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Abstract: In this paper, we use the variational iteration technique tosuggest some iterative methods for solving the nonlinear equations
involving an auxiliary function. For appropriate and suitable choice of the auxiliary function,one can obtain a wide class of iterative
methods for solving the nonlinear equations, which is a novel aspect of this technique. Convergence analysis of the proposed method
is investigated. Several examples are given to illustrate the efficiency and implementation of the proposed new methods. Comparison
with other methods is also given. These new methods can be considered as alternative to the developed methods. This technique can be
used to suggest a wide class of new iterative methods for solving nonlinear equations.
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1 Introduction

Finding the solution of the nonlinear equationsf (x) = 0,
is one of the most important and challenging problems in
science and engineering applications. Various iterative
methods are being developed for finding the simple roots
of the nonlinear equationf (x) = 0, by using several
different techniques such as Taylor series, quadrature
formulas, homotopy perturbation method, variational
iteration technique and decomposition methods, see [1,2,
3,4,5,7,8,9,10,11,12,13,14,15,16,17,18].

It is well known one usually use Newton method for
finding the approximate solution of nonlinear equation,
which can be written as

xn+1 = xn−
f (xn)

f́ (xn)
, n= 0,1,2, · · · .

which has quadratic convergence, see [17]. To improve
the local order of convergence, many modified methods
have been proposed. See [1,2,3] and [11]. We use the
variational iteration technique to suggest and analyze
some new iterative methods for solving the nonlinear
equations, the origin of which can be traced back to
Inokuti et al [6]. However, it was He [4] who realized the

potential of this technique for solving a wide class of both
linear and nonlinear problems which arise in various
branches of pure and applied sciences. See also Noor and
Mohyud-Din [10] and the references therein. Essentially
using the idea and technique of He [4], Noor [10] and
Noor and Shah [12,16,17,18,?,?] has suggested and
analyzed some iterative methods for solving the nonlinear
equations using this technique. Now again we have used
this technique to suggest third order convergent iterative
methods free from higher-order derivatives. Several
examples are given to illustrate the efficiency and
performance of these new methods. Comparison with
other methods show that the proposed methods are robust
and perform better. These new methods can be considered
as alternative to the existing methods. The ideas and
technique of this paper may stimulate further research in
this area.

2 Iterative methods

In this section, we construct some new iterative methods
for solving nonlinear equations using the variational
iteration technique. We develop the main iteration scheme
involving the auxiliary function for finding the
approximate solution of nonlinear equation. Finite
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difference scheme is used to approximatef ′(yn) and
diversify the relation with better efficiency index.
Consider the nonlinear equation of the type

f (x) = 0, (1)

which can be written in the following equivalent form as:

x= H(x), (2)

where
H(x) = φ(x)+ [ f (φ(x))]g(x), (3)

whereg(x), is the arbitrary auxiliary function andλ is the
unknown Lagrange multiplier. The unknown Lagrange
multiplier is determined by using the optimality
condition. The functionφ(x) be an iteration function. We
observe that ifφ(x) = x, then scheme (3) reduces to the
relation suggested by Noor [7].

Using the optimality criteria, we obtain the value ofλ
as:

λ =−
φ ′(x)

f ′(φ(x))g(x)φ ′(x)+ f (φ(x))g′(x)
. (4)

From (3) and (4), we obtain

H(x) = φ(x)−
φ ′(x) f (φ(x))g(x)

f ′(φ(x))g(x)φ ′(x)+ f (φ(x))g′(x)
. (5)

Now combining (2) and (5), we obtain

x= H(x) = φ(x)−
φ ′(x) f (φ(x))g(x)

f ′(φ(x))g(x)φ ′(x)+ f (φ(x))g′(x)
.

(6)
This fixed point formulation enables us to suggest the
following iterative scheme as:
Algorithm 2.1. For a givenx0, find the approximation
solutionxn+1 by the following iterative scheme:

xn+1 = φ(xn)−
φ ′(xn) f (φ(xn))g(xn)

f ′(φ(xn))g(xn)φ ′(xn)+ f (φ(xn))g′(xn)
.

This is the main recurrence relation involving the iteration
function φ(xn) and the auxiliary functiong(x.) With
appropriate and suitable choice of the iteration function
and the auxiliary function, one can find a wide class of
iterative methods for solving the nonlinear equations and
related problems.

Let

φ(xn) = yn = xn−
f (xn)

f ′(xn)

Then Algorithm 2.1 reduces to the following form as:

Algorithm 2.2. For a givenx0, find the approximation

solutionxn+1 by the following iterative scheme:

xn+1 = yn−
y′n f (yn)g(xn)

f ′(yn)g(xn)y′n+ f (yn)g′(xn)
.

