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Abstract: This paper describes the Bayesian inference and prediction of the generalized Pareto (GP) distribution for progressive first-
failure censored data. We consider the Bayesian inference under a squared error loss function. We propose to apply Gibbs sampling
procedure to draw Markov Chian Monte Carlo (MCMC) samples, and theyhave in turn, been used to compute the Bayes estimates with
the help of importance sampling technique. We have performed a simulationstudy in order to compare the proposed Bayes estimators
with the maximum likelihood estimators. We further consider two sample Bayesprediction to predicting future order statistics and
upper record values from generalized Pareto (GP) distribution based on progressive first-failure censored data. The predictive densities
are obtained and used to determine prediction intervals for unobserved order statistics and upper record values. A simulated data set is
used to illustrate the results derived.

Keywords: Generalized Pareto distribution, Progressive first-failure censored sample, Bayesian estimations, Gibbs sampling, Markov
Chain Monte Carlo, Posterior predictive density.

1 Introduction

Censoring is common in life-distribution work because of time limits and other restrictions on data collection. Censoring
occurs when exact lifetimes are known only for a portion of the individuals or units under study, while for the remainder
of the lifetimes information on them is partial. There are several types of censored tests. One of the most common
censored test is type II censoring. It is noted that one can use type II censoring for saving time and money. However,
when the lifetimes of products are very high, the experimental time of a type II censoring life test can be still too long.
A generalization of type II censoring is progressive type IIcensoring, which is useful when the loss of live test units at
points other than the termination point is unavoidable. Recently, the type II progressively censoring scheme has received
considerable interest among the statisticians. See for example, Kundu [1] and Raqab et al. [2]. For the theory methods and
applications of progressive censoring, one can refer to themonograph by Balakrishnan and Aggarwala [3] and the recent
survey paper by Balakrishnan [4].

Johnson [5] described a life test in which the experimenter might decide to group the test units into several sets, each
as an assembly of test units, and then run all the test units simultaneously until occurrence the first failure in each group.
Such a censoring scheme is called a first-failure censoring scheme. Jun et al. [6] discussed a sampling plan for a bearing
manufacturer. The bearing test engineer decided to save test time by testing 50 bearings in sets of 10 each. The first-
failure times from each group were observed. Wu et al. [7] andWu and Yu [8] obtained maximum likelihood estimates
(MLEs), exact confidence intervals and exact confidence regions for the parameters of the Gompertz and Burr type XII
distributions based on first-failure censored sampling, respectively. If an experimenter desires to remove some sets of test
units before observing the first failures in these sets this life test plan is called a progressive first-failure censoring scheme
which recently introduced by Wu and Kuş [9].
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In many practical problems of statistics, one wishes to use the results of previous data to predict a future observation
from the same population. One way to do this is to construct aninterval which will contain the future observation with
a specified probability. This interval is called a prediction interval. Prediction has been applied in medicine, engineering,
business, and other areas as well. Hahn and Meeker [10] have recently discussed the usefulness of constructing prediction
intervals. Bayesian prediction bounds for future observations based on certain distributions have been discussed by several
authors. Bayesian prediction bounds for observables having the Burr type XII distribution were obtained by Nigm [11],
AL-Hussaini and Jaheen ([12],[13]), and Ali Mousa and Jaheen ([14],[15]). Burr type X distribution described by Jaheen
and AL-Matrafi [16]. Lomax distribution described by Abd Ellah ([17],[18]).

Recently, Alamm et al. [19] obtained Bayesian prediction intervals for future order statistics from the generalized
exponential distribution. Kundu and Howlader [20] studiedBayesian inference and prediction of inverse Weibull
distribution for type II censored data. Ahmadi et al. [21] considered the Bayesian prediction of order statistics basedon
k-record values from exponential distribution. Ahmadi andMirMostafaee [22] obtained prediction intervals for order
statistics as well as for the mean life time from a future sample based on observed usual records from an exponential
distribution. Ali Mousa and Al-Sagheer [23] discussed the prediction problems for the Rayleigh based on progressively
type II censored data.

