree algorithms. The AUR®Q, 1, 0.98 and 0.95 for the C5.0, CHAID, C&RT and
QUEST respectively. In general, C5.0 and CHAID seem to afapm C&RT, and then follows the QUEST with the
worst performance criteria values.

3.2.3 ANNSs for Seismic Data

Table 2: Estimated Accuracy of ANNs (seismic)

Method Hidden Units Estimated Accuracy (%)
RBFN 83.51

RBFN
RBFN
RBFN
MLP
MLP
MLP
MLP

81.23
80.53
81.70
97.69
97.5
97.45
97.33

©ONO®oyow

We examine several number of units such as 3, 5, 7 and 9 indldehiayer in order to determine the optimal number
of neurons in the hidden layer. Table 2 shows the estimatearacy of binary classification by ANNs with 3,5, 7 and 9
units in the hidden layer for each MLP and RBFN method. Thelmemof neurons in the hidden layer is set to 3 since
this value is found to be optimal resulting in higher estiaasaccuracy for both MLP and RBFN methods.

MLP network has clearly higher classification accuracy caragd to RBFN and Bayesian network for the training and
the test set. Furthermore, MLP network achieves excelslts for specificity, and reaches the absolute percemtage
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Table 3: Advanced comparison of networks performance (seismic)

ACC SENSITIVITY SPECIFICITY
Classifier Training set Test set Training set Test set Tingiset Test set
MLP (Neural Net 1) 97.46% 97.37% 100 % 100 % 91.08% 91.65 %
Bayesian Network 87.65% 88.73 % 89.96 % 91.21% 81.85% 83.53 %
RBFN (Neural Net 2) 83.4% 84.11% 84.01 % 84.82 % 81.85% 82.57 %

Bayesian Network

Type
@ Predictors
@®Targets
Fig. 3: Bayesian Network (seismic)
ROC curves from Networks
- Nevralnat 1
/ /,,/—7 :Biyes;au\lstwmk
— i

SENSITIVITY

\\\
D

1-SPECIFICITY

Fig. 4: ROC Curves derived from networks (seismic)

100% for sensitivity. Fig. 3 illustrates the Bayesian natwfor the 9 statistically significant variables. Fig. 4 desys the
ROC curves derived from MLP, RBFN and Bayesian networks. AUROC is 0.94, 0.93 and 0.86 for the MLP, Bayesian
and RBFN network respectively. In general, MLP network teghe outperforms Bayesian network, and then follows
RBFN taking into consideration all sets resulting from fianing.
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3.2.4 SVMs for Seismic Data

Besides the kernel function, the regularization param@tard the value of gammgaare selected from several candidates,
and the one that results in the best performance is chosire kiernel type is set to polynomial or sigmoid the parameter
bias sets the coef0 value in the kernel function and the ttefalue 0 is suitable in most cases. The parameter degree
is enabled only if kernel type is set to polynomial and cadsttbe complexity (dimension) of the mapping space (in our
study we set the valug = 3).

The regularization paramet€r controls the trade-off between maximizing the margin andimizing the training
error term. This value should normally be between 1 and 1li$ne. Increasing the value improves the classification
accuracy for the training data, but this can also lead tofitiieg. The gamma value should normally be betwedn 3/
(=0.333) and & (=0.666), wheré is the number of input fields (9 in our study).

SVM parameter selection can be viewed as an optimizatiorgss) since a grid search method is performed to control
parameter€ andy, and obtain the best possible model. Table 4 and 5 show tbkse$ a grid-based search for our data
set using the four kernels. In this comparative study, trst lm@del with the highest estimated accuracy is obtainetyusi
C =10 andy = 0.66 for all considered kernels. After detecting the bestla@gzation parameters, we train our final model
and estimate the predictive accuracy.