One can easily obtain

y′n =
f (xn) f ′′(xn)

f (xn)2 . (7)

Noor suggested the relation

f (yn) =
f (xn)

2 f ′′(xn)

2 f (xn)2 . (8)

Using (7) and (8) and replacing

f ′(yn) =
f (yn)− f (xn)

yn− xn
. (9)

in Algorithm 2.2, we obtain the following method free
from the higher-order derivatives.

Algorithm 2.3. For a givenx0, find the approximation
solutionxn+1 by the following iterative scheme:

xn+1 = yn−
2 f (yn) f (xn)g(xn)

2 f ′(xn)[ f (xn)− f (yn)]g(xn)+ f (xn)2g′(xn)
.

Algorithm 2.3 is the main iterative method, which is
the main motivation of this paper.

We now discuss the following some special cases for
some values ofg(xn).

Case I. Let g(x) = e−αxn. Then from Algorithm 2.2, we
obtain the following iterative method for solving the
nonlinear equations.

Algorithm 2.4. For a givenx0, find the approximation
solutionxn+1 by the following iterative scheme:

yn = xn−
f (xn)

f́ (xn)
,

xn+1 = yn−
2 f (yn) f (xn)

2 f ′(xn)[ f (xn)− f (yn)]−α f (xn)2
,n= 0,1,2· · · .

Case II. Let g(x) = e−α f (xn). Then, from Algorithm
2.3, we obtain the following iterative method for solving
the nonlinear equations.

Algorithm 2.5. For a givenx0, find the approximation
solutionxn+1 by the following iterative scheme:

yn = xn−
f (xn)

f́ (xn)
,

xn+1 = yn−
2 f (yn) f (xn)

f ′(xn)(2[ f (xn)− f (yn)]−α f (xn)2)
,n= 0,1,2, · · · .
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Case III. Let g(x) = e
α

f ′(xn) . Then, from Algorithm 2.3,
we obtain the following iterative method for solving the
nonlinear equations having unknown zeros of multiplicity.

Algorithm 2.6. For a givenx0, find the approximation
solutionxn+1 by the following iterative scheme:

yn = xn−
f (xn)

f́ (xn)
,

xn+1= yn−
f (yn) f (xn)

f ′(xn)[ f (xn)− f (yn)]+α f (yn)
,n= 0,1,2, · · · .

Case IV. Let g(x) = e
−α f (xn)

f ′(xn) . Then, from Algorithm
2.3, we obtain the following iterative method for solving
the nonlinear equations having unknown zeros of
multiplicity.
Algorithm 2.7. For a givenx0, find the approximation
solutionxn+1 by the following iterative scheme:

yn = xn−
f (xn)

f́ (xn)
,

xn+1 = yn−
2 f (yn) f (xn)

2 f ′(xn)[ f (xn)− f (yn)]−α f (xn)[ f (xn)−2 f (yn)]
.

Sign ofα, should be selected to make the denominator
largest in magnitude in above methods to obtain the good
results.

3 Convergence analysis

In this section, we consider the convergence criteria of the
main iterative scheme Algorithm 2.3 developed in section
2.

Theorem 1.Assume that the function f: D ⊂ R→ R has
a simple root r∈ D in an open interval inD . Let f(x) be
a smooth sufficiently in some neighborhood of root, then
Algorithm 2.3 has third order convergence.

Proof.Let r ba a simple root of the nonlinear equationf (x).
Since f is sufficiently differentiable. Expandingf (x) and
f́ (x) in Taylor’s series atr, we obtain

f (xn)= f́ (r)[en+c2e2
n+c3e3

n+c4e4
n+c5e5

n+c6e6
n+O(e7

n)].
(10)

and

f́ (xn) = f́ (r)[1+2c2en+3c3e2
n+4c4e3

n+5c5e4
n+6c6e5

n+O(e7
n)].

(11)

where

en = xn− r,ck =
f k(r)

k! f́ (r)
and k= 2,3, · · ·

Using (10) and (11), we get

yn = c2e2
n+2c33−2c2

2e3
n+(3c4−7c2c3+4c3

2)e
4
n+O(e5

n).
(12)

From (12), we obtain

f (yn) = f ′(r)(c2e2
n+2(c3− c2

2)e
3
n+(−3c4+7c2c3−5c3

2)e
4
n+O(e5

n)).