Arandom variableX is said to have generalized Pareto (GP) distribution, if itsprobability density function (pdf) is
given by

f(ζ ,µ ,σ) =
1
σ

(

1+ζ
x−µ

σ

)−(1/ζ+1)

whereµ ,ζ ∈ R andσ ∈ (0,+∞). For convenience, we reparametrized this distribution by defining σ/ζ = β ,1/ζ = α
andµ = 0. Therefore,

f (x) = αβ α(x+β )−(α+1), x > 0,α,β > 0. (1)

The cumulative distribution function (cdf) is defined by

F(x) = 1−β α(x+β )−α , x > 0,α,β > 0, (2)

hereα andβ are the shape and scale parameters, respectively. It is alsowell known that this distribution has decreasing
failure rate property. This distribution is also known as Pareto distribution of type II or Lomax distribution. This
distribution has been shown to be useful for modeling and analizing the life time data in medical and biological sciences,
engineering, etc. So, it has been received the greatest attention from theoretical and applied statisticians primarily due to
its use in reliability and lifetesting studies. Many statistical methodes have been developed for this distribution, for a
review of Pareto distribution of type II or Lomax distribution see Habibullh and Ahsanullah [24], Upadhyay and
Peshwani [25] and Abd Ellah ([17],[18]) and references of them. Agreat deal of research has been done on estimating the
parameters of a Lomax using both classical and Bayesian techniques.

In this paper first we consider the Bayesian inference of the shape and scale parameters for progressive first-failure
censored data when both parameters are unknown. We assumed that the shape parameterα and the scale parameterβ
have the gamma prior and they are independently distributed. As expected in this case also, the Bayes estimates can not
be obtained in closed form. We propose to use the Gibbs sampling procedure to generate MCMC samples, and then using
the importance sampling methodology, we obtain the Bayes estimates of the unknown parameters. We perform some
simulation experiments to see the behavior of the proposed Bayes estimators and compare their performances with the
maximum likelihood estimators (MLEs).

Another important problem in life-testing experiments namely the prediction of unknown observables belonging to
a future sample, based on the current available sample, known in the literature as the informative sample. For different
application areas and for references, the readers are referred to AL-Hussaini [26]. In this paper we consider the prediction
problem in terms of the estimation of the posterior predictive density of a future observation for two-sample prediction.
We also construct predictive interval for a future observation using Gibbs sampling procedure. An illustrative example has
been provided.

The rest of this paper is organized as follows: In Section 2, we describe the formulation of a progressive first-failure
censoring scheme. In Section 3, we cover Bayes estimates of parameters using MCMC technique with the help of
importance sampling technique. Monte Carlo simulation results are presented in Section 4. Bayes prediction for future
order statistic and upper record values are provided in Section 5. and Section 6, respectively. Data analysis is provided in
Section 7, and finally we conclude the paper in Section 8.

2 A progressive first-failure censoring scheme

In this section, first-failure censoring is combined with progressive censoring as in Wu and Kuş [9]. Suppose thatn
independent groups withk items within each group are put on a life test,R1 groups and the group in which the first failure is
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observed are randomly removed from the test as soon as the first failure (sayXR
1:m:n:k) has occurred,R2 groups and the group

in which the second first failure is observed are randomly removed from the test when the second failure (sayXR
2:m:n:k)

has occurred, and finallyRm (m ≤ n) groups and the group in which them− th first failure is observed are randomly
removed from the test as soon as them− th failure (sayXR

m:m:n:k) has occurred. TheXR
1:m:n:k < XR

2:m:n:k < ... < XR
m:m:n:k are

called progressively first-failure censored order statistics with the progressive censoring schemeR = (R1,R2, ...,Rm). It is
clear thatm is number of the first-failure observed(1< m ≤ n) andn = m+R1+R2+ ...+Rm. If the failure times of the
n× k items originally in the test are from a continuous population with distribution functionF(x) and probability density
function f (x), the joint probability density function forXR

1:m:n:k, XR
2:m:n:k, ..., XR

m:m:n:k is given by

f1,2,...,m(x
R
1:m:n:k,x

R
2:m:n:k, ...,x

R
m:m:n:k) = Akm

m

∏
j=1

f (xR
j:m:n:k)(1−F(xR

j:m:n:k))
k(R j+1)−1

(3)

0< xR
1:m:n:k < xR

2:m:n:k < ... < xR
m:m:n:k < ∞, (4)

where

A = n(n−R1−1)(n−R1−R2−1)...(n−R1−R2− ...Rm−1−m+1). (5)

Special cases
It is clear from(3) that the progressive first-failure censored scheme containing the following censoring schemes as

special cases:

1.The first-failure censored scheme whenR = (0,0, ...,0).
2.The progressive type II censored order statistics ifk = 1.
3.Usually type II censored order statistics whenk = 1 andR = (0,0, ...,n−m).
4.The complete sample case whenk = 1 andR = (0,0, ...,0).

Also, It should be noted thatXR
1;m,n,k,X

R
2;m,n,k, ...,X

R
m;m,n,k can be viewed as a progressive type II censored sample

from a population with distribution function 1− (1−F(x))k. For this reason, results for progressive type II censored
order statistics can be extend to progressive first-failurecensored order statistics easily. Also, the progressive first-failure
censored plan has advantages in terms of reducing the test time, in which more items are used, but onlym of n× k items
are failures.

