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Generalization of rough set model is an important aspect of rough set theory research.
The problem to be discussed in this paper is to minimize the boundary region and this
requires a new approximation approach which increases lower approximation and de-
creases upper approximation.We generalize both constructive and algebraic method for
the theory of rough sets. Instead of one operation used by Jarvinen [1], we use two
operations to define, in a lattice theoretical setting, two new mappings which mimic
the rough approximations called pairwise lower and pairwise upper approximations.
We studied the properties of these approximations by imposing different axioms on the
suggested two operations. Also properties of the ordered set of the pairwise lower and
upper of an element of a complete atomic Boolean lattice are investigated. Numerical
examples are given. Finally an experimental example is given showing that our gener-
alizations can help in expert system and using lower and upper approximations given in
this work will minimize the boundary region. This will decrease the uncertainty region
that help decision maker to get more accurate results.

Keywords: Complete atomic Boolean lattice, pairwise lower and upper approxima-
tions, extensive symmetric and closed mappings.

1 General Introduction

Rough set theory (RST), first proposed by Pawlak [2, 3], is an extension of set theory
for the study of the intelligent systems characterized by insufficient and incomplete infor-
mation. It was introduced as a mathematical tool to deal with uncertainty and based on the
premise that lowering the degree of precision in data makes the data pattern more visible.
The rough set theory has a wide variety of applications. It can be used for information
preserving data reduction, representation of uncertain or imprecise knowledge, knowledge
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discovery, concept classification, machine learning, data mining [4] economics [5], medical
diagnosis [6], and others [7].

A basic notion of rough set theory is the lower and upper approximation, or approxima-
tion operators [2, 3, 8]. This theory can be developed in at least two different manners, the
constructive and algebraic methods [9]. The constructive methods [10–12] define rough set
approximation operators using equivalence relations or their induced partitions and sub-
systems; the algebraic methods treat approximation operators as abstract operators. There
are several definitions of constructive methods, commonly known as the element based,
granule based [13,14], and subsystem based definitions [12]. Each of them offers a unique
interpretation of the theory. They can be used to investigate the connections to other theo-
ries, and to generalize the basic theory in different directions. The element based definition
establishes a connection between approximation operators and the necessity and the pos-
sibility operators of modal logic. Under the granule based definition, one may view rough
set theory as a concrete example of granular computing [15]. The subsystem based defi-
nition relates approximation operators to the interior and closure operators of topological
spaces [16], the closure operators of closure systems, and operators in other algebraic sys-
tems [1, 17]. Algebraic methods [18] focus on the algebraic system (2U ,c , L,H) without
directly reference to equivalence where L and H are two abstract unary operators called
approximation operator.

The theory of rough sets can be generalized in several directions. Within the set theo-
retic framework, the generalizations of element based definition can be obtained by using
non equivalence relations [19]. For examples, Pawlak [20] and others [17, 21, 22] have
studied approximation operators which are defined by tolerance, which is a reflexive and
symmetric binary relation. Some authors [23, 24] have studied approximation operators
defined by reflexive binary relations. Others [19, 25] have studied approximations deter-
mined by arbitrary binary relations. On the other hand, some authors [7, 26] considered
approximations based on reflexive and transitive relations. Generalization of the granule
based definition can be obtained by using coverings [27–29], and generalization of subsys-
tem based definition can be obtained by using other subsystems [30]. By the fact that, the
system (2U ,c ,∩,∪) is Boolean algebra, one can generalize rough set theory using other
algebraic systems such as Boolean algebra, lattice [1, 9], and posets.

2 Related Work

The problem to be discussed in this paper is to minimize the boundary region and
this requires a new approximation approach which increases lower approximation and de-
creases upper approximation. Our approach to this problem is to generalize constructive
methods for the theory of rough sets by using the atom based definition through two map-
pings instead in in one used by Jarvinen [1]. We also generalize the algebraic methods by
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using a complete atomic boolean lattice. By the fact the system (2U ,c ,∩,∪) is an atomic
Boolean algebra whose atoms are singleton subsets of U. We replace U with the maximum
element 1, with the minimum element 0, set intersection with meet, and set union with join.

In section 3 We recall and develop some notions and notations concerning lattice, or-
dered set, and properties of maps. Also we discuss the generalization of rough sets by
using one operations in a more general setting of complete atomic Boolean lattices which
was studied by Jarvinen in 2002. The purpose of section 4 is to introduce a new general-
ization of the constructive and algebraic definitions of rough sets using another direction
by two operations which can be interpreted as the views of two experts. We construct new
approximations called pairwise lower and upper approximations and study the properties
of these approximations when the operations are extensive, symmetric or closed. Also we
study the properties of the ordered set of the pairwise lower and upper of an element of
a complete atomic Boolean lattice. Finally experimental examples are given showing that
our generalizations can help in expert system and using lower and upper approximation
given in this work will minimize the boundary region.

3 Preliminaries

In this section, we restated the basic concepts to make the work self contained.
The emergence of RST and its related notions paved the way for new types of ordering,

so some authors [1, 9] used these types in lattices [31, 32].

Definition 3.1. A semilattice is an ordered set B = (B,≤) in which every nonempty
finite subset has an infimum(inf.). A sub-semi lattice is an ordered set B in which every
nonempty finite subset has a supremum(sup.). An ordered set which is both a semi lattice
and a sup-semi lattice is called a Lattice.

Definition 3.2. A complete lattice is an ordered set in which every subset has a ( sup.) and
an (inf.).