Table 4: Results of grid search for Gaussian radial basis function (seismic)
Predictive Accuracy (%)
Gaussian RBF

0.34 c=1 c=2 c=3 c=4 c=5 c=6 c=7 c=8 c=9 c=10
Training Set 86.24 87.33 87.81 88.05 88.31 88.45 88.62 88.6988.83 88.94
Test set 86.44 86.98 87.45 87.76 88.03 88.3 88.53 88.76 88.969.23
0.35 c=1 c=2 c=3 c=4 c=5 c=6 c=7 c=8 c=9  c=10
Training Set 86.51 87.47 87.9 88.24 88.39 88.56 88.66 88.83 9.018  89.13
Test set 86.48 87.1 87.6 87.99 88.22 88.53 88.76 89.07 89.3589.42
0.4 c=1 c=2 c=3 c=4 c=5 c=6 c=7 c=8 c=9  c=10
Training Set 86.96 87.73 88.13 88.44 88.54 88.85 89.01 89.1189.25 89.49
Test set 86.94 87.52 87.95 88.22 88.8 89.07 89.42 89.42 89.6$89.89
0.45 c=1 c=2 c=3 c=4 c=5 c=6 c=7 c=8 c=9  c=10
Training Set 87.19 87.95 88.44 88.61 88.89 89.14 89.29 89.5189.71 89.89
Test set 87.18 87.87 88.18 88.88 89.27 89.46 89.73 89.85 589.889.97
0.5 c=1 c=2 c=3 c=4 c=5 c=6 c=7 c=8 c=9  c=10
Training Set 87.45 88.13 88.54 88.91 89.18 89.4 89.64 89.95 0.149  90.36
Test set 87.45 87.07 88.61 89.31 89.46 89.73 89.97 89.97 90 90.31
0.55 c=1 c=2 c=3 c=4 c=5 c=6 c=7 c=8 c=9  c=10
Training Set 87.58 88.45 88.78 89.2 89.46 89.8 90.07 90.29 4390 90.56
Test set 87.64 88.26 89.07 89.46 89.73 90.04 90 90.43 90.5%90.78
0.6 c=1 c=2 c=3 c=4 c=5 c=6 c=7 c=8 c=9  c=10
Training Set 87.9 88.51 89.28 89.37 89.85 90.07 90.36 90.42 0.669  90.94
Test set 87.72 88.49 89.35 89.66 89.97 90.12 90.47 90.66  890.791.24
0.65 c=1 c=2 c=3 c=4 c=5 c=6 c=7 c=8 c=9  c=10
Training Set 88.02 88.71 89.22 89.76 90.03 90.38 90.54 90.8591.02 91.15
Test set 87.87 89 89.5 89.93 90.2 90.55 90.78 91.2 91.4491.67
0.66 c=1 c=2 c=3 c=4 c=5 c=6 c=7 c=8 c=9  c=10
Training Set 87.96 88.73 89.25 89.81 90.09 90.42 90.6 90.89 1.019 91.24
Test set 87.87 88.96 89.54 89.97 90.39 90.59 90.78 91.28  491.491.82

Table 5: Results of grid search for sigmoid, linear and polynomial kernel (sejsm

Predictive Accuracy (%)

Sigmoid c=1 c=2 c=3 c=4 c=5 c=6 c=7 c=8 c=9 c¢=10
Training Set 717 71.71 71.71 71.72 71.72 71.72 71.72 71.71 1.717 71.74
Test set 68.38 68.46 68.46 68.5 68.5 68.46 68.46 68.46 68.4668.5
Linear c=1 c=2 c=3 c=4 c=5 c=6 c=7 c=8 c=9 c=10
Training Set 83.76 83.93 84 84.08 84.15 84.13 84.13 84.15 1384. 84.18
Test set 83.92 84.23 84.35 84.54 84.54 84.62 84.62 84.66 84.784.73
Polynomial c=1 c=2 c=3 c=4 c=5 c=6 c=7 c=8 c=9 c=10
Training Set 88.34 89.23 90.26 90.96 91.34 91.65 91.96 92.1392.52 92.87
Test set 88.45 89.11 90.55 91.13 91.71 91.98 92.13 92.44  592.793.26