(13)
From(10) and (13), we get

f (yn) f (xn)g(xn) = f́ (r)[g(r)c2e3
n

+(2g(r)c3−g(r)c2
2+ c2g′(r))e4

n+O(e5
n)], (14)

and

f (xn)− f (yn) = f́ (r)[en+(−c3+2c2
2)e

3
n

−(2c4−7c2c3+5c3
2)e

4
n+O(e5

n) (15)

Using (11) and (14), we obtain

f́ (xn)[ f (xn)− f (yn)] = f ′(r)2[g(r)en+(g′(r)+2c2g(r))e2
n

+(1/2g′′(r)+2g(r)c3+2g(r)c2
2+2c2g

′(r))e3
n+O(e4

n)],
(16)

and

f́ (xn)[ f (xn)− f (yn)]g(xn)+ f (xn)g
′(xn) = f ′(r)2[(g(r)

+ f ′(r)g′(r)))en+(g′(r)+2c2 f ′(r)g(r)

+g′′(r)+ c2 f ′(r)g′(r))e2
n+O(e3

n)]. (17)

Now using (10) and (17), we get

2 f́ (xn)[ f (xn)− f (yn)]g(xn)+ f (xn)
2g′(xn) =

f ′(r)[2(g(r))en+(3g′(r)+4c2g(r))e2
n+(2g′′(r)

+4c3g(r)+4c2
2g(r)+6c2g

′(r))e3
n+O(e4

n)] (18)

Using (14) and (18), we obtain

2 f (yn) f (xn)g(xn)

2 f́ (xn)[ f (xn)− f (yn)]g(xn)+ f (xn)2g′(xn)
=

c2e2
n+

(

2c3−3c2
2− c2

2g′(r)
g(r)

)

e3
n+O(e4

n) (19)
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From (12) and (19), we get

xn+1 = r +

(

c2
2+

´g(r)
2g(r)

)

e3
n++O(e4

n) (20)

Finally, we get the error equation as

en+1 =

(

c2
2+

´g(r)
2g(r)

)

e3
n++O(e4

n) (21)

This shows that Algorithm 2.3 has at least third order
convergence. It is worth mentioning that all the methods
derived from this scheme are also of third order
convergence .

4 Numerical results

We now present some examples to illustrate the efficiency
of these new iterative methods (see Tables 4.1-4.5). We
compare the Newton method (NM) [18], Noor’s method
(NR) [9], Algorithm 2.4, Algorithm 2.5, Algorithm 2.6
and Algorithm 2.7, which are introduced here in this
article. We also note that these methods do not require the
computation of second derivative to carry out the
successive iterations. All computations are done using the
MAPLE using 60 digits floating point arithmetics (Digits:
=60). We will useε = 10−32. The following stopping
criteria are used for computer programs.

(i) |xn+1− xn| ≤ ε, (ii) | f (xn)| ≤ ε.

The computational order of convergencep approximated
for all the examples in Tables 4.1-4.6, (see [?]) by means
of

ρ =
ln(|xn+1− xn|/|xn− xn−1|)

ln(|xn− xn−1|/|xn−1− xn−2|)

We consider the following examples

f1(x) = sin2x− x2+1,

f2(x) = x2−e−x−3x+2.

f3(x) = (x−1)2−1,

f4(x) = xex2
− sin2x+3cosx+5,

f5(x) = ex2+7x−30−1.

Table 4.1 depicts the numerical results off1(x). We use
α = 1, α = 0.5, α = 0.25 andα = 0. for all methods by
using the initial guessx0 = 1. for the computer program.
Table 4.2 shows the numerical results off2(x). We use the
initial guessx0 = 2, for different values ofα. Table 4.3
shows the efficiency of the methods forf3(x). We use the
initial guess x0 = 3.5, for the computer program for
different values of α. Number of iterations and

Table 4.1 (Numerical Comparison forf1(x))

