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Abstract: In this paper, first we prove a common fixed point theorem for a pair of weakly compatible self maps in complex valued
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1 Introduction

In 2011, Azam et. al [5] introduced the notion of complex
valued metric space which is a generalization of the
classical metric space. They established some fixed point
results for mappings satisfying a rational inequality. The
idea of complex valued metric spaces can be exploited to
define complex valued normed spaces and complex
valued Hilbert spaces; additionally, it offers numerous
research activities in mathematical analysis.

A complex numberz∈ C is an ordered pair of real
numbers, whose first co-ordinate is called Re(z) and
second coordinate is called Im(z). Thus a complex-valued
metricd is a function from a setX×X into C, whereX is
a nonempty set andC is the set of complex numbers.

Let C be the set of complex numbers andz1,z2 ∈ C.
Define a partial order- onC as follows:
z1 - z2 if and only if Re(z1)≤Re(z2) and Im(z1)≤ Im(z2),
that isz1 - z2, if one of the following holds

(C1) Re(z1) = Re(z2) and Im(z1) = Im(z2);
(C2) Re(z1)< Re(z2) and Im(z1) = Im(z2);
(C3) Re(z1) = Re(z2) and Im(z1)< Im(z2);
(C4) Re(z1)< Re(z2) and Im(z1)< Im(z2).

In particular, we will writez1 � z2 if z1 6= z2 and one of
(C2), (C3), and (C4) is satisfied and we will writez1 ≺ z2
if only (C4) is satisfied.

Remark.We note that the following statements hold:

(i) a,b∈ R anda≤ b⇒ az- bzfor all z∈ C.
(ii) 0 - z1 � z2 ⇒ |z1|< |z2|,
(iii) z1 - z2 andz2 ≺ z3 ⇒ z1 ≺ z3.

Definition 1.Let X be a nonempty set. Suppose that the
mapping d: X×X →C satisfies the following conditions:

(i)0 - d(x,y), for all x,y∈ X and d(x,y) = 0 if and only
if x = y;

(ii)d(x,y) = d(y,x) for all x,y∈ X;
(iii) d(x,y)- d(x,z)+d(z,y), for all x,y,z∈ X.

Then d is called a complex valued metric on X and(X,d)
is called a complex valued metric space.

Example 1.Let X = C. Define the mappingd : X×X →C
by

d(z1,z2) = 2i|z1− z2|, for all z1,z2 ∈ X .

Then(X,d) is a complex valued metric space.

Definition 2.Let (X,d) be a complex valued metric space,
{xn} be a sequence in X and x∈ X.

(i)If for every c∈ C, with 0≺ c there is k∈ N such that
for all n > k, d(xn,x) ≺ c, then{xn} is said to be
convergent,{xn} converges to x and x is the limit
point of{xn}. We denote this by{xn} → x as n→ ∞
or limn→∞ xn = x.
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(ii) If for every c∈ C, with 0≺ c there is k∈ N such that
for all n > k, d(xn,xn+m)≺ c, where m∈N, then{xn}
is said to be Cauchy sequence.

(iii) If every Cauchy sequence in X is convergent, then
(X,d) is said to be a complete complex valued metric
space.

Lemma 1.Let (X,d) be a complex valued metric space
and let{xn} be a sequence in X. Then{xn} converges to x
if and only if|d(xn,x)| → 0 as n→ ∞.

Lemma 2.Let (X,d) be a complex valued metric space
and let{xn} be a sequence in X. Then{xn} is a Cauchy
sequence if and only if|d(xn,xn+m)| → 0 as n→ ∞, where
m∈ N.

In 1996, Jungck [6] introduced the concept of weakly
compatible maps as follows:

Definition 3.Two self maps f and g are said to be weakly
compatible if they commute at coincidence points.

In 2002, Aamri et al. [1] introduced the notion of E.A.
property as follows:

Definition 4.Two self-mappings f and g of a metric space
(X,d) are said to satisfy E.A. property if there exists a
sequence {xn} in X such that
limn→∞ f xn = limn→∞ gxn = t for some t in X.

In 2011, Sintunavarat et al. [7] introduced the notion
of (CLRg) property as follows:

Definition 5.Two self-mappings f and g of a metric space
(X,d) are said to satisfy (CLRg) property if there exists a
sequence{xn} in X such thatlimn→∞ f xn = limn→∞ gxn =
gx for some x in X.

