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Abstract: This paper describes the Bayesian inference and prediction of theatizeé Pareto (GP) distribution for progressive first-
failure censored data. We consider the Bayesian inference undeaeedcerror loss function. We propose to apply Gibbs sampling
procedure to draw Markov Chian Monte Carlo (MCMC) samples, andtiaeg in turn, been used to compute the Bayes estimates with
the help of importance sampling technique. We have performed a simusatidy in order to compare the proposed Bayes estimators
with the maximum likelihood estimators. We further consider two sample Bagestiction to predicting future order statistics and
upper record values from generalized Pareto (GP) distribution baspbgressive first-failure censored data. The predictive densities
are obtained and used to determine prediction intervals for unobsemedstatistics and upper record values. A simulated data set is
used to illustrate the results derived.
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1 Introduction

Censoring is common in life-distribution work because ofdilimits and other restrictions on data collection. Ceingpr
occurs when exact lifetimes are known only for a portion @fitidividuals or units under study, while for the remainder
of the lifetimes information on them is partial. There ar@esal types of censored tests. One of the most common
censored test is type Il censoring. It is noted that one canty®e Il censoring for saving time and money. However,
when the lifetimes of products are very high, the experimltime of a type Il censoring life test can be still too long.
A generalization of type Il censoring is progressive typedhsoring, which is useful when the loss of live test units at
points other than the termination point is unavoidable.dRdy, the type Il progressively censoring scheme hasvedei
considerable interest among the statisticians. See fongbea Kundu [1] and Raqgab et al. [2]. For the theory methodk an
applications of progressive censoring, one can refer toniy@ograph by Balakrishnan and Aggarwala [3] and the recent
survey paper by Balakrishnan [4].

Johnson [5] described a life test in which the experimentghtrdecide to group the test units into several sets, each
as an assembly of test units, and then run all the test unitgitsineously until occurrence the first failure in each grou
Such a censoring scheme is called a first-failure censodhgrse. Jun et al. [6] discussed a sampling plan for a bearing
manufacturer. The bearing test engineer decided to savéirtesby testing 50 bearings in sets of 10 each. The first-
failure times from each group were observed. Wu et al. [7]\&hdand Yu [8] obtained maximum likelihood estimates
(MLESs), exact confidence intervals and exact confidencensgfior the parameters of the Gompertz and Burr type Xl
distributions based on first-failure censored samplingpeetively. If an experimenter desires to remove some $&st
units before observing the first failures in these sets tt@igdst plan is called a progressive first-failure censpsoheme
which recently introduced by Wu and Kus [9].
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In many practical problems of statistics, one wishes to heeésults of previous data to predict a future observation
from the same population. One way to do this is to construgheemval which will contain the future observation with
a specified probability. This interval is called a predintinterval. Prediction has been applied in medicine, ereging,
business, and other areas as well. Hahn and Meeker [10] beently discussed the usefulness of constructing predicti
intervals. Bayesian prediction bounds for future obsé@ruatbased on certain distributions have been discussezl/byad
authors. Bayesian prediction bounds for observables gati@ Burr type XII distribution were obtained by Nigm [11],
AL-Hussaini and Jaheen ([12],[13]), and Ali Mousa and Jah§®4],[15]). Burr type X distribution described by Jaheen
and AL-Matrafi [16]. Lomax distribution described by Abd &tl ([17],[18]).

Recently, Alamm et al. [19] obtained Bayesian predictiorerivals for future order statistics from the generalized
exponential distribution. Kundu and Howlader [20] studiBdyesian inference and prediction of inverse Weibull
distribution for type Il censored data. Ahmadi et al. [21hsmlered the Bayesian prediction of order statistics based
k-record values from exponential distribution. Ahmadi avitMostafaee [22] obtained prediction intervals for order
statistics as well as for the mean life time from a future senased on observed usual records from an exponential
distribution. Ali Mousa and Al-Sagheer [23] discussed thediction problems for the Rayleigh based on progressively
type Il censored data.

Arandom variableX is said to have generalized Pareto (GP) distribution, ipitsbability density function (pdf) is

given by
1 X— U -(1/¢+1)
feno =4 (H ZG>
whereu,{ € R ando € (0,+). For convenience, we reparametrized this distribution &nthgo/{ = 8,1/{ = a
andu = 0. Therefore,

f(x)=aB%x+p)" @Y, x>0a,8>0. (1)
The cumulative distribution function (cdf) is defined by
FX)=1-B*(x+B)"",  x>0,a,8>0, )

herea andf are the shape and scale parameters, respectively. It isvals&nown that this distribution has decreasing
failure rate property. This distribution is also known age®a distribution of type Il or Lomax distribution. This
distribution has been shown to be useful for modeling antizng the life time data in medical and biological sciences
engineering, etc. So, it has been received the greatestiattérom theoretical and applied statisticians primadle to

its use in reliability and lifetesting studies. Many statial methodes have been developed for this distribution af
review of Pareto distribution of type Il or Lomax distriboti see Habibullh and Ahsanullah [24], Upadhyay and
Peshwani [25] and Abd Ellah ([17],[18]) and references ehth Agreat deal of research has been done on estimating the
parameters of a Lomax using both classical and Bayesianitpos.