Lemma 3.3. Let B = (B,≤) be a complete lattice, S, T ⊆ B and {Xi : i ∈ I} ⊆ P (B)

(a) If S ⊆ T , then
∨

S ⊆ ∨
T

(b)
∨

(S ∪ T ) = (
∨

S)
∨

(
∨

T )
(c)

∨
(
⋃{Xi : i ∈ I}) =

∨ {∨ Xi ∈ I}

Definition 3.4. A lattice B = (B,≤) is called a Boolean lattice if

(a) B is distributive.
(b) B has a least element 0 and a greatest element 1, and
(c) Each a ∈ B has a complement a′ ∈ B such that a ∨ a′ = 1 and a ∧ a′ = 0.

Proposition 3.5. Let B = (B,≤) be a Boolean lattice, then for all a, b ∈ B
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(a) 0′ = 1 and 1′ = 0
(b) a′′ = a

(c) (a ∨ b)′ = a′ ∧ b′ and (a ∧ b)′ = a′ ∨ b′.

Lemma 3.6. Let B = (B,≤) be a complete Boolean lattice. Then for all {xi : i ∈ I} ⊆ B

and y ∈ B

y ∧ (
∨

i∈I

xi) =
∨

i∈I

(y ∧ xi)

and
y ∨ (

∧

i∈I

xi) =
∧

i∈I

(y ∨ xi).

Definition 3.7. Let B = (B,≤) be an ordered set and x, y ∈ B, we say that x is covered
by y (or that y covers x), and write, x ≺ y if x < y and there is no element z in B with
x < z < y.

Definition 3.8. Let B = (B,≤) be a lattice with a least element 0. Then a ∈ B is called an
atom if 0 ≺ a. The set of atoms of B is denoted by A(B). The lattice B is atomic if every
element of B is the supremum of the atoms below it, that is x =

∨ {a ∈ A(B) : a ≤ x}.

Remark 1. It is obvious that in a lattice B = (B,≤) with a least element 0,

a ∧ x 6= 0 ⇐⇒ a ≤ x

for all a ∈ A(B) and x ∈ B. This implies that a ∧ b = 0 for all a, b ∈ A(B) such that
a 6= b. Furthermore, if B is atomic, then for all x 6= 0 there exists an atom a ∈ A(B) such
that a ≤ x. Namely, if {a ∈ A(B) : a ≤ x} = φ, then x =

∨ {a ∈ A(B) : a ≤ x} =∨
φ = 0.

Now we recall some definitions concerning properties of maps.

Definition 3.9. Let B = (B,≤) be an ordered set. A mapping f : B −→ B is said to
be extensive , if x ≤ f(x) for all x ∈ B. the map f is order preserving if x ≤ y implies
f(x) ≤ f(y). Moreover, f is idempotent if f(f(x)) = f(x) for all x ∈ B.

Definition 3.10. A map c : B −→ B is said to be a closure operator on B, if c is extensive,
order-preserving, and idempotent. An element x ∈ B is c-closed if c(x) = x. furthermore,
if i : B −→ B is a closure operator on Bϑ = (B,≥) then I is an interior operator on B.

Definition 3.11. Let B = (B,≤) be a Boolean lattice. Two maps f : B −→ B and
g : B −→ B are the duals of each other if f(x′) = g(x)′ and g(x′) = f(x)′ for all x ∈ B.

The following obvious lemma shows that the dual of a closure operator is an interior
operator.
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Lemma 3.12. Let B = (B,≤) be a Boolean lattice and let f : B −→ B be a closure
operator on B. If g : B −→ B is the dual of , then g is an interior operator on B.

Definition 3.13. Let B = (B,≤) and Q = (Q,≤) be ordered sets. f : B −→ Q is an
order embedding, if for any a, b ∈ B, a ≤ b in B if and only if f(a) ≤ f(b) in Q; (Note
that an order embedding is always an injection). An order-embedding f onto Q is called an
order-isomorphism between B and Q, we say that B and Q are order-isomorphic and write
B ∼= Q. If (B,≤) and (Q,≤) are order-isomorphic, then B and Q are said to be dually
order-isomorphic.

Galois connections are found in numerous settings from algebra to computer science
and defined in two theoretically equivalent ways. In the one adopted here maps are order-
preserving, and in the other maps are order-reversing.

Definition 3.14. Let B = (B,≤) be an ordered set. A pair (∇,4 ) of maps ∇ : B −→ B

and 4 : B −→ B is called a dual Galois connection on B if ∇ and 4 are order preserving
and x∇4 ≤ x ≤ x4∇ for all x ∈ B.

In 2002 Jouni Jarvinen [1] studied properties of approximations in a more general set-
ting of complete atomic Boolean lattices.

Definition 3.15. Let B = (B,≤) be a complete atomic Boolean lattice. We say that
ϕ : A(B) → B is

(a) extensive, if x ≤ ϕ(x) for all x ∈ A(B);
(b) symmetric, if x ≤ ϕ(y) implies y ≤ ϕ(x) for all x, y ∈ A(B);
(c) closed, if y ≤ ϕ(x) implies ϕ(y) ≤ ϕ(x) for all x, y ∈ A(B).

Let ≈ be a binary relation on a set U . The ordered set (P (U),⊆) is a complete atomic
Boolean lattice. Since the atoms x(x ∈ U) of (P (U),⊆) can be identified with the ele-
ments of U , the map

ϕ : U −→ P (U), x −→ [x]≈

may be considered to be of the form ϕ : A(B) −→ B, where B=(B,≤) equals (P (U),⊆).
The following observations are obvious:

(1) ≈ is reflexive ⇐⇒ ϕ is extensive;
(2) is symmetric ⇐⇒ ϕ is symmetric;
(3) is transitive ⇐⇒ ϕ is closed;

Definition 3.16. Let B = (B,≤) be a complete atomic Boolean lattice and let ϕ : A(B) →
B be any mapping. For any element x ∈ B, let

x∇ =
∨
{a ∈ A(B) : ϕ(a) ≤ x} and x4 =

∨
{a ∈ A(B) : ϕ(a) ∧ x 6= 0}
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The elements x∇ and x4 are called the lower and the upper approximation of x with
respect to ϕ respectively. Two elements x and y are equivalent if they have the same upper
and lower approximations. The resulting equivalence classes are called rough sets.