In the same way, we can introduce these notions in
complex valued metric spaces.

Example 2.Let X = C. Define the mappingd : X×X →C
by

d(z1,z2) = 2i|z1− z2|, for all z1,z2 ∈ X.

Then(X,d) is a complex valued metric space.
Define f ,g : X → X by

f z= z+ i andgz= 2z, for all z∈ X.

Consider a sequence{zn}=

{

i −
1
n

}

, n∈ N, in X, then

lim
n→∞

f zn = lim
n→∞

(zn+ i) = lim
n→∞

i −
1
n
+ i = 2i ,

lim
n→∞

gzn = lim
n→∞

2zn = lim
n→∞

2

(

i −
1
n

)

= 2i,

where 2i ∈ X.
Thus, f andg satisfies E.A. property.
Also, we have

lim
n→∞

f zn = lim
n→∞

gzn = 2i = g(i), wherei ∈ X .

Thus, f andg satisfies (CLRg) property.
Now, we shall prove our results relaxing the condition

of complex valued metric space being complete.

2 Weakly Compatible Maps

Theorem 1.Let f and g be self maps of a complex valued
metric space(X,d) satisfying the following:

(2.1) f X ⊆ gX,

(2.2)d( f x, f y) - Ad(gx,gy)+B
d(gx, f x)d( f y,gy)

1+d(gx,gy)

+C
d(gx, f y)d(gx,gy)

1+d(gx,gy)

+D
d(gx, f x)d(gx,gy)

1+d(gx,gy)

+E
d(gx, f y)d( f y,gy)

1+d(gx,gy)
, for all x, y in X,

where A, B, C, D and E are non-negative constants
with A+B+C+D+E < 1,

(2.3)gX is a complete subspace of X.

Then f and g have a coincidence point.

Moreover, if f and g are weakly compatible, thenf
andg have a unique common fixed point.

Proof.Letx0 ∈ X. From (2.1), we can construct sequences
{xn} and{yn} in X by yn = gxn+1 = f xn, n= 0,1,2, . . ..

From (2.2), we have

d(yn+1,yn) = d( f xn+1, f xn)

= Ad(gxn+1,gxn)

+B
d(gxn+1, f xn+1)d( f xn,gxn)

1+d(gxn+1,gxn)

+C
d(gxn+1, f xn)d(gxn,gxn+1)

1+d(gxn+1,gxn)

+D
d(gxn, f xn)d(gxn,gxn+1)

1+d(gxn+1,gxn)

+E
d(gxn+1, f xn)d(gxn,gxn+1)

1+d(gxn+1,gxn)

= Ad(yn,yn−1)+B
d(yn,yn+1)d(yn,yn−1)

1+d(yn,yn−1)

+C
d(yn,yn)d(yn−1,yn)

1+d(yn,yn−1)

+D
d(yn−1,yn)d(yn−1,yn)

1+d(yn,yn−1)

+E
d(yn,yn)d(yn,yn−1)

1+d(yn,yn−1)

= Ad(yn,yn−1)+B
d(yn,yn+1)d(yn,yn−1)

1+d(yn,yn−1)

+D
d(yn−1,yn)d(yn−1,yn)

1+d(yn,yn−1)
.

Thus, we have

|d(yn,yn+1)| ≤ A|d(yn,yn−1)|+B
|d(yn,yn+1)| |d(yn,yn−1)|

|d(yn,yn−1)|

+D
|d(yn−1,yn)| |d(yn−1,yn)|

|d(yn,yn−1)|
.
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Since
|1+d(yn,yn−1)|> |d(yn,yn−1)|,

we have

(1−B)|d(yn+1,yn)| ≤ (A+D)|d(yn,yn−1)|,

that is,

|d(yn+1,yn)| ≤
A+D
1−B

|d(yn,yn−1)|

= k|d(yn,yn−1)|,

wherek=
A+D
1−B

< 1 .

Consequently, it can be concluded that

d(yn,yn+1)- kd(yn−1,yn)

- k2d(yn−2,yn−1)

...

- knd(y0,y1).