The SVM with a polynomial kernel has clearly higher classifien accuracy compared to the-norm SVM and the
SVMs with RBF, linear and sigmoid kernel for the training a&hd test set. Furthermore, the polynomial SVM achieved
the highest values for sensitivity and specificity. The GarsSVM (RBF) outperforms the linear SVM and tfienorm
SVM in terms of ACC, sensitivity and specificity, and thenldals the sigmoid SVM. Fig. 5 displays the ROC curves
derived from all SVMs with the four considered kernels, amgl B displays theZ1-norm SVM. The AUROC is 0.98,
0.97, 0.90, 0.62 for the SVMs with a polynomial, RBF, lineadasigmoid kernel respectively. The AUROC for the
¢1-norm SVM takes the lowest value equal to 0.59. Thenorm SVM performs almost similarly to the linear SVM in
terms of ACC, sensitivity and specificity. Note here, that4h-norm SVM identifies all 11 possible risk factors of large
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Table 6: Advanced comparison of SVMs performance (seismic)

ACC SENSITIVITY SPECIFICITY
Classifier Training set Test set Training set Test set Tingiset Test set
Polynomial (SVM 2) 92.86% 93.52% 95.05 % 95.97 % 87.37% 836
Gaussian RBF (SVM 1) 91.24% 91.82 % 93.82 % 94.79 % 84.75 % 9856.3
Linear (SVM 4) 84.35% 84.73% 90.76 % 92.52 % 67.51% 67.85%
£1-norm SVM 83.96% 84% 89.9% 90% 69.62% 70%
Sigmoid (SVM 3) 71.71% 68.46% 99.4 % 99.43 % 23% 14.7 %
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Fig. 5: ROC Curves derived from SVMs (seismic)
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Fig. 6: /1-norm SVM (seismic)

earthquakes as statistically significant. Table 6 showstities1-norm SVM tends to have higher Type | errors and lower
Type Il errors, in other words this means that tienorm SVM tends to declare at a higher rate inactive veembb be
active, and at a lower rate active variables to be inactive.

3.2.5 Overall Comparison for Seismic Data
Table 7 ranks the best candidate models according to théfispegerformance criteria, and helps the experimenter to

choose the best approach for a given analysis. Fig. 7 dispieeyROC curves derived from all methods employed in this
comparative study. The further the curve lies above theeate line, the more accurate the test.
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Table 7: Advanced comparison of classifiers via overall accuracy and AURD&Sented in descending order)

Overall Accuracy % Area Under the ROC curve
Classifier Training set Test set Test set
C5.0 100% 100% 1
CHAID 99.24% 99.35% 1
C&RT 99.24% 99.25 % 0.98
QUEST 99.07% 98.85 % 0.95
Neural Net 1 (MLP) 97.46% 97.37% 0.94
SVM 2 (polynomial) 92.86 % 93.52% 0.98
SVM 1 (RBF) 91.24% 91.82% 0.97
Bayesian Network 87.65 % 88.73% 0.93
SVM 4 (linear) 84.35% 84.73% 0.90
Logistic Regression 84.13% 84.23% 0.90
Neural Net 2 (RBFN) 83.4% 84.11% 0.86
SVM 3 (sigmoid) 7171 % 68.46% 0.62
{1-norm SVM 83.96% 84% 0.59
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7 Bayesian Natworl:
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Fig. 7: ROC Curves derived from all models (seismic)

3.3 Classifier Performance for Trauma Data

In this section, we deal with a large dimensional Trauma dataconsisting oN = 8862 patients and 41 factors that
include demographic, transport and intrahospital datd tseetect possible risk factors of death. According to radi
advices, all the prognostic factors should be treated g§gdiating the statistical analysis and there is no factot shauld
be always maintained in the model. The data set is split rahdto a training set, containing 75% of cases (6646)
and the test set, containing 25% of cases (2216) in orderaua@e the performance of classifiers on new data. For
the partitioning, the total observations are randomly et to create the training and the test sets, accordingeio th
predefined size.

For each patient the target attribute, i.e., the probabdft death, is reported. This response variaplis binary,
expressed in the form of two categories, where 0 value dsrib&esurvival, while the value of 1 denotes the death. The
names of these factors are included in the Appendix Seclioa analysis was carried out using the SPSS 17.0 and SPSS

Clementine 12.0 statistical software. The interestedeeathy refer to 43] for the MATLAB implementation of the
¢1-norm SVM.