3 Bayes estimation

In this section, we present the posterior densities of the parametersα andβ based on progressively first-failure censored
data and then obtain the corresponding Bayes estimates of these parameters. To obtain the joint posterior density ofα and
β , we assume thatα andβ are independently distributed as gamma(a,b) and gamma(c,d) priors, respectively. Therefore,
the prior density functions ofα andβ becomes

π1(α|a,b) =







ba

Γ (a)
αa−1e−bα if α > 0

0 if α ≤ 0,
(6)

π2(β |c,d) =







dc

Γ (c)
β c−1e−dβ if β > 0

0 if β ≤ 0,
(7)

The gamma parametersa,b,c andd are all assumed to be positive. Whena = b = 0 (c = d = 0), we obtain the non-
informative priors ofα andβ .

Let XR
i:m:n:k, i = 1,2, ...,m, be the progressively first-failure censored order statistics from GP(α,β ) the distribution of

reparametrized GP, with censoringR. From(3), the likelihood function is given by

ℓ(data|α,β ) = Akmαm
m

∏
i=1

β αk(Ri+1)(xi +β )−[αk(Ri+1)+1], (8)

whereA is defined in(5) andXi is used instead ofXR
i:m:n:k.
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The joint posterior density function ofα andβ given the data is given by

π∗(α,β |data) =
ℓ(data|α,β )π1(α|a,b)π2(β |c,d)

∫ ∞
0

∫ ∞
0 ℓ(data|α,β )π1(α|a,b)π2(β |c,d)dαdβ

. (9)

Therefore, the posterior density function ofα andβ given the data can be written as

π∗(α,β |data) ∝ αm+a−1β c−1e−dβ

[

m

∏
i=1

β−αk (xi +β )−1

]

×exp

[

−α(b− k
m

∑
i=1

Ri logβ + k
m

∑
i=1

(Ri +1) log(xi +β ))

]

(10)

The posterior density(10) can be rewritten as

π∗(α,β |data) ∝ g1(α|β ,data)g2(β |data)h(α,β |data), (11)

here,g1(α|β ,data) is a gamma density function with the shape and scale parameters as (m+ a) andb− k
m
∑

i=1
Ri logβ +

k
m
∑

i=1
(Ri +1) log(xi +β ), respectively,g2(β |data) is a proper density function given by

g2(β |data) ∝
β c−1e−dβ

(

b− k
m
∑

i=1
Ri logβ + k

m
∑

i=1
(Ri +1) log(xi +β )

)m+a . (12)

Moreover

h(α,β |data) =
m

∏
i=1

β αk (xi +β )−1 . (13)

Therefore, the Bayes estimate of any function ofα andβ , sayg(α,β ) under the squared error loss function is

gB(α,β ) =
∫ ∞

0

∫ ∞
0 g(α,β )g1(α|β ,data)g2(β |data)h(α,β |data)dαdβ
∫ ∞

0

∫ ∞
0 g1(α|β ,data)g2(β |data)h(α,β |data)dαdβ

. (14)

It is not possible to compute(14) analytically. We propose to approximate(14) by using importance sampling technique
as suggested by Chen and Shao [27]. The details are explainedbelow.

3.1 Importance sampling

Importance sampling is a useful technique for estimations,now we would like to provide the importance sampling
procedure to compute the Bayes estimates for parameters of GP(α,β ) the distribution of reparametrized GP, and any
function of the parameters sayg(α,β ) = θ .

As mentioned previously thatg1(α|β ,data) is a gamma density and, therefore, samples ofα can be easily generated
using any gamma generating routine. However, in our case, the proper density function ofβ equation(12) cannot be
reduced analytically to well known distributions and therefore it is not possible to sample directly by standard methods,
but the plot of it (see Figure 1) show that it is similar to normal distribution. So to generate random numbers from
this distribution, we use the Metropolis-Hastings method with normal proposal distribution. Using Metropolis-Hastings
method, simulation based consistent estimate ofE(g(α,β )) = E(θ) can be obtained using Algorithm 1 as follows

Algorithm 1.

Step 1.Start with an (α(0),β (0)).
Step 2.Sett = 1.
Step 3.Generateβ (t) from g2(.|data) using the method developed by Metropolis et al.[28] with the N(β (t−1),σ2) proposal

distribution.