Now, for all m> n,

d(ym,yn)

- d(yn,yn+1)+d(yn+1,yn+2)+ · · ·+d(ym,ym−1)

- knd(y0,y1)+ kn+1d(y0,y1)+ · · ·+ km−1d(y0,y1)

-
kn

1− k
d(y0,y1).

Therefore, we have

|d(ym,yn)| ≤
kn

1− k
|d(y0,y1) .

Hence,
lim
n→∞

|d(ym,yn)|= 0.

Hence,{yn} is a Cauchy sequence ingX. But gX is a
complete subspace ofX, so there is au in gX such that
yn → u asn→ ∞. Let v∈ g−1u. Thengv= u.

Now, we shall prove thatf v= u.
Puttingx= v andy= xn−1 in (2.2), we get

d( f v, f xn−1)- Ad(gv,gxn−1)

+B
d(gv, f v)d( f xn−1,gxn−1)

1+d(gv,gxn−1)

+C
d(gv, f xn−1)d(gv,gxn−1)

1+d(gv,gxn−1)

+D
d(gv, f v)d(gv,gxn−1)

1+d(gv,gxn−1)

+E
d(gv, f xn−1)d( f xn−1,gxn−1)

1+d(gv,gxn−1)
.

Lettingn→ ∞, we have

d( f v,u)- Ad(u,u)+B
d(gv, f v)d(u,u)

1+d(u,u)

+C
d(u,u)d(u,u)

1+d(u,u)
+D

d(gv, f v)d(u,u)
1+d(u,u)

+E
d(u,u)d(u,u)

1+d(u,u)
,

that is,|d(u, f v)| ≤ 0, implies that,f v= u.
Thus,f v= u= gv, and hencev is the coincidence point

of f andg.
Now, since f and g are weakly compatible, so,u =

f v= gv, implies that,f u= f gv= g f v= gu.
Now, we claim thatgu= u. Let, if possible,gu 6= u.
From (2.2), we have

d(u,gu) = d( f v, f u)

- Ad(gv,gu)+B
d(gv, f v)d( f u,gu)

1+d(gv,gu)

+C
d(gv, f u)d(gv,gu)

1+d(gv,gu)
+D

d(gv, f v)d(gv,gu)
1+d(gv,gu)

+E
d(gv, f u)d( f u,gu)

1+d(gv,gu)

= Ad(u,gu)+C
d(u,gu)d(u,gu)

1+d(u,gu)
,

that is,

|d(u,gu)| ≤ A|d(u,gu)|+C
|d(u,gu)| |d(u,gu)|

|1+d(u,gu)|
,

Since
|1+d(u,gu)|> |d(u,gu)|,

we have
|d(u,gu)| ≤ (A+C)|d(u,gu)|,

implies that,A+C≥ 1, a contradiction.
Hence,gu= u= f u.
Therefore,u is the common fixed point off andg.
For the uniqueness, letw be another common fixed

point of f andg such thatw 6= u.
From (2.2), we have

d(w,u) = d( f w, f u)

- Ad(gw,gu)+B
d(gw, f w)d( f u,gu)

1+d(gw,gu)

+C
d(gw, f u)d(gw,gu)

1+d(gw,gu)

+D
d(gw, f w)d(gw,gu)

1+d(gw,gu)

+E
d(gw, f u)d( f u,gu)

1+d(gw,gu)

= Ad(w,u)+C
d(w,u)d(w,u)

1+d(w,u)
,
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that is,

|d(w,u)| ≤ A|d(w,u)|+C
|d(w,u)| |d(w,u)|
|1+d(w,u)|

.

Since
|1+d(w,u)|> |d(w,u)|,

we have
|d(w,u)| ≤ (A+C)|d(w,u)|,

implies that,A+C≥ 1, a contradiction.
Hencef andg have a unique common fixed point.

Corollary 1.Let f and g be self mappings of a complex
valued metric space(X,d) satisfying (2.1), (2.3) and the
following:

(2.4) d( f x, f y) - Ad(gx,gy)+B
d(gx, f x)d( f y,gy)

1+d(gx,gy)

+C
d(gx, f y)d(gx,gy)

1+d(gx,gy)

+D
d(gx, f x)d(gx,gy)

1+d(gx,gy)
,

for all x, y in X, where A, B, C, D are non-negative
constants with A+B+C+D < 1.

Then f and g have a coincidence point.

Moreover, if f and g are weakly compatible, thenf
andg have a unique common fixed point.