3.3.1 LR for Trauma Data

The estimated model derived from LR methodology is:

-5.97+0.72%5+0.25%%11+0.09*%16+0.56*%o0+ 0.06*X03+1.02*Xo5-0.16*Xo7+1.46*X71+1.30™X101

Fig. 8 displays the ROC curve for the estimated LR model. Ththér the curve lies above the reference line, the
more accurate the test. The AUROC achieved the high value880
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Fig. 8: ROC curve for the estimated LR model (trauma)

All variables are ranked from the 1st to the 9th accordingh® talue of the test statistic (i.e., according to their
significance/contribution into the model). The final arramgnt was obtained from all statistical analysis methods
simultaneously. So the final setting to order from the moshéoleast significant variable 1871, X20, X101, X25, X11, X23,

X16, X27, X2.

3.3.2 DT for Trauma Data

Table 8: Advanced comparison of decision trees performance (trauma)

ACC SENSITIVITY SPECIFICITY
Classifier Training set Test set Training set Test set Tingiset Test set
C5.0 99.05% 98.96% 84.21% 82.69 % 99.85 % 99.76 %
CHAID 98.38% 98.19 % 80.12 % 78.90% 99.36% 99.09 %
C&RT 98.54% 98.64 % 77.19% 78.84% 99.69% 99.62 %
QUEST 98.36% 98.64 % 76.60 % 78.76% 99.54 % 99.52 %

C5.0 algorithm has clearly better classification accuraegsitivity, and specificity which reaches the percentdge o
99% in some cases for the training and the test set. Comp@itA&lD and C&RT, the second one has more correctly
classified records in both training and test set, and higpeciicity which means that the classifier recognizes more
actual negatives; in other words this means that C&RT hasiddwpe | error rate. This measure alone does not tell us
how well the classifier recognizes positive cases and sonégessary to take into consideration both sensitivity ef th
used classifiers. When the two algorithms are evaluated stghmsensitivity, CHAID has clear advantage having highes
percentages, which means that the Type Il error rates amr ihan the ones of C&RT algorithm. QUEST has the worst
performance compared to C5.0, CHAID and C&RT in terms of A®@G sensitivity. QUEST has only higher percentages
of specificity compared to CHAID. Fig. 9 displays the ROC @sderived from all decision tree algorithms. The AUROC
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ROC curves from Decision Trees
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Fig. 9: ROC Curves derived from decision trees (trauma)

is 0.964, 0.964, 0.919 and 0.937 for the C5.0, CHAID, C&RT QUEST respectively. In general, C5.0 and CHAID seem
to outperform C&RT, and then follows the QUEST with the warstformance criteria values.

3.3.3 ANNSs for Trauma Data

Table 9: Estimated Accuracy of ANNs (trauma)

Method —Hidden Units Estimated Accuracy (%)

RBFN 3 94.72
RBFN 5 94.95
RBFN 7 95.07
RBFN 9 94.99
MLP 3 98.65
MLP 5 98.76
MLP 7 98.72
MLP 9 98.75

Table 10: Advanced comparison of networks performance (trauma)

ACC SENSITIVITY SPECIFICITY
Classifier Training set Test set Training set Test set Tngiset Test set
MLP (Neural Net 1) 98.92% 98.92% 100 % 100 % 100 % 100 %
Bayesian Network 98.38% 96.93 % 91.81 % 85.41 % 98.73 % 98.42 %
RBFN (Neural Net 2) 94.86% 95.3 % 83.04% 83.65 % 99.77 % 99.66 %

We examine several number of units such as 3, 5, 7 and 9 indldemiayer in order to determine the optimal number
of neurons in the hidden layer. Table 9 shows the estimatearacy of binary classification by ANNs with 3, 5, 7 and
9 units in the hidden layer for each MLP and RBFN method. Thaber of neurons in the hidden layer is set to 7 for
RBFN and 5 for MLP since this value is found to be optimal résglin higher estimated accuracy for MLP and RBFN
methods respectively.

MLP network has clearly higher classification accuracy carad to RBFN and Bayesian network for the training and
the test set. Furthermore, MLP network achieves excelEnilts for sensitivity and specificity, and reaches the labso
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Bayesian Network

Fig. 10: Bayesian Network (trauma)
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Fig. 11: ROC Curves derived from networks (trauma)

percentage of 100% for both training and test set. The Bagatwork has better performance compared to RBFN in
terms of ACC and sensitivity whereas it has lower percerstafispecificity for both training and test set. Fig. 9 illatés
the Bayesian network for the 41 input variables. Fig. 10ldigpthe ROC curves derived from MLP, RBFN and Bayesian

networks. The AUROC is 0.98, 0.937 and 0.917 for the MLP, Bayeand RBFN network respectively. In general, MLP
network technique outperforms Bayesian network, and tiblows RBFN taking into consideration all sets resulting

from partitioning.