Whereσ2 is the variance ofβ obtained using variance-covariance matrix.
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Step 4.Generateα(t) from g1(.|β (t),data).
Step 5.Computeβ (t) andα(t).
Step 6.Sett = t +1.
Step 7.Repeat Step 3−6 N times and obtain(α1,β1),(α2,β2),...,(αN ,βN).
Step 8.An approximate Bayes estimate ofθ under a squared error loss function can be obtained as

ĝ(α,β ) = θ̂ =

1
N −M

N
∑

i=M+1
θih(αi,βi|data)

1
N −M

N
∑

i=M+1
h(αi,βi|data)

.

whereM is burn-in.
Step 9.Obtain the posterior variance ofθ = g(α,β ) as

V̂ (α,β |data) =

1
N −M

N
∑

i=M+1
(θi − θ̂)2h(αi,βi|data)

1
N −M

N
∑

i=M+1
h(αi,βi|data)

.

Fig. 1: Posterior density function ofβ

4 Monte Carlo simulations

In order to compare the proposed Bayes estimators with the MLEs, we simulated 1000 progressively first-failure censored
samples from a GP(α,β ) the distribution of reparametrized GP. The samples were simulated by using the algorithm
described in Balakrishnan and Sandhu (1995). We used a different sample of sizes(n), different effective sample of
sizes(m), differentk (k = 1,4), different hyperparameters(a,b,c,d), and different of sampling schemes (i.e., differentRi
values).We used two sets of parameter valuesα = 0.22, β = 1.5 andα = 0.5, β = 2.2, mainly to compare the MLEs and
different Bayes estimators and also to explore their effects on different parameter values. First, we used the noninformative
gamma priors for both the parameters, that is, when the hyperparameters are 0. We call it prior 0:a = b = c = d = 0. Note
that as the hyperparameters go to 0, the prior density becomes inversely proportional to its argument and also becomes
improper. This density is commonly used as an improper priorfor parameters in the range of 0 to infinity, and this prior is
not specifically related to the gamma density. For computingBayes estimators, other than prior 0, we also used informative
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prior, including prior 1,a = 1, b = 1, c = 3 andd = 2. In two cases, we used the squared error loss function to compute
the Bayes estimates. We also computed the Bayes estimates based on 10,000 MCMC samples and discard the first 1000
values as ‘burn-in’

It is clear from Tables 1 and 2 that the proposed Bayes estimators perform very well for differentn andm. As expected,
the Bayes estimators based on informative prior perform much better than the Bayes estimators based on noninformative
prior in terms of biases, MSEs. Also the Bayes estimators based on noninformative prior and informative prior perform
much better than the MLEs in terms of biases, MSEs.

Table 1. Average values of the different estimators and the corresponding MSEs
it in parentheses whenα = 0.22 andβ = 1.5.

k n m Scheme MLE Bayes (proir 0) Bayes (prior 1)
α β α β α β

1 30 20 (10,190) 0.2327 1.8364 0.2248 1.7703 0.2349 1.6902
(0.0043) (0.4508) (0.0038) (0.3423) (0.0032) (0.1263)

(50,101,50) 0.2366 1.8022 0.2244 1.8064 0.2336 1.6915
(0.0052) (0.4641) (0.0038) (0.3943) (0.0033) (0.1296)

(190,10) 0.2338 1.8074 0.2206 1.8346 0.2289 1.7032
(0.0057) (0.4794) (0.0039) (0.3999) (0.0033) (0.1298)

40 20 (20,190) 0.2373 1.7935 0.2269 1.7971 0.2375 1.7083
(0.0042) (0.4408) (0.0038) (0.3403) (0.0031) (0.1257)

(50,102,50) 0.2413 1.7007 0.2343 1.8077 0.2397 1.6879
(0.0045) (0.4723) (0.0040) (0.3592) (0.0035) (0.1262)

(190,20) 0.2526 1.7145 0.2392 1.7093 0.2408 1.7214
(0.0050) (0.4837) (0.0045) (0.3933) (0.0036) (0.1283)

40 30 (10,290) 0.2290 1.8481 0.2214 1.7198 0.2308 1.6594
(0.0030) (0.4256) (0.0029) (0.3346) (0.0022) (0.1208)

(100,101,100) 0.2309 1.7627 0.2220 1.7353 0.2288 1.7083
(0.0031) (0.4313) (0.0030) (0.3549) (0.0023) (0.1208)

(290,10) 0.2367 1.7707 0.2291 1.8558 0.2338 1.7060
(0.0033) (0.4088) (0.0030) (0.3732) (0.0023) (0.1401)

4 30 20 (10,190) 0.2569 1.7629 0.2106 1.6223 0.1959 1.5548
(0.0025) (0.3321) (0.0023) (0.3176) (0.0021) (0.1114)