Proposition 3.17. Let B = (B,≤) be a complete atomic Boolean lattice and let ϕ :
A(B) → B be any mapping. Then for all a ∈ A(B) and x ∈ B

(a) a ≤ x∇ ⇐⇒ ϕ(a) ≤ x

(b) a ≤ x4 ⇐⇒ ϕ(a) ∧ x 6= 0.

Proposition 3.18. Let B = (B,≤) be a complete atomic Boolean lattice and let ϕ :
A(B) → Bbe any mapping. Then

(a) 04=0 and 15=1;
(b) x ≤ y implies x∇ ≤ y∇ and x4 ≤ y4.

For all S ⊆ B, we denote S∇ = {x∇ : x ∈ S} and S4 = {x4 : x ∈ S}.

Proposition 3.19. Let B = (B,≤) be a complete atomic Boolean lattice and let ϕ :
A(B) → B be any mapping.

(a) The mappings 4 : B −→ B and ∇ : B −→ B are mutually dual.
(b) For all S ⊆ B, ∨S4 = (∨S)4.
(c) For all S ⊆ B,∧S∇ = (∧S)∇.

Proposition 3.20. Let B = (B,≤) be a complete atomic Boolean lattice and let ϕ :
A(B) → B be an extensive mapping. Then

(a) 0∇ = 0 and 14 = 1
(b) x∇ ≤ x ≤ x4 for all x ∈ B

We end this section by presenting the notion of multi valued information [33].

Definition 3.21. A multi valued information system is a triple S = (U,A, {Va}a∈A),
where U is a non empty set of objects, A is a non empty set of attributes, and {Va}a∈A an
indexed set of values of attributes. Each attribute is a function a : U → P (Va)− {φ}.

4 Bi Operation Generalization

In practical situations, it is preferred to study the problems from more than one view-
point. Each one is represented by a relation or a function. Our aim in this article is to
construct a new generalization using two operations.
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Definition 4.1. Let B = (B,≤) be a complete atomic Boolean lattice and let ϕi : A(B) →
B(i = 1.2) be any mappings. For any element x ∈ B, let

x∇p = x∇1 ∨ x∇2 and x4p = x41 ∧ x42,

where for i = 1, 2

x∇i =
∨
{a ∈ A(B) : ϕi(a) ≤ x} and x4i =

∨
{a ∈ A(B) : ϕi(a) ∧ x 6= 0}

The elements x∇p and x4p are called the pairwise lower and the pairwise upper approx-
imation of x with respect to ϕ1 and ϕ2 respectively. Two elements x and y are equivalent
if they have the same pairwise upper and pairwise lower approximations. The resulting
equivalence classes are called pairwise rough sets.

Lemma 4.2. Let B = (B,≤) be a complete atomic Boolean lattice and let ϕi : A(B) →
B(i = 1.2) be any mappings. Then for all x ∈ B ,

(1) x∇p =
∨ {a ∈ A(B) : ϕ1(a) ≤ x or ϕ2(a) ≤ x}

(2) x4p =
∨ {a ∈ A(B) : ϕ1(a) ∧ x 6= 0 and ϕ2(a) ∧ x 6= 0}

Proof. x∇p = x∇1∨x∇2 = (
∨ {a∈ A(B) : ϕ1(a) ≤ x})∨

(
∨ {a ∈ A(B) : ϕ2(a) ≤ x})

=
∨

({a ∈ A(B) : ϕ1(a) ≤ x}⋃ {a ∈ A(B) : ϕ2(a) ≤ x}) ( by lemma 3.3 )
=
∨ {a ∈ A(B) : ϕ1(a) ≤ x or ϕ2(a) ≤ x}.

x4p = x41∧x42=(
∨ {b ∈ A(B) : ϕ1(b) ∧ x 6= 0})∧

(
∨ {a ∈ A(B) : ϕ2(a) ∧ x 6= 0}).

Let y =
∨ {b ∈ A(B) : ϕ1(b) ∧ x 6= 0}, so x4p = y ∧∨ {a ∈ A(B) : ϕ2(a) ∧ x 6= 0}=∨ {y ∧ a : a ∈ A(B) and ϕ2(a) ∧ x 6= 0} (by lemma 3.6)

=
∨ {∨ {b ∈ A(B) : ϕ1(b) ∧ x 6= 0} ∧ a : a ∈ A(B) and ϕ2(a) ∧ x 6= 0}}

=
∨ {∨ {b ∧ a : a, b ∈ A(B), ϕ1(b) ∧ x 6= 0 and ϕ2(a) ∧ x 6= 0}

=
∨ {a ∧ b : a, b ∈ A(B), ϕ1(b) ∧ x 6= 0 and ϕ2(a) ∧ x 6= 0}.

If a 6= b, then a ∧ b = 0 because a, b ∈ a(B). Hence a = b i.e. a ∧ b = a. Therefore
x4p =

∨ {a ∈ A(B) : ϕ1(a) ∧ x 6= 0 and ϕ2(a) ∧ x 6= 0}.

Lemma 4.3. Let B = (B,≤) be a complete atomic Boolean lattice and let ϕi : A(B) →
B(i = 1.2) be any mappings. Then for all a ∈ A(B) and x ∈ B

(a) a ≤ x∇p ⇐⇒ ϕ1(a) ≤ x or ϕ2(a) ≤ x

(b) a ≤ x4p ⇐⇒ ϕ1(a) ∧ x 6= 0 and ϕ2(a) ∧ x 6= 0.