Proof.By putting E = 0 in Theorem 2.1, we get the
Corollary 1.

Corollary 2.Let f and g be self mappings of a complex
valued metric space(X,d) satisfying (2.1), (2.3) and the
following:

(2.5)d( f x, f y) - Ad(gx,gy), for all x, y in X, where0 ≤
A< 1.

Then f and g have a coincidence point.
Moreover, if f and g are weakly compatible, then f and

g have a unique common fixed point.

Proof.By puttingB=C= D = E = 0 in Theorem 2.1, we
get the Corollary 2.

Example 3.Let X = [0,1] and defined : X × X → C by
d(x,y) = i|x− y|, for all x,y∈ X.

Then(X,d) is a complex valued metric space.

Define the functionsf ,g : X → X by f x=
x
3

andgx=
x
2

.

Clearly f X =

[

0,
1
3

]

⊆

[

0,
1
2

]

= gX.

Also f andg are weakly compatible.

ForA=
2
3
< 1, we have

d( f x, f y) - Ad(gx,gy), for all x,y∈ X.

Also 0 is the unique common fixed point off andg.
Hence all the conditions of Corollary 2 are satisfied.

3 Weakly compatible and (CLRg) properties

Theorem 2.Let f and g be self mappings of a complex
valued metric space(X,d) satisfying (2.2) and the
following:

(3.1) f and g satisfy (CLRg) property,
(3.2) f and g are weakly compatible.

Then f and g have a unique common fixed point.

Proof.Since f and g satisfy the (CLRg) property, there
exists a sequence{xn} in X such that

(3.3) limn→∞ f xn = limn→∞ gxn = gx, for somex in X.

From (2.2), we have

d( f x, f xn)- Ad(gx,gxn)+B
d(gx, f x)d( f xn,gxn)

1+d(gx,gxn)

+C
d(gx, f xn)d(gx,gxn)

1+d(gx,gxn)

+D
d(gx, f x)d(gx,gxn)

1+d(gx,gxn)

+E
d(gx, f xn)d( f xn,gxn)

1+d(gx,gxn)
.

Lettingn→ ∞, we have

d( f x,gx)- Ad(gx,gx)+B
d(gx, f x)d(gx,gx)

1+d(gx,gx)

+C
d(gx,gx)d(gx,gx)

1+d(gx,gx)

+D
d(gx, f x)d(gx,gx)

1+d(gx,gx)

+E
d(gx,gx)d(gx,gx)

1+d(gx,gx)

= 0,

implies that,
|d( f x,gx)| ≤ 0,

that is, f x= gx.
Now, let u = f x = gx. Since f and g are weakly

compatible mappings, therefore,f gx= g f x, implies that,
f u= f gx= g f x= gu.

Now, we claim thatgu= u. Let, if possible,gu 6= u.
From (2.2), we have

d(u,gu) = d( f x, f u)

- Ad(gx,gu)+B
d(gx, f x)d( f u,gu)

1+d(gx,gu)

+C
d(gx, f u)d(gx,gu)

1+d(gx,gu)

c© 2014 NSP
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+D
d(gx, f x)d(gx,gu)

1+d(gx,gu)

+E
d(gx, f u)d( f u,gu)

1+d(gx,gu)

= Ad(u,gu)+C
d(u,gu)d(u,gu)

1+d(u,gu)
,

that is,

|d(u,gu)| ≤ A|d(u,gu)|+C
|d(u,gu)| |d(u,gu)|

1+ |d(u,gu)|
.

Since
|1+d(u,gu)|> |d(u,gu)|,

we have
|d(u,gu)| ≤ (A+C)|d(u,gu)| ,

implies that,A+C≥ 1, a contradiction.
Hence,gu= u= f u.
Therefore,u is the common fixed point off andg.
For the uniqueness, letw be another common fixed

point of f andg such thatw 6= u.
From (2.2), we have

d(w,u) = d( f w, f u)

- Ad(gw,gu)+B
d(gw, f w)d( f u,gu)

1+d(gw,gu)

+C
d(gw, f u)d(gw,gu)

1+d(gw,gu)

+D
d(gw, f w)d(gw,gu)

1+d(gw,gu)

+E
d(gw, f u)d( f u,gu)

1+d(gw,gu)

= Ad(w,u)+C
d(w,u)d(w,u)

1+d(w,u)
,

that is,

|d(w,u)| ≤ A|d(w,u)|+C
|d(w,u)| |d(w,u)|
|1+d(w,u)|

.