In this paper first we consider the Bayesian inference of tia@es and scale parameters for progressive first-failure
censored data when both parameters are unknown. We asshateétied shape parameterand the scale parametgr
have the gamma prior and they are independently distribdteexpected in this case also, the Bayes estimates can not
be obtained in closed form. We propose to use the Gibbs sagyptocedure to generate MCMC samples, and then using
the importance sampling methodology, we obtain the Bay#mates of the unknown parameters. We perform some
simulation experiments to see the behavior of the proposg@8estimators and compare their performances with the
maximum likelihood estimators (MLES).

Another important problem in life-testing experiments medyrthe prediction of unknown observables belonging to
a future sample, based on the current available sample,rkimothe literature as the informative sample. For different
application areas and for references, the readers area@fier AL-Hussaini [26]. In this paper we consider the préadit
problem in terms of the estimation of the posterior predectiensity of a future observation for two-sample predictio
We also construct predictive interval for a future obseaoratising Gibbs sampling procedure. An illustrative exasrs
been provided.

The rest of this paper is organized as follows: In Section@ describe the formulation of a progressive first-failure
censoring scheme. In Section 3, we cover Bayes estimatearafmgters using MCMC technique with the help of
importance sampling technique. Monte Carlo simulatiomltesare presented in Section 4. Bayes prediction for future
order statistic and upper record values are provided in@ebt and Section 6, respectively. Data analysis is pravide
Section 7, and finally we conclude the paper in Section 8.

2 A progressive first-failure censoring scheme

In this section, first-failure censoring is combined witlogrmessive censoring as in Wu and Kus [9]. Suppose rthat
independent groups withitems within each group are put on a life téf groups and the group in which the first failure is
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observed are randomly removed from the test as soon as tifaifirse (sayXlFfm:n:k) has occurred®, groups and the group
in which the second first failure is observed are randomlyoread from the test when the second failure (¥,
has occurred, and finallRn (m < n) groups and the group in which time— th first failure is observed are randomly
removed from the test as soon as the th failure (sayXR.,) has occurred. Th¥R . < XR <. . <XxR_ . are
called progressively first-failure censored order stagswith the progressive censoring schelRe (R, Ry, ...,Rm). Itis
clear thatmis number of the first-failure observétl < m< n) andn=m+R; + Ry + ... + Ry, If the failure times of the
n x k items originally in the test are from a continuous populatioth distribution functior (x) and probability density
function f (x), the joint probability density function fokR_ ., XR ... XR . is given by

m
f1,2,m,m(x§:m:n:k7Xg:m:n:kv -'-7X§:m:n:k) = AK™ I_l f(leq:m:n:k)(:l-_ F(le?:m:n:k))kmjJrl)71 (3)
=1
0< X?:m:n:k < Xg:m:n:k <...< Xr?tm:n:k < 0o, (4)
where
A= n(nf Ry — 1)(n7 Ri—R,— 1)...(n7 Ri—Ry—..Rpn.1—m+ 1). (5)

Special cases
It is clear from(3) that the progressive first-failure censored scheme cantathe following censoring schemes as
special cases:

1.The first-failure censored scheme whre= (0,0, ...,0).

2.The progressive type Il censored order statistiks=1.

3.Usually type Il censored order statistics whea 1 andR= (0,0,...,n—m).
4.The complete sample case whes 1 andR = (0,0, ...,0).

Also, It should be noted th@(ﬁm’nk,xzﬁm’n’k,...,X,ﬁ;m’n,k can be viewed as a progressive type Il censored sample

from a population with distribution function % (1 — F(x))k. For this reason, results for progressive type Il censored
order statistics can be extend to progressive first-fateresored order statistics easily. Also, the progressisefailure
censored plan has advantages in terms of reducing thertestiti which more items are used, but omyf n x k items

are failures.

3 Bayes estimation

In this section, we present the posterior densities of tharpatersy andf3 based on progressively first-failure censored
data and then obtain the corresponding Bayes estimatess# farameters. To obtain the joint posterior density afid

B, we assume that and are independently distributed as ganfe&) and gammeéc, d) priors, respectively. Therefore,
the prior density functions af andf3 becomes

b? a—1ln-ba ;

ma(aa,b) = —I_(a)a € ifa>0 ©)
0 if a <0,
dC

BcledB ifB>0
if B <0,

5(Blc,d) = g(C) (@)

The gamma parameteesb,c andd are all assumed to be positive. Whar= b =0 (c = d = 0), we obtain the non-
informative priors ofo andp3.