(50,101,50) 0.2511 1.6563 0.2286 1.4449 0.2082 1.4972
(0.0026) (0.3229) (0.0023) (0.3223) (0.0021) (0.1205)

(190,10) 0.2767 1.6585 0.1974 1.5366 0.2094 1.6022
(0.0028) (0.3342) (0.0024) (0.3467) (0.0022) (0.1228)

40 20 (20,190) 0.2614 1.5897 0.1921 1.5533 0.2034 1.5850
(0.0022) (0.3198) (0.0021) (0.2963) (0.0020) (0.1012)

(50,102,50) 0.2545 1.5439 0.1868 1.5385 0.2094 1.6022
(0.0022) (0.3226) (0.0021) (0.2967) (0.0021) (0.1068)

(190,20) 0.2852 1.5232 0.2196 1.4405 0.2099 1.5681
(0.0023) (0.3325) (0.0022) (0.2975) (0.0021) (0.1116)

40 30 (10,290) 0.2567 1.5791 0.2272 1.5669 0.2066 1.5768
(0.0019) (0.2664) (0.0018) (0.2519) (0.0017) (0.0994)

(100,101,100) 0.2409 1.6295 0.2117 1.5873 0.1901 1.5849
(0.0019) (0.2666) (0.0018) (0.2598) (0.0017) (0.0996)

(290,10) 0.2587 1.6234 0.2059 1.5227 0.2164 1.5517
(0.0020) (0.2668) (0.0019) (0.2615) (0.0018) (0.0997)
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Table 2. Average values of the different estimators and the corresponding MSEs
it in parentheses whenα = 0.5 andβ = 2.2.

k n m Scheme MLE Bayes (proir 0) Bayes (prior 1)
α β α β α β

1 30 20 (10,190) 0.5485 2.4789 0.4507 1.7974 0.4993 1.8477
(0.0337) (0.2941) (0.0314) (0.2837) (0.0145) (0.1257)

(50,101,50) 0.5271 2.4346 0.4508 2.0163 0.4626 1.8399
(0.0344) (0.3087) (0.0331) (0.3051) (0.0155) (0.1381)

(190,10) 0.5076 2.4846 0.4210 1.9355 0.4296 1.7781
(0.0353) (0.3109) (0.0332) (0.3064) (0.0159) (0.1395)

40 20 (20,190) 0.5186 2.4294 0.4434 1.9059 0.4686 1.8583
(0.0312) (0.2573) (0.0300) (0.2562) (0.0127) (0.1169)

(201) 0.5179 2.4204 0.4397 1.9761 0.4448 1.9087
(0.0315) (0.2644) (0.0306) (0.2674) (0.0129) (0.1194)

(190,20) 0.5132 2.5903 0.4152 1.9271 0.4178 1.8600
(0.0316) (0.2850) (0.0309) (0.2797) (0.0138) (0.1263)

40 30 (10,290) 0.5194 2.3885 0.4110 1.9243 0.4693 1.9751
(0.0305) (0.2167) (0.0293) (0.2097) (0.0084) (0.1099)

(100,101,100) 0.5324 2.5341 0.4489 1.9807 0.4554 1.9448
(0.0308) (0.2187) (0.0281) (0.2104) (0.0085) (0.1148)

(290,10) 0.5281 2.4653 0.4446 1.9699 0.4526 1.8204
(0.0310) (0.2274) (0.0289) (0.2140) (0.0085) (0.1282)

4 30 20 (10,190) 0.5656 2.6291 0.5966 1.9932 0.5487 1.9629
(0.0277) (0.2001) (0.0262) (0.2023) (0.0081) (0.1072)

(50,101,50) 0.5247 2.5386 0.5374 2.1063 0.5713 2.1166
(0.0284) (0.2328) (0.0276) (0.2131) (0.0088) (0.1043)

(190,10) 0.6175 2.3532 0.5196 2.3883 0.5760 1.9998
(0.0292) (0.2377) (0.0282) (0.2145) (0.0093) (0.1131)

40 20 (20,190) 0.5556 2.1645 0.5241 2.2522 0.5502 2.4339
(0.0245) (0.1970) (0.0233) (0.1903) (0.0079) (0.1023)

(201) 0.5692 2.3340 0.5270 2.3109 0.5883 2.1262
(0.0256) (0.2006) (0.0236) (0.1992) (0.0083) (0.1033)

(190,20) 0.6120 2.3269 0.5334 1.9992 0.5914 2.2128
(0.0265) (0.2083) (0.0243) (0.2054) (0.0089) (0.1126)