3.3.4 SVMs for Trauma Data

Besides the kernel function, the regularization parant@terd the value of gammaare selected from several candidates,
and the one that results in the best performance is chosergarnma value should normally be between(30.07317)
and 6k (=0.14634), wheré is the number of input fields (41 in our trauma study). Tableahdl 12 show the results
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of a grid-based search for our data set using the four kerlrethis comparative study, the best model with the highest
estimated accuracy is obtained usg- 2 for the linear kernelC = 1 andy = 0.146 for the sigmoid kerneC =6 or 7

or 8 or 9 or 10 and/ = 0.146 for the polynomial kernel, and = 10 andy = 0.146 for the Gaussian RBF kernel. If the
kernel type is set to polynomial or sigmoid the parametes bits the coefO value in the kernel function and the default
value 0 is suitable in most cases. The parameter degreebtednanly if kernel type is set to polynomial and is set to be
d = 3. After detecting the best regularization parametersraia bur final model and estimate the predictive accuracy.

Table 11: Results of grid search for Gaussian radial basis function (trauma)
Predictive Accuracy (%)
Gaussian RBF

0.073 c=1 c=2 c=3 c=4 c=5 c=6 c=7 c=8 c=9 c=10
Training Set 98.83 99.08 99.13 99.19 99.28 99.32 99.38 99.4199.46 99.46
Test set 98.42 98.42 98.51 98.64 98.64 98.64 98.69 98.69 498.798.74
0.08 c=1 c=2 c=3 c=4 c=5 c=6 c=7 c=8 c=9  c=10
Training Set 98.98 99.11 99.19 99.25 99.32 99.38 99.43 99.4699.47 99.52
Test set 98.42 98.46 98.46 98.55 98.6 98.64 98.64 98.69 98.788.74
0.09 c=1 c=2 c=3 c=4 c=5 c=6 c=7 c=8 c=9 c=10
Training Set 98.99 99.14 99.23 99.32 99.38 99.44 99.47 99.5299.59 99.65
Test set 98.46 98.51 98.51 98.51 98.6 98.64 98.64 98.69 98.698.74
0.1 c=1 c=2 c=3 c=4 c=5 c=6 c=7 c=8 c=9  c=10
Training Set 99.01 99.2 99.28 99.4 99.46 99.47 99.56 99.65 .6799 99.68
Test set 98.42 98.51 98.55 98.6 98.6 98.64 98.69 98.74 98.7898.78
0.11 c=1 c=2 c=3 c=4 c=5 c=6 c=7 c=8 c=9  c¢=10
Training Set 99.05 99.26 99.32 99.46 99.46 99.61 99.65 99.6899.68 99.71
Test set 98.51 98.55 98.6 98.64 98.64 98.69 98.74 98.76 98.788.78
0.12 c=1 c=2 c=3 c=4 c=5 c=6 c=7 c=8 c=9  c=10
Training Set 99.05 99.29 99.37 99.46 99.56 99.65 99.68 99.7199.73 99.74
Test set 98.6 98.6 98.64 98.64 98.69 98.74 98.74 98.74 98.7808.83
0.13 c=1 c=2 c=3 c=4 c=5 c=6 c=7 c=8 c=9  c=10
Training Set 99.1 99.32 99.44 99.53 99.65 99.68 99.71 99.74 9.769  99.79
Test set 98.6 98.64 98.64 98.74 98.74 98.74 98.78 98.78 98.788.83
0.14 c=1 c=2 c=3 c=4 c=5 c=6 c=7 c=8 c=9  c=10
Training Set 99.14 99.34 99.44 99.56 99.68 99.71 99.73 99.7799.79 99.85
Test set 98.6 98.69 98.74 98.74 98.74 98.74 98.78 98.83 98.898.87
0.146 c=1 c=2 c=3 c=4 c=5 c=6 c=7 c=8 c=9 c=10
Training Set 99.19 99.37 99.5 99.64 99.71 99.71 99.74 99.79 9.859  99.85
Test set 98.69 98.74 98.74 98.74 98.74 98.74 98.78 98.78  398.898.87