Proof. (a) (=⇒) Suppose that a ≤ x∇p =
∨ {b ∈ A(B) : ϕ1(b) ≤ x or ϕ2(b) ≤ x}. If

ϕ1(a) 6≤ x and ϕ2(a) 6≤ x, then a ∧ x∇p = a ∧∨ {b ∈ A(B) : ϕ1(b) ≤ x or ϕ2(b) ≤ x}
=
∨ {a ∧ b : ϕ1(b) ≤ x or ϕ2(b) ≤ x}. Since ϕ1(a) 6≤ xand ϕ2(a) 6≤ x, then a 6= b.So

a ∧ b = 0 because a, b ∈ A(B). Hence a ∧ x∇p = 0. This implies that a ≤ (x∇p)′, a
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contradiction!
(⇐=) Suppose that ϕ1(a) ≤ x or ϕ2(a) ≤ x, then a ≤∨ {a ∈ A(B) : ϕ1(a) ≤ x or ϕ2(a) ≤ x}=x∇p

(b)(=⇒) suppose that a ≤ x4p= x41 ∧ x42, then a ≤ x41 and a ≤ x42. Hence
ϕ1(a) ∧ x 6= 0 and ϕ2(a) ∧ x 6= 0 (by Proposition 3.2(b))
(⇐=) If ϕ1(a) ∧ x 6= 0 and ϕ2(a) ∧ x 6= 0, then a ≤ x41 and a ≤ x42by Proposition
3.2(b)). Therefore a ≤ x41 ∧ x42=x4p.

Remark 2. The two operations suggested in this work are suitable also for other operators
based on binary relations. The following observation illustrate this idea.

If U is any universal set , then P (U) is a complete atomic boolean lattice whose
atoms are singleton subset of U . Let R1 and R1 be two general relations on U , we
define two mapping ϕ1 : A(B) −→ B : U −→ P (U), x −→ R1(x) and ϕ2 :
A(B) −→ B : U −→ P (U), x −→ R2(x) where Ri(x) = {y ∈ U : xRiy}(i=1,2).
Let X∇i = ∪{x ∈ U : Ri(x) ⊆ X} and X4i = ∪{x ∈ U : Ri(x) ∩X 6= φ} (i=1,2).
Then X∇p = X∇1 ∪ X∇2 = ∪{x ∈ U : R1(x) ⊆ X or R2(x) ⊆ X} and X4p =
X41 ∩X42 = ∪{x ∈ U : R1(x) ∩X 6= φ and R2(x) ∩X 6= φ}

Next we present some properties of the mappings ∇p : B −→ B and 4p : B −→ B.

Proposition 4.4. Let B = (B,≤) be a complete atomic Boolean lattice and let ϕi :
A(B) → B(i = 1.2) be any mappings. Then

(a) 04p=0 and 1∇
p

=1;
(b) x ≤ y implies x∇p ≤ y∇p and x4p ≤ y4p.

Proof. (a) 04p= 041 ∧ 042= 0∧ 0=0 (by Proposition 3.3(b)) and 1∇p= 1∇
1 ∨ 1∇

2
= 1∨ 1

=1 (by Proposition 3.3(a)).
(b)Assume that x ≤ y, then x∇1 ≤ y∇1 and x∇2 ≤ y∇2 (by Proposition 3.3(b)). There-
fore x∇p = x∇1 ∨ x∇2 ≤ y∇1 ∨ y∇2 = y∇p.Also x ≤ y implies that x41 ≤ y41and
x42 ≤ y42. Hence x4p = x41 ∧ x42 ≤ y41 ∧ y42 = y4p.

Proposition 4.5. LetB = (B,≤) be a complete atomic Boolean lattice and let ϕi :
A(B) → B(i = 1.2)be any mappings. Then the mappings ∇p : B −→ B and
4p : B −→ B are mutually dual.

Proof. We must show that (x4p)′ = (x′)∇p and (x∇p)′ = (x′)4p for all x ∈ B. Let
x ∈ B, since x4p = x41 ∧ x42 , then (x4p)′ = (x41 ∧ x42)′ =(x41)′ ∨ (x42)′ (
by Demorgans law).But (x41)′ = (x′)∇1 and (x42)′ = (x′)∇2 (by Proposition 3.20(a)).
So (x4p)′ = (x′)∇1 ∨ (x′)∇2 = (x′)∇p . Also (x∇p)′ = (x∇1 ∨ x∇2)′ = (x∇1)′ ∧
(x∇2)′ = (x′)41 ∧ (x′)42 = (x′)4p (by Proposition 3.20(a)).
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The following is an example of this idea.

Example 4.1 Let U = {0, a, b, c} and B = P (U). Let the mappings ϕi : A(B) → B

i = 1, 2 be defined as follows:

ϕ1(a) = {a, b}, ϕ1(b) = {b}, ϕ1(c) = {b, c}

and
ϕ2(a) = {a}, ϕ2(b) = {b, c}, ϕ2(c) = {a, c}.

The pairwise lower and upper approximations of elements of B can be described in Table
4.1. The diagrams of ∇p : B −→ B and 4p : B −→ B are in Figure 4.1

@
@

@

¡
¡

¡

@
@

@

¡
¡

¡

@
@

@

¡
¡

¡

bc

b

ac

a

φ

ab

abc

@
@

@

¡
¡

¡

@
@

@

¡
¡

¡

@
@

@

¡
¡

¡
ac

a

bc

b

φ

c

Figure 4.1

abc

x x∇p x4p

a a a
b b b
c φ c

{a,b} {a,b} {a,b,c}
{a,c} {a,c} {a,c}
{b,c} {b,c} {b,c}
{a,b,c} {a,b,c} {a,b,c}

Table 4.1: Pairwise lower and pairwise upper approximations

For all S ⊆ B, we denote S∇p = {x∇p : x ∈ S} and S4p = {x4p : x ∈ S}.