Since
|1+d(w,u)|> |d(w,u)| ,

we have
|d(w,u)| ≤ (A+C)|d(w,u)| ,

implies that,A+C≥ 1, a contradiction.
Hencef andg have a unique common fixed point.

Corollary 3.Let f and g be self mappings of a complex
valued metric space(X,d) satisfying (3.1), (3.2) and the
following:

(3.4)d( f x, f y)- Ad(gx,gy)+C
d(gx, f y)d(gx,gy)

1+d(gx,gy)
, for all

x, y in X,
where A and C are non-negative constants with A+
C< 1.

Then f and g have a unique common fixed point.

Proof.By puttingB= D = E = 0 in Theorem 2, we get the
Corollary 3.

Corollary 4.Let f and g be self mappings of a complex
valued metric space(X,d) satisfying (3.1), (3.2) and the
following:

(3.5)d( f x, f y) -C
d(gx, f y)d(gx,gy)

1+d(gx,gy)
, for all x, y in X,

where C is a non-negative constant with C< 1.

Then f and g have a unique common fixed point.

Proof.By putting A = 0 in Corollary 3, we get the
Corollary 4.

Corollary 5.Let f and g be self mappings of a complex
valued metric space(X,d) satisfying (3.1), (3.2) and the
following:

(3.6)d( f x, f y) - Ad(gx,gy), for all x, y in X,

where A is a non-negative constant with A< 1.
Then f and g have a unique common fixed point.

Proof.By putting C = 0 in Corollary 3, we get the
Corollary 5.

Example 4.Let X = [0,1] and defined : X × X → C by
d(x,y) = i|x− y|, for all x,y∈ X.

Then(X,d) is a complex valued metric space.

Define the functionsf ,g : X → X by f x=
x
8

andgx=
x
2

.

Clearly f X =

[

0,
1
8

]

⊆

[

0,
1
2

]

= gX.

Also, f andg are weakly compatible.

Consider the sequence{xn}=

{

1
n

}

, n∈N.

Since limn→∞ f xn = limn→∞ gxn = 0 = g0, so f andg
satisfy (CLRg) property.

Also, for A=
1
4
< 1, we have

d( f x, f y) - Ad(gx,gy), for allx,y∈ X.

Here 0 is the unique common fixed point off andg.
Hence all the conditions of Corollary 5 are satisfied.

4 Weakly compatible and E.A. Properties

Theorem 3.Let f and g be self mappings of a complex
valued metric space(X,d) satisfying (2.1), (2.2), (3.2)
and the following:

(4.1)f and g satisfy E.A. property,
(4.2)gX is a closed subset of X.

Then f and g have a unique common fixed point.

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


108 M. Kumar et. al. : Some Common Fixed Point Theorems in Complex...

Proof.Since f andg satisfy the E.A. property, there exists
a sequence{xn} in X such that

(4.3)limn→∞ f xn = limn→∞ gxn = z, for somez in X.

Now,gX is closed subset ofX, therefore limn→∞ gxn = ga,
for somea in X.

So, from (4.3), we have

lim
n→∞

f xn = ga.

We claim thatf a= ga.
From (2.2), we have

d( f a, f xn)- Ad(ga,gxn)+B
d(ga, f a)d( f xn,gxn)

1+d(ga,gxn)

+C
d(ga, f xn)d(ga,gxn)

1+d(ga,gxn)

+D
d(ga, f a)d(ga,gxn)

1+d(ga,gxn)

+E
d(ga, f xn)d( f xn,gxn)

1+d(ga,gxn)
.