Table 12: Results of grid search for sigmoid, linear and polynomial kernel (tegum

Predictive Accuracy (%)

Sigmoid c=1 c=2 c=3 c=4 c=5 c=6 c=7 c=8 c=9 c=10
Training Set 95.08 94.78 94.77 94.78 94.74 94.72 94.75 94.75 94.69 94.66
Test set 95.35 95.03 95.03 95.03 94.94 94.94 94.94 94.94 94.94 94.94
Linear c=1 c=2 c=3 c=4 c=5 c=6 c=7 c=8 c=9 c=10
Training Set 98.9 98.98 98.95 98.95 98.92 98.92 98.89 98.9 98.9 98.9
Test set 98.69 98.74 98.74 98.74 98.69 98.64 98.64 98.64 98.64 98.64
Polynomial c=1 c=2 c=3 c=4 c=5 c=6 c=7 c=8 c=9 c=10
Training Set 99.56 99.71 99.79 99.88 99.91 99.94 99.94 99.94 99.94 99.94
Test set 98.55 98.24 98.37 98.42 98.51 98.55 98.55 98.55 98.55 98.55

Table 13: Advanced comparison of SVMs performance (trauma)

ACC SENSITIVITY SPECIFICITY
Classifier Training set Test set Training set Test set Tngiset Test set
Polynomial (SVM 2) 99.94% 98.55 % 100 % 89.69 % 99.98% 99.56 %
Gaussian RBF (SVM 1) 99.85% 98.51 % 97.66 % 89.58 % 99.96 % 29%.5
Linear (SVM 4) 98.98% 98.74% 90 % 85.57 % 99.80 % 99.14 %
£1-norm SVM 98% 99% 81.11% 81% 99.53% 100%
Sigmoid (SVM 3) 95.08% 95.35% 83.62 % 85 % 99.65 % 99.28 %

The SVM with a polynomial kernel has clearly higher classifien accuracy compared to the-norm SVM and the
SVMs with RBF, linear and sigmoid kernel for the training a&hd test set. Furthermore, the polynomial SVM achieved
the highest values for sensitivity and specificity. The GarsSVM (RBF) outperforms the linear SVM and tfienorm
SVM in terms of ACC, sensitivity and specificity, and thenldals the sigmoid SVM. Fig. 12 displays the ROC curves
derived from all SVMs with the four considered kernels, aigl E3 displays thé1l-norm SVM. The AUROC is 0.976,
0.99, 0.98 and 0.858 for the SVMs with a polynomial, RBF, dinand sigmoid kernel respectively. The AUROC for the
¢1-norm SVM takes the lowest value equal to 0.627. Tha&norm SVM performs almost similarly to the linear SVM
in terms of ACC, sensitivity and specificity. TH&-norm SVM detected a set of 39 out of 41 variables as stlfti
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Fig. 12: ROC Curves derived from SVMs (trauma)
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Fig. 13: /1-norm SVM (trauma)

significant which includes the important variabbes, x20, X101, Xo5, X11, X23, X16, X27, X2 previously obtained from all
statistical analysis methods. The generated model defiiwetthe/1-norm SVM excluded two variables as unimportant,
i.e.,x35 andxsg. Note here, that thél-norm SVM can recognize all actual negatives and reacleeatibolute percentage
of 100% for specificity, but also has high percentages fosisigity. Table 13 shows that th&l-norm SVM tends to have
lower Type | errors and higher Type Il errors, in other wotllis tneans that thél-norm SVM tends to declare at a lower
rate inactive variables to be active, and at a higher rateeagariables to be inactive.