Method IT xn δ ρ

Forα = 1

NM 7 1.404491648 1.04e-50 2.00003

NR 7 1.404491648 0.00e-01 2.85765

Alg 2.4 4 1.404491648 0.00e-01 2.85988

Alg 2.5 4 1.404491648 0.00e-01 3.05759

Alg 2.6 5 1.404491648 0.00e-01 2.98064

Alg 2.7 5 1.404491648 0.00e-01 2.98355

Forα = 0.5

NM 7 1.404491648 1.04e-50 2.00003

NR 7 1.404491648 0.00e-01 2.85765

Alg 2.4 4 1.404491648 4.07e-26 3.09088

Alg 2.5 4 1.404491648 0.00e-01 2.99759

Alg 2.6 5 1.404491648 0.00e-01 2.98064

Alg 2.7 5 1.404491648 1.04e-50 3.00055

For α = 0.25

NM 7 1.404491648 1.04e-50 2.00003

NR 7 1.404491648 0.00e-01 2.85765

Alg 2.4 4 1.404491648 0.00e-01 2.95988

Alg 2.5 4 1.404491648 0.00e-01 3.00959

Alg 2.6 5 1.404491648 0.00e-01 2.98064

Alg 2.7 5 1.404491648 0.00e-01 2.98955
For α = 0

NM 7 1.404491648 1.04e-50 2.00003

NR 7 1.404491648 0.00e01 2.85765

Alg 2.4 5 1.404491648 0.00e-01 2.99988

Alg 2.5 4 1.404491648 1.26e-26 3.00859

Alg 2.6 5 1.404491648 0.00e-01 2.98064

Alg 2.7 5 1.404491648 1.06e-44 2.99965
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Table 4.2 (Numerical Comparison forf2(x))

Method IT xn δ ρ

Forα = 1

NM 6 0.257530285 9.10e-28 2.00050

NR 5 0.257530285 1.10e-25 2.90051

Alg 2.2 4 0.257530285 1.06e-11 2.876988

Alg 2.3 5 0.257530285 6.13e-14 2.99989

Alg 2.4 4 0.257530285 9.55e-18 2.99964

Alg 2.5 4 0.257530285 3.04e-22 3.00000

Forα = 0.5

NM 6 0.257530285 9.10e-28 2.00050

NR 5 0.257530285 1.10e-25 2.90051

Alg 2.2 4 0.257530285 4.00e-13 2.85988

Alg 2.3 5 0.257530285 3.03e-14 2.85759

Alg 2.4 4 0.257530285 5.11e-18 .98064

Alg 2.5 4 0.257530285 4.44e-18 2.98355

Forα = 0.25

NM 6 0.257530285 9.10e-28 2.00050

NR 5 0.257530285 1.10e-25 2.90051

Alg 2.2 4 0.257530285 1.03e-33 2.85988

Alg 2.3 4 0.257530285 3.00e-24 2.85759

Alg 2.4 4 0.257530285 2.50e-22 .98064

Alg 2.5 4 0.257530285 6.07e-23 2.98355

Forα = 0

NM 6 0.257530285 9.10e-28 2.00050

NR 5 0.257530285 1.10e-25 2.90051

Alg 2.2 4 0.257530285 2.00e-21 2.85988

Alg 2.3 4 0.257530285 1.08e-22 2.85759

Alg 2.4 4 0.257530285 1.03e-22 .98064

Alg 2.5 4 0.257530285 2.07e-22 2.98355

Table 4.3 (Numerical Comparison forf3(x))

Method IT xn δ ρ

For α = 1

NM 7 2.000000000 1.04e-50 2.00003

NR 7 2.000000000 0.00e-01 2.85765

Alg 2.2 4 2.000000000 1.44e-13 3.00000

Alg 2.3 4 2.000000000 1.00e-14 2.99999

Alg 2.4 6 2.000000000 4.22e-25 2.9889

Alg 2.5 6 2.000000000 6.23e-33 3.00355

For α = 0.5

NM 7 2.000000000 1.04e-50 2.00003

NR 7 2.000000000 0.00e-01 2.85765

Alg 2.2 5 2.000000000 0.00e-01 3.99988

Alg 2.3 5 2.000000000 4.06e-21 2.99999

Alg 2.4 6 2.000000000 9.22e-21 2.99994

Alg 2.5 5 2.000000000 5.03e-11 3.00355

Forα = 0.25

NM 7 2.000000000 1.04e-50 2.00003

NR 7 2.000000000 0.00e-01 2.85765

Alg 2.2 5 2.000000000 0.00e-01 3.99988

Alg 2.3 5 2.000000000 4.16e-23 2.99999

Alg 2.4 5 2.000000000 7.22e-19 2.99994

Alg 2.5 6 2.000000000 5.33e-17 3.00355

For α = 0

NM 7 2.000000000 1.04e-50 2.00003

NR 7 2.000000000 0.00e-01 3.00065

Alg 2.2 5 2.000000000 8.00e-21 3.00000

Alg 2.3 5 2.000000000 3.33e-31 2.99999

Alg 2.4 5 2.000000000 2.23e-41 3.00064

Alg 2.5 5 2.000000000 1.07e-31 3.00955
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Table 4.4 (Numerical Comparison forf4(x))