Proposition 4.6. Let B = (B,≤) be a complete atomic Boolean lattice and let ϕi :
A(B) → B(i = 1.2) be any mappings.

(a) For all S ⊆ B, ∨S4p = (∨S)4
p

.
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(b) For all S ⊆ B,∧S∇p = (∧S)∇
p

.
(c) (B4p,≤) is a complete lattice; 0 is the least element and 14P is the greatest element

of (B4p,≤).
(d) (B∇p,≤) is a complete lattice; 0∇P is the least element and 1 is the greatest element

of (B∇p,≤).
(e) The kernel θ∇P

= {(x, y) : x∇p = y∇p} of the map ∇P : B −→ B is a congruence
on the semilattice (B,∧) such that the θ∇P

-class of any x has a least element.
(f) The kernel θ4P

= {(x, y) : x4p = y4p} of the map 4P : B −→ B is a congruence
on the semilattice (B,∨) such that the θ4P

-class of any x has a greatest element.

Proof. (a) Let S ⊆ B, then (∨S)4p = (∨S)41∧(∨S)42 =∨S41∧∨S42 (by Proposition
3.19(b)). Let a = ∨S41, so (∨S)4p = a ∧ ∨S42 = a ∧ {∨x42 : x ∈ S} = ∨

x∈S
(a ∧

x42) (by Lemma 3.6). =∨
x∈S

(∨{x41 : x ∈ S} ∧ x42)=∨
x∈S

∨
x∈S

(x41 ∧ x42)=

∨
x∈S

(x41 ∧ x42) =∨{x41 ∧ x42 : x ∈ S} =∨{x4p : x ∈ S}=∨S4p.
Claim (b) can be proved similarly. Assertions (c) and (d) follow easily from (a), (b), and
Lemma 4.2(a).

(e) It can be easily seen that θ∇P is an equivalence on p. Let x1, x2, y1, y2 ∈ B and
assume that (x1, y1), (x2, y2) ∈ θ∇P then

(x1 ∧ x2)
∇P = x1

∇P ∧ x2
∇P = y1

∇P ∧ y2
∇P = (y1 ∧ y2)

∇P

.
Thus,θ∇P is a congruence on (B,∧).

It is clear that ∧[x]θ∇P
is the least element in the congruence class of x since

(∧{y : y∇P = x∇P })∇P = ∧{y∇P : y∇P = x∇P } = x∇P

Assertion (f) can be proved similarly.

Next we show that (B4p,≤) and (B∇p,≤) are dually order-isomorphic.

Proposition 4.7. (B∇p,≤) ∼= (B∇p,≥)

Proof. We show that x4p −→ (x′)∇p is the required dual order isomorphism. It is ob-
vious that x4p −→ (x′)∇p is onto (B∇p,≥). We show that x4p −→ (x′)∇p is order
embedding. Suppose that x4p ≤ y4p and (y′)∇p 6≤ (x′)∇p . So there exists a ∈ A(B)
such that a ≤ (y′)∇p and a 6≤ (x′)∇p i.e. ϕ1(a) ≤ y′ or ϕ2(a) ≤ y′ but ϕ1(a) 6≤ x′

and ϕ2(a) 6≤ x′. Since ϕ1(a) 6≤ x′ and ϕ2(a) 6≤ x′ are equivalent to ϕ1(a) ∧ x 6= 0 and
ϕ2(a) ∧ x 6= 0, we have ϕ1(a) ∧ y 6= 0 and ϕ2(a) ∧ y 6= 0 because x4p ≤ y4p. But this
means that ϕ1(a) 6≤ y′ and ϕ2(a) 6≤ y′, a contradiction! Hence (y′)∇p ≤ (x′)∇p .

On the other hand, assume that (y′)∇p ≤ (x′)∇p and x4p 6≤ y4p, so there exists
a ∈ A(B) such that a ≤ x4p and a 6≤ y4p. Hence ϕ1(a) ∧ x 6= 0 and ϕ2(a) ∧ x 6= 0



Bi Operation and Rough Sets Generalizations 11

but either ϕ1(a) ∧ y = 0 or ϕ2(a) ∧ y = 0 (by Lemma 4.3). This implies that either
ϕ1(a) ≤ y′ or ϕ2(a) ≤ y′ and thus a ≤ (y′)∇p . Since (y′)∇p ≤ (x′)∇p , then a ≤ (x′)∇p .
Therefore ϕ1(a) ≤ x′ or ϕ2(a) ≤ x′ which equivalent to ϕ1(a) ∧ x = 0 or ϕ2(a) ∧ x = 0
a contradiction! Consequently x4p ≤ y4p.

Next we study the properties of approximations more closely in cases when the corre-
sponding mappings ϕi : A(B) → B(i = 1.2) is extensive, symmetric or closed.

Extensiveness

Proposition 4.8. Let B = (B,≤) be a complete atomic Boolean lattice and let ϕi :
A(B) → B(i = 1.2) be any two extensive mappings. Then

(a) 0∇p = 0 and 14p = 1
(b) x∇p ≤ x ≤ x4p for all x ∈ B

Proof. (a) 0∇p = 0∇1 ∨ 0∇2 = 0 ∨ 0 = 0, and 14p = 141 ∧ 142 = 1 ∧ 1 = 1 (by
Proposition 3.20(a)). (b) Let x ∈ B, since x∇1 ≤ x ≤ x41 and x∇2 ≤ x ≤ x42 (by
Proposition 3.20(b)), then x∇1 ∨ x∇2 ≤ x ≤ x41 ∧ x42 i.e. x∇p ≤ x ≤ x4p.