3.3.5 Overall Comparison for Trauma Data

Table 14 ranks the best candidate models according to tlufispeperformance criteria, and helps the experimenter to
choose the best approach for a given analysis. Fig. 14 gsgie ROC curves derived from all methods employed in this
comparative trauma study. The further the curve lies ablowedference line, the more accurate the test.
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Table 14: Advanced comparison of classifiers via overall accuracy and AUR®D&Sented in descending order)
Area Under the ROC curve

Overall Accuracy %

Classifier

Training set

Test set

Test set

SVM 1 (RBF)
Logistic Regression
Neural Net 1 (MLP)

SVM 4 (linear)
SVM 2 (polynomial)

C5

CHAID
QUEST
Bayesian Network
C&RT
Neural Net 2 (RBFN)
SVM 3 (sigmoid)
{1-norm SVM

99.85%
98.95 %
98.95%

98.98 %
99.94 %

99.05 %

98.38%
98.36%
98.38%

98.54%
94.86%
95.08 %

98%

98.51%
98.78%
98.92%
98.74%
98.55%
98.96%
98.19%
98.64 %
96.93%
98.64 %
95.3%
95.35%
99%

0.99
0.986
0.98
0.98
0.976
0.964
0.964
0.937
0.937
0.919
0.917
0.858
0.627
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Fig. 14: ROC Curves derived from all models (trauma)

4 Discussion

Recent proliferation of large dimensional databases medéable selection crucial in model building for large detaes
with complicated structure. This paper presents an extertgimparative analysis of several machine learning ¢lassi

on real seismological and medical data. C5.0 algorithm hadriost excellent results in terms of accuracy, sensitivity
and specificity in both studies. Both CHAID and C&RT algonitk, presented very adequate results in these statistical
measures about classifiers performance, and outperforrd&sQ in both seismic and trauma study. The MLP neural
network outperformed greatly the Bayesian network, and RBFN network followed. The SVM with a polynomial
kernel had clearly better classification performance caeghto the/1-norm SVM and the SVMs with an RBF, linear and
sigmoid kernel in both seismic and trauma study. In gen&\Ms (with a polynomial, Gaussian RBF and linear kernel)
have been proven for excellent classification performasinege they were found to be more effective than LR method and
RBFN network. The RBFN network and the sigmoid SVM were obseérto have the worst classification performance
for both seismic and trauma study. The-norm SVM performed almost similarly to the linear SVM inrtes of ACC,
sensitivity and specificity in both studies. The-norm SVM did not tend to declare at a similar rate inactigables to

be active or active variables to be inactive, hence it coolcbe considered conservative in this sense.

Assessing the reliability of classifier algorithms is esgdito ensure data quality. We used the measures of satysitiv
and specificity for the comparison of algorithms in orderttovide useful results, since it is obvious that in seismisisg
effort for earthquakes prediction or in health care domé#iorefor death prevention of trauma patients a huge problem
is arising, obligating them to be more careful in their reskaln our seismic study, this obstacle is the twofold hdzar
of incorrectly earthquake prediction. On one hand, if seiegists result that an earthquake may occur in specifieeplac
and time, government should embark on a major earthqual@m@eéness campaign which costs and frighten citizens.
So, if this prediction does not come true, this will have gjiegpact on economy and social life. On the other hand, if
a strong earthquake happens without prior informatiors, Will be dangerous and result in many deaths. The value of
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this comparative study stands not only in the knowledgeodisgy, but also in the ability to calculate Type | and Type
Il error rates for each employed method. In general, we esethat machine learning classifiers identified effecyivel
the most statistically important factors for model builgligiving extra significance to the year of seismic actividye

to this result, seismologists have extra information almariodicity of earthquakes, which is one of key factors for
earthquake prediction. In our trauma study, sensitivity specificity measure the prognostic model’s ability to prine

the patients of a certain group (survivors or non-survixddentifying an interpretable prognostic model allowsdical
community to discover previously unknown variable relasbips and explore the possible risk factors of death. leiggn

we observed that machine learning classifiers identifiegcéffely the optimal prognostic model and detected the most
statistically significant predictor variables which maysias as guidelines for improving the quality of treatment an
therefore survivability of a patient through optimal trammanagement.