Lettingn→ ∞, we have

d( f a,ga)- Ad(ga,ga)+B
d(ga, f a)d(ga,ga)

1+d(ga,ga)

+C
d(ga,ga)d(ga,ga)

1+d(ga,ga)

+D
d(ga, f a)d(ga,ga)

1+d(ga,ga)

+E
d(ga,ga)d(ga,ga)

1+d(ga,ga)

= 0,

implies that,
|d( f a,ga)| ≤ 0,

that is, f a= ga.
Now, we show thatf a is the common fixed point off

andg. Let, if possiblef a 6= f f a.
Since f and g are weakly compatible,g f a = f ga,

implies that,f f a= f ga= g f a= gga.
From (2.2), we have

d( f f a, f a) - Ad(g f a,ga)+B
d(g f a, f f a)d( f a,ga)

1+d(g f a,ga)

+C
d(g f a, f a)d(g f a,ga)

1+d(g f a,ga)

+D
d(g f a, f f a)d(g f a,ga)

1+d(g f a,ga)

+E
d(g f a, f a)d( f a,ga)

1+d(g f a,ga)

= Ad( f f a, f a)+C
d( f f a, f a)d( f f a,ga)

1+d( f f a,ga)
,

that is,

|d( f f a, f a)| ≤ A|d( f f a, f a)|

+C
|d( f f a, f a)| |d( f f a, f a)|

|1+d( f f a, f a)|
.

Since
|1+d( f f a, f a)|> |d( f f a, f a)|,

we have

|d( f f a, f a)| ≤ (A+C)|d( f f a, f a)|,

implies that,A+C≥ 1, a contradiction.
Hencef f a= f a= g f a.
Thus, f a is the common fixed point off andg.
Finally, we show that the common fixed point is

unique.
For this, letu andv be two common fixed points off

andg such thatu 6= v.

d(v,u) = d( f v, f u)

- Ad(gv,gu)+B
d(gv, f v)d( f u,gu)

1+d(gv,gu)

+C
d(gv, f u)d(gv, f u)

1+d(gv,gu)

+D
d(gv, f v)d(gv,gu)

1+d(gv,gu)

+E
d(gv, f u)d( f u,gu)

1+d(gv,gu)

= Ad(v,u)+C
d(v,u)d(v,u)
1+d(v,u)

,

that is,

|d(v,u)| ≤ A|d(v,u)|+C
|d(v,u)| |d(v,u)|
|1+d(v,u)|

.

Since
|1+d(v,u)|> |d(v,u)|,

we have
|d(v,u)| ≤ (A+C)|d(v,u)|,

implies that,A+C≥ 1, a contradiction.
Hencef andg have a unique common fixed point.

Corollary 6.Let f and g be self mappings of a complex
valued metric space(X,d) satisfying (2.1), (3.2), (4.1) and
the following:

(4.4)d( f x, f y)- Ad(gx,gy)+C
d(gx, f y)d(gx,gy)

1+d(gx,gy)
, for all

x, y in X,
where A and C are non-negative constants with A+
C< 1.

Then f and g have a unique common fixed point.
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Proof.By puttingB = D = E = 0 in Theorem 4.1, we get
the Corollary 6.

Corollary 7.Let f and g be self mappings of a complex
valued metric space (X, d) satisfying (2.1), (3.2), (4.1) and
the following:

(4.5)d( f x, f y) -C
d(gx, f y)d(gx,gy)

1+d(gx,gy)
, for all x, y in X,

where C is a non-negative constant with C< 1.

Then f and g have a unique common fixed point.

Proof.By putting A = 0 in Corollary 6, we get the
Corollary 7.

Corollary 8.Let f and g be self mappings of a complex
valued metric space(X,d) satisfying (2.1), (3.2), (4.1) and
the following:

(4.6)d( f x, f y) - Ad(gx,gy), for all x, y in X,
where A is a non-negative constant with A< 1.
Then f and g have a unique common fixed point.

Proof.By putting C = 0 in Corollary 6, we get the
Corollary 8.

Example 5.Let X = [0,1] and defined : X × X → C by
d(x,y) = i|x− y|, for all x,y∈ X.

Then(X,d) is a complex valued metric space.

Define the functionsf ,g : X → X by f x=
x
6

andgx=
x
2

.

Clearly f X =

[

0,
1
6

]

⊆

[

0,
1
2

]

= gX.

Also, f andg are weakly compatible.

Consider the sequence{xn}=

{

1
n

}

, n∈ N.

Since limn→∞ f xn = limn→∞ gxn = 0, where 0∈ X, so
f andg satisfy E.A. property.

Also, for A=
1
3
< 1, we have

d( f x, f y) - Ad(gx,gy), for all x,y∈ X.

Here 0 is the unique common fixed point off andg.
Hence all the conditions of Corollary 8 are satisfied.
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