In the following example we show that if ϕ1 and ϕ2 are not extensive mappings, then
the conditions (a) and (b) are not necessary.

Example 4.2 Let B = {0, a, b, c, d, e, f, 1} and let the order ≤ be defined as in
Figure 4.2.
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The set of atoms of a complete atomic Boolean lattice B = (B,≤) is {a, b, c}. Let the
mappings ϕi : A(B) → B(i = 1.2) be defined as follows,

ϕ1(a) = 0, ϕ1(b) = e, ϕ1(c) = f,

and
ϕ2(a) = d, ϕ2(b) = 0, ϕ2(c) = c.
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The mappings ϕ1 and ϕ2 are not extensive because a 6≤ 0 = ϕ1(a) and b 6≤ 0 = ϕ2(b).
We show that the conditions (a) and (b) in the previous proposition are not valid.

0∇p =
∨
{a ∈ A(B) : ϕ1(a) ≤ 0 or ϕ2(a) ≤ 0} = a ∨ b = d 6= 0.

14p =
∨
{a ∈ A(B) : ϕ1(a) ∧ 1 6= 0 and ϕ2(a) ∧ 1 6= 0} = c 6= 1.

Also d∇p = a and d4p = 0, hence d∇p ≤ d 6≤ d4p. Also e∇p = b ∨ c = f and e4p = c.
Hence d∇p 6≤ d 6≤ d4p.

Symmetry

In this article we assume that ϕ1 and ϕ2 are symmetric mappings. First we
show by example that the pair (∇

p

,4p ) is not a dual Galois connection.

Example 4.3 Let B = {0, a, b, c, d, e, f, 1} and let the order ≤ be defined as in
Figure 4.1. Let the mappings ϕi : A(B) → B(i = 1.2) be defined as follows,

ϕ1(a) = d, ϕ1(b) = e, ϕ1(c) = f,

and
ϕ2(a) = b, ϕ2(b) = f, ϕ2(c) = d,

The mappings ϕ1 and ϕ2 are symmetric.Let x=d then x∇p = a ∨ c = e and x∇
p4p =

b∨ c = f . Since f 6≤ d, then x∇
p4p 6≤ x. Hence (∇

p

,4p ) is not a dual Galois connection.

Proposition 4.9. Let B = (B,≤) be a chain and ϕi : A(B) → B(i = 1.2) be any two
symmetric mappings such that ϕ1 and ϕ2 are order preserving. Then the pair (∇

p

,4p ) is
a dual Galois connection on B.

Proof. The mapping ∇p : B −→ B and 4p : B −→ B are order preserving. We
show that x∇

p4p ≤ x ≤ x4
p∇p for all x ∈ B. Let a ∈ A(B). If a ≤ x∇

p4p, then
ϕ1(a) ∧ x∇

p 6= 0 and ϕ2(a) ∧ x∇
p 6= 0. This implies that there exist b1, b2 ∈ A(B)

such that b1≤ ϕ1(a) ∧ x∇
p

and b2≤ ϕ2(a) ∧ x∇
p

. So b1≤ ϕ1(a),b1≤ x∇
p

, b2≤ ϕ2(a)
and b2≤ x∇

p

. Since b1≤ x∇
p

, ϕ1(b1) ≤ x or ϕ2(b1) ≤ x. Since b2≤ x∇
p

, ϕ1(b2) ≤ x or
ϕ2(b2) ≤ x. Since ϕ1 and ϕ2 are symmetric, a ≤ ϕ1(b1) and a ≤ ϕ2(b2). If ϕ1(b1) ≤ x

or ϕ2(b2) ≤ x, then a ≤ x. Now suppose that ϕ1(b2) ≤ x and ϕ2(b1) ≤ x. Since
B is chain, then either b1 ≤ b2 or b2 ≤ b1. If b1 ≤ b2, then ϕ1(b1) ≤ ϕ1(b2) be-
cause ϕ1 is order preserving. Hence a ≤ ϕ1(b1) ≤ ϕ1(b2) ≤ x. If b2 ≤ b1, then
ϕ2(b2) ≤ ϕ2(b1) because ϕ2 is order preserving and hence a ≤ ϕ2(b2) ≤ ϕ2(b1) ≤ x.
Therefore {a ∈ A(B) : a ≤ x∇

p4p} ⊆ {a ∈ A(B) : a ≤ x}, which implies x∇
p4p ≤ x.

If we denote y = x′ then y∇
p4p ≤ y implies that x = y′ ≤ (y∇

p4p)′ = ((y∇p)′)∇p =
(y′)4p∇p = x4p∇p.
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Proposition 4.10. Let B = (B,≤) be a complete atomic Boolean lattice and let ϕi :
A(B) → B(i = 1.2) be two symmetric mappings. Then

(a) a4p = ϕ1(a)∧ϕ2(a) for all a ∈ A(B).
(b) x4p =

∨ {ϕ1(a) ∧ ϕ2(a) : a ∈ A(B) and a ≤ x} for any x ∈ B

Proof. (a) Let a ∈ A(B), then a4p =
∨ {b ∈ A(B) : ϕ1(b) ∧ a 6= 0 and ϕ2(b) ∧ a 6= 0}.

But ϕ1(b) ∧ a 6= 0 and ϕ2(a) ∧ x 6= 0 are equivalent to a ≤ ϕ1(b) and a ≤ ϕ2(b). Since
ϕ1 and ϕ2 are symmetric, then b ≤ ϕ1(a) and b ≤ ϕ2(a). So b ≤ ϕ1(a)∧ϕ2(a) and hence
a4p =

∨ {b ∈ A(B) : b ≤ ϕ1(a)∧ϕ2(a)}.