Method IT xn δ ρ

Forα = 1

NM 9 -1.20764782 1.04e-50 2.00003

NR 7 -1.20764782 0.00e-01 3.00022

Alg 2.2 6 -1.20764782 0.00e-01 2.99988

Alg 2.3 6 -1.20764782 0.00e-01 2.99959

Alg 2.4 7 -1.20764782 0.00e-01 3.00064

Alg 2.5 6 -1.20764782 0.00e-01 3.00355

Forα = 0.5

NM 9 -1.20764782 1.04e-50 2.00003

NR 7 -1.20764782 0.00e-01 3.00022

Alg 2.2 6 -1.20764782 0.00e-01 2.85988

Alg 2.3 6 -1.20764782 0.00e-01 3.00759

Alg 2.4 7 -1.20764782 0.00e-01 2.98064

Alg 2.5 6 -1.20764782 0.00e-01 2.98355

Forα = 0.25

NM 9 -1.20764782 1.04e-50 2.00003

NR 7 -1.20764782 0.00e-01 3.00022

Alg 2.2 6 -1.20764782 0.00e-01 2.99988

Alg 2.3 6 -1.20764782 0.00e-01 3.00009

Alg 2.4 7 -1.20764782 0.00e-01 2.98994

Alg 2.5 6 -1.20764782 0.00e-01 2.99955

Forα = 0

NM 9 -1.20764782 1.04e-50 2.00003

NR 7 -1.20764782 0.00e-01 3.00022

Alg 2.2 6 -1.20764782 0.00e-01 2.85988

Alg 2.3 6 -1.20764782 0.00e-01 2.99999

Alg 2.4 6 -1.20764782 0.00e-01 2.98984

Alg 2.5 5 -1.20764782 0.00e-01 3.00000

Table 4.5 (Numerical Comparison forf5(x))

Method IT xn δ ρ

Forα = 1

NM 13 3.000000000 1.04e-50 2.00003

NR 11 3.000000000 0.00e-01 3.00005

Alg 2.2 8 3.000000000 1.33e-12 3.11988

Alg 2.3 8 3.000000000 6.03e-14 3.00759

Alg 2.4 11 3.000000000 4.22e-24 2.99064

Alg 2.5 10 3.000000000 6.14e-12 2.98355

Forα = 0.5

NM 13 3.000000000 1.04e-50 2.00003

NR 11 3.000000000 0.00e-01 3.00005

Alg 2.2 8 3.000000000 3.33e-13 2.85988

Alg 2.3 8 3.000000000 4.65e-15 2.85759

Alg 2.4 10 3.000000000 6.44e-11 .98064

Alg 2.5 10 3.000000000 9.01e-14 2.98355

Forα = 0.25

NM 13 3.000000000 1.04e-50 2.00003

NR 11 3.000000000 0.00e-01 3.00005

Alg2.2 8 3.000000000 4.99e-14 2.85988

Alg 2.3 8 3.000000000 1.03e-14 2.85759

Alg 2.4 10 3.000000000 3.05e-14 2.99994

Alg 2.5 10 3.000000000 4.29e-16 2.98355
Forα = 0

NM 13 3.000000000 1.04e-50 2.00003

NR 11 3.000000000 0.00e-01 3.00005

Alg 2.2 8 3.000000000 3.99e-15 3.00000

Alg 2.3 8 3.000000000 3.67e-15 3.00059

Alg 2.4 8 3.000000000 3.77e-15 3.00064

Alg 2.5 8 3.000000000 3.98e-22 3.00055
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computational order of convergence gives us an idea
about the better performance of the newly developed
methods. Table 4.4 shows the efficiency of the methods
for example f4(x). We use the initial guessx0 = −2,
α = 1, α = 0.5, α = 0.25 andα = 0. for all methods.
Number of iterations and computational order of
convergence give us an idea about the better performance
of the new methods. In Table 4.5, the numerical results
for examplef5(x). are described. We use the initial guess
x0 = 3.5 for the computer program for different values of
α. We observe that all the newly derived methods
approach to the approximate solution after equal or less
number of iterations and the computational order of
convergence can also be observed from the Table.

5 Conclusion

In this work, we have presented some third order
convergent methods for solving nonlinear equations,
which are free from higher-order derivatives. These
methods are compared with Newton method and the
proposed methods have been observed to have at least
better performance. If we consider the definition of
efficiency index [17] as p

1
m where p is the order of

convergence of the method and m is the number of
functional evaluations per iteration required by the
method, we have that all of the methods obtained have the
efficiency index equal to 3

1
3 ≈ 1.442, which is better than

the one of Newton method 2
1
2 ≈ 1.414. The presented

approach can also be applied further to obtain higher
order convergent methods for solving nonlinear
equations.
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