40 30 (10,290) 0.4734 2.1088 0.5349 1.9983 0.5544 2.2434
(0.0199) (0.1903) (0.0192) (0.1896) (0.0073) (0.0987)

(100,101,100) 0.5154 2.4364 0.5142 2.2989 0.5201 2.396
(0.0216) (0.2049) (0.0201) (0.1973) (0.0091) (0.0999)

(290,10) 0.5209 2.2412 0.5247 2.3721 0.5546 2.5138
(0.0221) (0.2099) (0.0206) (0.1988) (0.0092) (0.1022)

5 Bayesian prediction for future order statistics

Suppose thatXR
1:m:n:k, XR

2:m:n:k, ..., XR
m:m:n:k, is a progressive first-failure censored sample of sizem drawn from a population

whose pdf is GP(α,β ) distribution, defined by(1), and thatY1,Y2, ...,Ym1 is a second independent random sample (of size
m1) of future observations from the same distribution. Bayesian prediction bounds are obtained for some order statistics
of the future observationsY1,Y2, ...,Ym1. On the other hand, letXR

1:m:n:k, XR
2:m:n:k, ..., XR

m:m:n:k andY1,Y2, ...,Ym1 represent the
informative sample from a random sample of sizem, and a future ordered sample of sizem1, respectively. It is further
assumed that the two samples are independent and each of their corresponding random samples is obtained from the same
distribution function. Our aim is to make Bayesian prediction about thesth, 1< s < m1, ordered lifetime in a future sample
of sizem1.

Let Ys be thesth ordered lifetime in the future sample of sizem1. The density function ofYs for givenα, β is of the
form

g(s)(ys|α,β ) = D(s) [1−F(ys|α,β )](m1−s) [F(ys|α,β )]s−1 f (ys|α,β ), α,β > 0, (15)
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whereD(s) = s

(

m1

s

)

.

here f (.|α,β ) is given in(1) andF(.|α,β ) denotes the corresponding cumulative distribution function of f (.|α,β ) as
given in(2), substituting(1) and(2) in (15),we obtain

g(s)(ys|α,β ) = D(s)α (ys +β )−1[β α (ys +β )−α]m1(s) [1−β α (ys +β )−α]s−1
, (16)

wherem1(s) = m1− s+1.
By using the binomial expansion, the density(16) takes the form

g(s)(ys|α,β ) = D(s)α (ys +β )−1
i=0

s−1a j(s)
[

β α (ys +β )−α]m1 j (s) , ys > 0, (17)

where

a j(s) = (−1) j
(

s−1
j

)

and m1j(s) = m1− s+ j+1. (18)

The Bayes predictive density function ofYs is given by

g∗(s)(ys|data) =
∫ ∞

0

∫ ∞

0
g(s)(ys|α,β )π∗(α,β |data)dαdβ , (19)

whereπ∗(α,β |data) is the joint posterior density ofα andβ as given in(11). It is immediate thatg∗(s)(ys|data) can not
be expressed in closed form and hence it can not be evaluated analytically.

A simulation based consistent estimator ofg∗(s)(ys|data), can be obtained by using the Gibbs sampling procedure as
described in Section 3. Suppose{(αi,βi), i = 1,2, ...,N} are MCMC samples obtained fromπ∗(α,β |data), using Gibbs
sampling technique, the simulation consistent estimator of g∗(s)(ys|data), can be obtained as

ĝ∗(s)(ys|data) =N
i=M+1 g(s)(ys|αi,βi)wi, (20)

and a simulation consistent estimator of the predictive distribution ofYs sayG∗
(s)(.|data) can be obtained as

Ĝ∗
(s)(ys|data) =N

i=M+1 G(s)(ys|αi,βi)wi, (21)

where

wi =
h(αi,βi|data)

N
i=M+1h(αi,βi|data)

; i = M+1, ...,N and M is burn-in, (22)

andG(s)(ys|α,β ) denotes the distribution function corresponding to the density functiong(s)(ys|α,β ), here

G(s)(ys|α,β ) = D(s)αs−1
i=0 a j(s)

1
αm1j(s)

[

1−
(

β α (ys +β )−α)m1 j (s)
]

, (23)

wherea j(s) andm1j(s) are defined in(18). It should be noted that the MCMC samples{(αi,βi), i = 1,2, ...,N} can be

used to compute ˆg∗(s)(ys|data) or Ĝ∗
(s)(ys|data) for all Ys. Moreover, a symmetric 100γ% predictive interval forYs can be

obtained by solving the non-linear equations(24) and(25), for the lower bound,L and upper bound,U