(b) x4p = (
∨
{a ∈ a(B) : a ≤ x})4p

=
∨
{a4p : a ∈ A(B) and a ≤ x}

=
∨
{ϕ1(a) ∧ ϕ2(a) : a ∈ A(B) and a ≤ x}.

Closeness

Here we studies the case in which ϕ1 and ϕ2 are closed mappings. First we present
the following observation.

Proposition 4.11. Let B = (B,≤) be a complete atomic Boolean lattice and let ϕi :
A(B) → B(i = 1.2) be any two closed mappings. Then for all x ∈ B,

(a) x4p4p ≤ x4p

(b) x∇p ≤ x∇p∇p

Proof. (a) Let a ∈ A(B), we show that

{a ∈ A(B) : a ≤ x4p4p} ⊆ {a ∈ A(B) : a ≤ x4p}.

Assume that a ≤ x4p4p , then ϕ1(a) ∧ x4p 6= 0 and ϕ2(a) ∧ x4p 6= 0. So there exists
b, c ∈ A(B) such that b ≤ ϕ1(a) , b ≤ x4p , c ≤ ϕ2(a) and c ≤ x4p . Hence ϕ1(b)∧x 6= 0,
ϕ2(b) ∧ x 6= 0, ϕ1(c) ∧ x 6= 0,and ϕ2(c) ∧ x 6= 0. Since ϕ1 is closed and b ≤ ϕ1(a),
then ϕ1(b) ≤ ϕ1(a). Also since ϕ2 is closed and c ≤ ϕ2(a), then ϕ2(c) ≤ ϕ2(a). But
ϕ1(b) ∧ x 6= 0 and ϕ1(b) ≤ ϕ1(a) implies ϕ1(a) ∧ x 6= 0. Also ϕ2(c) ∧ x 6= 0 and
ϕ2(c) ≤ ϕ2(a) implies ϕ2(a) ∧ x 6= 0. But ϕ1(a) ∧ x 6= 0 and ϕ2(a) ∧ x 6= 0 are
equivalent to a ≤ x4p . Therefore {a ∈ A(B) : a ≤ x4p4p} ⊆ {a ∈ A(B) : a ≤ x4p}.
Thus x4p4p =

∨ {a ∈ A(B) : a ≤ x4p4p} ≤ ∨ {a ∈ A(B) : a ≤ x4p} = x4p .

(b) Let us denote that y = x′. Then by (a) y4p4p ≤ y4p and x∇p = (y′)∇p =
(y4p)′ ≤ (y4p4p)′ = ((y4p)′)∇p = (y′)∇

p∇p

= x∇p∇p.
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In the following example we show that if ϕ1 and ϕ2 are not closed mappings, then the
conditions (a) and (b) are not necessary.

Example 4.4 Let B = {0, a, b, c, d, e, f, 1} and let the order ≤ be defined as in
Figure 4.1. Let the mappings ϕi : A(B) → B(i = 1.2) be defined as follows,

ϕ1(a) = b ϕ1(b) = e ϕ1(c) = f

and
ϕ2(a) = b ϕ2(b) = f ϕ2(c) = d

The mappings ϕ1 and ϕ2 are not closed because a ≤ e = ϕ1(b) but ϕ1(a) = b 6≤ e and c ≤
f = ϕ2(b) but ϕ2(c) = d 6≤ f . We show that conditions (a) and (b) in the previous proposi-
tion are not valid. Since e4p = b ∨ c = f and e4p4p = f4p = a ∨ b ∨ c = 1 6≤ f = e4p ,
then in general x4p4p 6≤ x4p . Also since d∇p = a ∨ c = e, d∇p∇p = e∇p = b and
e 6≤ b, then in general x∇p 6≤ x∇p∇p.

In the following proposition we study the case when the mappings ϕ1 and ϕ2 are ex-
tensive and closed.

Proposition 4.12. Let B = (B,≤) be a complete atomic Boolean lattice and let ϕi :
A(B) → B(i = 1.2) be any two extensive and closed mappings. Then

(a) The mapping 4p : B −→ B is a closure operator.
(b) The mapping ∇p : B −→ B is an interior operator.
(c) (B∇p,≤) and (B4p,≤) are distributive sublattices of (B,≤).

Proof. (a) The mapping 4p : B −→ B is extensive because ϕ1 and ϕ2 are extensive (by
Proposition 4.8(b)) , and it is order preserving (by Proposition 4.4(b)). Also, x4p4p ≤ x4p

by Proposition 4.11(a) and x4p ≤ x4p4p holds since ϕ1 and ϕ2 are extensive. Claim (b)
follows from Lemma 3.12 and Proposition 3.18(a). (c) Suppose that x∇

p

, y∇
p∈ B∇p.

Then x∇
p ∧ y∇

p

= (x ∧ y)∇
p

(by Proposition 3.19(c)), which implies that x∇
p ∧ y∇

p ∈
B∇p. Next we show that x∇

p ∨ y∇
p ∈ B∇p. It is obvious that x∇

p ≤ x∇
p ∨ y∇

p ∈ B∇p

and x∇
p

= x∇
p∇p

(by) ≤ (x∇
p ∨ y∇

p

)∇p. Similarly y∇
p ≤ (x∇

p ∨ y∇
p

)∇p. So (x∇
p ∨

y∇
p

)∇p is an upper bound of x∇
p

and y∇
p

. We show that it is a greatest upper bound.
Let z ∈ B be an upper bound of x∇

p

and y∇
p

, then x∇
p ≤ z and y∇

p ≤ z. Since ϕ1

and ϕ2 are extensive, (x∇
p ∨ y∇

p

)∇p ≤ x∇
p ∨ y∇

p ≤ z. Thus x∇
p ∨ y∇

p

= (x∇
p ∨

y∇
p

)∇p and therefore x∇
p ∨y∇

p ∈ B∇p. The other part can be proved analogously. Since
every sublattice of a distributive lattice is distributive, see [31] for example, (B∇p,≤) and
(B4p,≤) are distributive sublattices of (B,≤).