Neither ANNs nor SVMs are perfect. SVMs are fast in trainibgt require an appropriate choice of kernel function.
ANNSs are slower in training, but are fast in classifying aadust to noise. ANNs have been widely developed for dealing
with nonlinear seismic or medical data. We hope this worlt @dhvince experimenters to use not only ANNs but also
SVMs for the extraction of large data set patterns in riskdiecof an earthquake or a trauma death. SVMs should be
considered a powerful predictive tool to be added to stahtd& methodology. Thus, one of the most promising topics
for further study is the use of the Support Vector Machinassification technique as an alternative method for sujmgort
seismic and medical knowledge discovery. However, sonegasting points are still open and should be investigated in
the future. We are currently looking into construction pgesbs of a search method that will automatically identify the
best kernel and its parameter settings.
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Appendix

Seismic Data
Y: magnitude(0< 6.5), 1(>=6.5))

—Continuous covariates:
X1: year, years
X4 lats, (latitude)
x7: hyper distance, measured in degre®s (
Xg: azimuth, measured in degreé3 (
Xg: epicenterx, the ordinate of epicenter
X10: epicentery, the abscissa of epicenter
x11: depth, the earthquake depth range of O - 700 km

—Categorical covariates:
X2: nome, (1 to 54, all prefectures of Greece)
xs: intensity, (1 to 12 grades)

Trauma Data
Y: 0 (survival), 1 (death)

—Continuous covariates:
x1: weight, kg
X2: age, years
x3: Glasgow Coma Score, score
x4: pulse, N/min
X6: systolic arterial blood pressure, mmHg
X7 diastolic arterial blood pressure, mmHg
x8: Hematocrit (Ht), %
x9: haemoglobin (Hb), g/dl
x11: white cell count, /ml

© 2013 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

220 NS 2 C. Parpoula et al: Large-Scale Statistical Modelling via Machine Learniags@iers

x15: glucose, mg %

x16: creatinine, mg %

x18: amylase, score

x20: Injury Severity Score, score
x21: Revised Trauma Score, score

—Categorical covariates:
x19: evaluation of disability (8- expected permanent big-expected permanent small=2expected impermanent
big,
3 = expected impermanent small=4recovery)
x23: cause of injury (@= fall, 1 = trochee accident, 2 athletic, 3= industrial, 4= crime, 5= other)
x24: means of transportation {airplane, 1= ambulance, 2= car, 4= on foot)
x25: Ambulance (G= no, 1= yes)
X26: hospital of records
X27: substructure of hospital (0 orthopaedic, = CT, 2= vascular surgeon, 3 neurosurgeon, 4 Intensive Care
Unit)
x28: comorbidities (G= no, 1= yes)
x31: sex (0= female, 1= male)
x35: doctor’s speciality (6= angiochirurgeon, = non specialist, 2= general doctor 3= general surgeon, 4
jawbonesurgeon,
5 = gynaecologist, 6= thoraxsurgeon, # neurosurgeon, & orthopaedic, 9= urologist, 10= paediatrician, 1
children surgeon, 12 plastic surgeon )
x36: major doctor (B= no, 1= yes)
x41: dysphoria (G= no, 1= yes)
x52: collar (0= no, 1= yes)
x55: immobility of limbs (0= no, 1= yes)
x56: fluids (0= no, 1= yes)
x64: Radiograph E.R. (& no, 1=yes)
x66: US (0= no, 1=yes)
X67: urea test (6 no, 1= yes)
X71: destination after the emergency room=®ther hospital, = clinic, 2 = unit of high care, 3= intensive care
unit 1.C.U, 4= mortuary, 5= operating room)
X72: surgical intervention (& no, 1= yes)
x86: arrival at emergency room ( 00:00-04:00, 1= 04:01-08:00, 2= 08:01-12:00, 3= 12:01-16:00, 4=
16:01-18:00, 5= 18:01-20:00, 6= 20:01-24:00)
x87: exit from emergency room (& 00:00-04:00, 1= 04:01-08:00, 2= 08:01-12:00, 3= 12:01-16:00, 4=
16:01-18:00, 5= 18:01-20:00, 6= 20:01-24:00)
x101: head injury (G= none, 1 AIS< 2,2 =AIS> 2)
x102: face injury (0= none, 1 AIS< 2,2 =AIS> 2)
x104: breast injury (8= none, 1 AIS< 2,2 =AIS> 2)
x106: spinal column injury (8= none, 1 AIS< 2,2 =AIS> 2)
x107: upper limbs injury (6= none, 1 AIS< 2,2 =AIS> 2)
x108: lower limbs injury (0= none, 1 AIS< 2,2 =AIS> 2)
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