1+ γ
2

= P[Ys > L|data] = 1−G∗
(s)(L|data) =⇒ G∗

(s)(L|data) =
1
2
−

γ
2
, (24)

1− γ
2

= P[Ys >U |data] = 1−G∗
(s)(U |data) =⇒ G∗

(s)(U |data) =
1
2
+

γ
2
. (25)

We need to apply a suitable numerical method as they cannot besolved analytically.
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6 Bayesian prediction for future record values

Let us consider thatXR
1:m:n:k, XR

2:m:n:k, ..., XR
m:m:n:k is a progressive first-failure censored sample of sizem with progressive

censoring schemeR = (R1,R2, ...,Rm), drawn from a GP(α,β ) distribution and letZ1,Z2, ...,Zm2 is a second independent
random sample of sizem2 of future upper record observations drawn from the same population.

The first sample is referred to as the “informative” (past) sample, while the second one is referred to as the (future)
sample. Based on an informative progressively first-failure censored sample, our aim is to predict theSth upper record
values. The conditional pdf ofZs for givenα,β is given see Ahmadi and MirMostafaee [22], by

h(s) (zs|α,β ) =
[− log(1−F (zs|α,β ))]s−1

(s−1)!
f (zs|α,β ) , (26)

whereF(.|α,β ) and f (.|α,β ) are given in(2) and(1). Applying (2) and(1) in (26) we obtain

h(s) (zs|α,β ) =
1

(s−1)!
αβ α(zs +β )−(α+1)[− log

(

β α(zs +β )−α)]s−1. (27)

The Bayes predictive density function ofYs is then

h∗(s)(zs|data) =
∫ ∞

0

∫ ∞

0
h(s)(zs|α,β )π∗(α,β |data)dαdβ , (28)

As before, based on MCMC samples{(αi,βi), i = 1,2, ...,N}, a simulation consistent estimator ofh∗(s)(zs|data), can be
obtained as

ĥ∗(s)(zs|data) =N
i=M+1 h(s)(zs|αi,βi)wi, (29)

and a simulation consistent estimator of the predictive distribution ofYs sayG∗
(s)(.|data) can be obtained as

Ĥ∗
(s)(zs|data) =N

i=M+1 H(s)(zs|αi,βi)wi, (30)

wherewi is same as defined in(22) and H(s)(zs|α,β ) denotes the distribution function corresponding to the density
functionh(s)(zs|α,β ), we simply obtain

H(s)(zs|α,β ) =
1

(s−1)!

∫ zs

0
αβ α(ts +β )−(α+1)[− log

(

β α(ts +β )−α)]s−1dt.

= −
1

(s−1)!

∫ β α (zs+β )−α

1
(− log(u))(s−1)du.

=
1

(s−1)!

[

Γ (s)−Γ
(

s,− log
(

β α(zs +β )−α))] tag31 (15)

It should be noted that the MCMC samples{(αi,βi), i = 1,2, ...,N} can be used to computeĥ∗(s)(zs|data) or Ĥ∗
(s)(zs|data)

for all Zs. Moreover, a symmetric 100γ% predictive interval forZs can be obtained by solving the non-linear equations
(32) and(33), for the lower bound,L and upper bound,U

1+ γ
2

= P[Zs > L|data] = 1−H∗
(s)(L|data) =⇒ H∗

(s)(L|data) =
1
2
−

γ
2
, (32)

1− γ
2

= P[Zs >U |data] = 1−H∗
(s)(U |data) =⇒ H∗

(s)(U |data) =
1
2
+

γ
2
. (33)

In this case also it is not possible to obtain the solutions analytically, and one needs a suitable numerical technique for
solving these non-linear equations.
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7 Illustrative example

To illustrate the methods proposed in the previous sections. A set of data consisting of 60 observations were generated
from a GP(α,β ) the distribution of reparametrized GP with parameters(α,β ) = (0.5,1.5), the generated data are given
in Table 3

Table 3. Simulated data from GP(0.5,1.5).
1.0501 6.7579 1.2581 3.1730 1.3025 0.8422 41.464 6.2518 4.9706 15.896
4.2410 2.7351 70.796 1.9053 3.8841 9.1233 1.3397 215.4 1.1411 42.465
0.1289 7.9931 147.20 6.3203 0.0088 25.356 4.7883 2.7279 7.6829 0.3433
27.402 5.7937 4.1718 1.5419 9.2444 0.1746 5.0694 29.243 1.8672 4.1394
1.5692 4.4158 0.0515 16.594 1.5788 5.6310 0.6328 56.232 1.5865 1.2436
23.018 0.5258 5.8716 9.9957 1.1576 28.908 4.1059 49.807 5.9503 0.3648