Remark 3. An expert system, also known as a knowledge based system, is a computer
program that contains some of the subject-specific knowledge, and contains the knowledge
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and analytical skills of one or more human experts. The most common form of expert sys-
tems is a program made up of a set of rules that analyzes information (usually supplied by
the user of the system) about a specific class of problems, as well as provides mathematical
analysis of the problem(s), and, depending upon its design, recommends a course of user
action in order to implement corrections. To construct a set of rules for a given data, it
is necessary to pass by a mathematical model. Rough set theory, Lattice theory, fuzzy set
theory, differential equations,· · · are examples for mathematical models. The present work
introduced a modification for rough set model, which in turn apply a progress in expert
systems.

The following example shows that the use of two operators minimizes the boundary
region and increase the accuracy.

Example 4.5 This example is a small form of multi-valued information table of a
file containing some persons U = {p1, p2, · · · , p6} applied for a job. It contains the
languages they speak and scientific degrees that they have. Some groups of them are
chosen and we must assess the accuracy of the decision. This is shown in table 4.2. We
have

(1) Measures of the accuracy of the decision with respect to language only.

(2) Measures of the accuracy of the decision with respect to scientific degrees only.

(3) Measures of the accuracy of the decision with respect to language and scientific
degrees.

Relationships among the objects (persons) from the set U are determined by their proper-
ties. Typically, these relationships have the form of binary relations. These relations are
referred to as information relations and they are determined by the problem we have. We
prefer persons who speak more languages and have more scientific degrees, so we choose
the subset relations.

Table 4.2:

Language Degree

p1 F, D Bs, Ms, PhD
p2 H, R Bs
p3 F, D, S Bs, Ms
p4 F Bs, Ms
p5 R Bs
p6 F,S Bs



16 Heba I. Mustafa et al.

We choose the subset relation R1 between the persons with respect to the attribute
languages and R2 with respect to the attribute degrees. So piR1pj iff Lanpi ⊆ lanpj and
piR2pj iff Degpi ⊆ Degpj . Then

R1 = {(p1, p1), (p1, p3), (p2, p2), (p3, p3), (p4, p4)(p4, p1), (p4, p3), (p4, p6), (p5, p5),

(p1, p3), (p6, p6), (p6, p3)},
R2 = {(p1, p1), (p2, p1), (p2, p2), (p2, p3), (p2, p4), (p2, p5), (p2, p6), (p3, p1), (p3, p3),

(p3, p4), (p4, p1), (p4, p3), (p4, p4), (p5, p5), (p5, p1), (p5, p2), (p5, p6), (p6, p6),

(p6, p1), (p6, p2), (p6, p5)}.

Since P (U) is a complete atomic boolean lattice whose atoms are singleton sub-
set of U , we define two mapping ϕ1 : A(B) −→ B : U −→ P (U), x −→ R1(x)
and ϕ2 : A(B) −→ B : U −→ P (U), x −→ R2(x), where ϕ1(pi) = R1(pi), and
ϕ2(pi) = R1(pi). So ϕ1(p1) = {p1, p3} ,ϕ1(p2) = {p2}, ϕ1(p3) = {p3}, ϕ1(p4) =
{p1, p3, p4, p6}, ϕ1(p5) = {p2, p5} and ϕ1(p6) = {p3, p6}. Also ϕ2(p1) = {p1},
ϕ2(p2) = U , ϕ2(p3) = {p1, p3, p4}, ϕ2(p4) = {p1, p3, p4}, ϕ2(p5) = {p1, p2, p5, p6}
and ϕ2(p6) = {p1, p2, p5.p6}.

We choose the group of persons X = {p2, p3, p5} and calculate lower, upper, pair-
wise lower and pairwise upper approximations of this set. We find that the accuracy with
respect to pairwise lower and pairwise upper approximations is higher than the accuracy
with respect to lower and upper approximations.

X∇p =
⋃ {x ∈ U : ϕ1(x) ⊆ X or ϕ2(x) ⊆ X}

X4p =
⋃ {x ∈ U : ϕ1(x) ∩X 6= φ and ϕ2(x) ∩X 6= φ}.

Hence X∇p = {p2, p3, p5} and X4p = {p2, p3, p4, p5, p6}. Therefore BND(X) =
X4p −X∇p = {p4, p6} and accuracy of X = cardX∇p/cardX4p = 3/5 . On the other
hand X∇1 = {p2, p3, p5} and X41 = U , so boundary of X , BND(X) = X41−X∇1 =
{p2, p3, p5} and accuracy of X with respect to R1 = cardX∇1/cardX41 = 3/6 =
1/2. Also X∇2 = φ and X42 = {p2, p3, p4, p5, p6}, so BND(X) = X42 − X∇2 =
{p2, p3, p4, p5, p6} and accuracy of X with respect to R1 = 0/5 = 0.

5 Conclusion

In expert systems and artificial intelligence, the input information are transformed to
logical statements connected by logical quantifiers. These sentences are connected to ob-
tain any required question. Lattice is the appropriate structure for such treatment. We
expect that the suggested concepts and method can help in the process of data bases and ex-
pert systems. In our future work we shall indicate the effect of our generalizations on such
studies. Our results are generalization of Jarvinen results and both are the same if ϕ1 = ϕ2.
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Using lower and upper approximation given in this work minimizes the boundary region
and decreases the uncertainty region so the decision makers may get more accurate results.
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