To illustrate the use of the estimation methods proposed in this article, we assume that the Simulated data are
randomly grouped into 30 groups with (k = 2) items within each group. These groups are:{0.1289, 1.5788}, {6.2518,
9.1233}, {0.0515, 1.1576}, {5.6310, 49.807}, {4.7883, 147.20}, {5.8716, 16.594}, {0.8422, 1.3397}, {23.018, 28.908},
{4.1718, 27.402}, {41.464, 215.4}, {0.3648, 4.1059}, {6.3203, 29.243}, {5.7937, 9.9957}, {5.0694, 56.232}, {4.2410,
9.2444}, {7.9931, 25.356}, {3.1730, 5.9503}, {1.1411, 1.5865}, {4.4158, 70.796}, {0.1746, 2.7279}, {1.5692,1.8672},
{4.9706, 42.465}, {2.7351, 3.8841}, {6.7579, 15.896}, {0.3433, 1.2436}, {1.2581, 1.30254}, {4.1394, 7.6829},
{0.0088, 1.0501}, {0.5258, 1.5419}, {0.6328, 1.9053}. Suppose that the pre-determined progressively first-failure
censoring plan is applied using progressive censoring scheme R = (2,1,1,2,0,0,2,2,0,2,0,2,0,1,0). The following
progressively first-failure censored data of size (m = 15) out of 30 groups were observed: 0.0088, 0.0515, 0.1289,
0.1746, 0.3433, 0.3648, 0.5258, 0.6328, 0.8422, 1.1411, 1.2581, 1.5692, 6.2518, 6.7579, 7.9931.
For this example, 15 groups are censored, and 15 first failuretimes are observed. Using the progressively first-failure
censored sample the MLE’s ofα and β , are 0.5473 and 1.6811, respectively. we apply the Gibbs and Metropolis
samplers with the help of importance sampling technique to determine the Bayesian estimation and prediction intervals,
we assumed that both the parameters are unknown. Since we do not have any prior information available, we used
noninformative priors(a = b = c = d = 0) on bothα and β . The density function ofg2(β |data) as given in(12) is
plotted Figure(1). It can be approximated by normal distribution function as mentioned in the Subsection 3.1. Now
using Algorithm 1, we generate 10,000 MCMC samples and discard the first 1000 values as ‘burn-in’, based on them we
compute the Bayes estimates ofα andβ as 0.5186 and 1.51385, respectively. As expected the Bayes estimates under the
non-informative prior, and the MLE’s are quite close to eachother. Moreover, the result of 90% and 95% highest
posterior density (HPD) credible intervals ofα andβ are given in Tables 4 and 5 for the future order statistics andfuture
upper record values, respectively.

Table 4. Two sample prediction for the future order statistics
90% (HPD) credible intervals forYS 95% (HPD) credible intervals forYS
YS [Lower,Upper] Length [Lower,Upper] Length
Y1 [0.0084,0.7250] 0.7166 [0.0042,0.9799] 0.9758
Y2 [0.0601,1.4470] 1.3869 [0.0402,1.9357] 1.8956
Y3 [0.1471,2.4408] 2.2938 [0.1075,3.3300] 3.2224
Y4 [0.2665,3.9269] 3.6603 [0.2032,5.5573] 5.3540
Y5 [0.4230,6.3025] 5.8795 [0.3303,9.3826] 9.0523

Table 5. Two sample prediction for the future upper record values
90% (HPD) credible intervals forZS 95% (HPD) credible intervals forZS
ZS [Lower,Upper] Length [Lower,Upper] Length
Z1 [0.0439,2.6625] 2.6186 [0.0213,2.8424] 2.8212
Z2 [0.0822,3.2278] 3.1457 [0.0549,5.7681] 5.7132
Z3 [0.1482,4.9041] 4.7558 [0.1087,6.6587] 6.5500
Z4 [0.2524,5.3410] 5.0886 [0.2231,7.9281] 7.7050
Z5 [0.4437,7.5549] 7.1112 [0.3376,10.8731] 10.5355
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8 Conclusions

In this paper, Bayesian inference and prediction problems of the generalized Pareto (GP) distribution based on progressive
first-failure censored data are obtained for future order statistics and future upper record values. The prior belief ofthe
model is represented by the independent gamma priors on the both scale and shape parameters. The squared error loss
function is used. We used Gibbs sampling technique to generate MCMC samples and then using importance sampling
methodology we computed the Bayes estimates. The same MCMC samples were used for two sample prediction problems.
The details have been explained using a simulated data.
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