Let Xi:Rm:n:k, i=12....,m be the progressively first-failure censored order statigtom GP§, 3) the distribution of
reparametrized GP, with censoriRgFrom (3), the likelihood function is given by

m

¢(datala, B) = Ak™g™ I—lBuk(RiJrl) (% + B)~lakRi+ 1+ (8)

whereA is defined in(5) andX; is used instead okR .. ...
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The joint posterior density function af andf3 given the data is given by

B ((datala,B)m(ala b)m(B|c,d)
T (a, Bldata) = & J&(datala, B)m(a|a, b)(B|c,d)dadB” )

Therefore, the posterior density functionafand given the data can be written as

(o, Bldata) O a™21pc te 9P [ﬁﬁ“" x+pB)

X exp [—a(b— kiRi logB + ki(Ri +1)log(x+B)) (10)
The posterior densityl0) can be rewritten as
' (a, B|data) [ g1(a|B, data)gz(B|data)h(a, B|data), (11)

m
here,g1(a|B,data) is a gamma density function with the shape and scale paresreggn+a) andb—k S R;logS +
i=1

k E (Ri+1)log(x + ), respectivelyg(B|data) is a proper density function given by
iZ1

Bc—lefdﬁ
SRR ; e (12)
(b— k_ZlRi logB + k_zl(Ri +1)log(x + [3)>
Moreover "
h(a. B|data) = j'lB"’" (xi+B)". (13)

Therefore, the Bayes estimate of any functiomradnd3, sayg(a, 3) under the squared error loss function is

(a.p)_ 15 1590 B)o(a|B.data)gs(Bldata)n(a Bldata)dadp )
9Bl P) = = 1=y (|, data) g (B|data)h(a, Bldata)dadB

It is not possible to computel4) analytically. We propose to approximat®4) by using importance sampling technique
as suggested by Chen and Shao [27]. The details are explaéh@a.

3.1 Importance sampling

Importance sampling is a useful technique for estimationwsy we would like to provide the importance sampling
procedure to compute the Bayes estimates for parameter®@f,3) the distribution of reparametrized GP, and any

function of the parameters sgya, 3) = 6.

As mentioned previously thag (a|B,data) is a gamma density and, therefore, samples ofn be easily generated
using any gamma generating routine. However, in our casepttbper density function g8 equation(12) cannot be
reduced analytically to well known distributions and tHere it is not possible to sample directly by standard meshod

but the plot of it (see Figure 1) show that it is similar to natndistribution. So to generate random numbers from

this distribution, we use the Metropolis-Hastings methathwormal proposal distribution. Using Metropolis-Hasjs
method, simulation based consistent estimaté(of{a, 3)) = E(8) can be obtained using Algorithm 1 as follows
Algorithm 1.

Step 1.Start with ana(?, 3(9)).
Step 2.Set = 1.

Step 3.Generat@") from g,(.|data) using the method developed by Metropolis ef28 with the NG, g2) proposal
distribution.

Wherea? is the variance of obtained using variance-covariance matrix.
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Step 4.Generate!) from g;(.|8"), data).

Step 5.Comput@® anda®).

Step 6.Set=t+1.

Step 7.Repeat Step-36 N times and obtaias, B1), (a2, B2),....(an, Bn)-

Step 8.An approximate Bayes estimatédainder a squared error loss function can be obtained as

A N—lM P 19|h(0!i7[5'i|data)
g(aﬂﬁ) = 9 = 1 = ':'I_ °
h(aj, Bi|data
N Mg, AldatE)
whereM is burn-in.
Step 9.0btain the posterior variancet g(a, 8) as
1 N A2
i Nowm. 2. (6 —8)h(ai, data)
V(a,B|data) = R
N_M i=%+1h(aial3i |data)

55 10~"
3310~
—25%10-"
g 2. 10"
%15}:10-3“
1310~
5310771

Fig. 1: Posterior density function ¢3

4 Monte Carlo simulations

In order to compare the proposed Bayes estimators with thedyllve simulated 1000 progressively first-failure censored
samples from a G, 3) the distribution of reparametrized GP. The samples werllsited by using the algorithm
described in Balakrishnan and Sandhu (1995). We used adtiffsample of sizeén), different effective sample of
sizes(m), differentk (k= 1,4), different hyperparamete(s, b, c,d), and different of sampling schemes (i.e., differBnt
values).We used two sets of parameter vames0.22, 3 = 1.5 anda = 0.5, B = 2.2, mainly to compare the MLEs and
different Bayes estimators and also to explore their edfentdifferent parameter values. First, we used the nomirdtive
gamma priors for both the parameters, that is, when the pgp@meters are 0. We call it prior®=b=c=d = 0. Note

that as the hyperparameters go to O, the prior density besamersely proportional to its argument and also becomes
improper. This density is commonly used as an improper foiogparameters in the range of 0 to infinity, and this prior is
not specifically related to the gamma density. For compuBiaiges estimators, other than prior 0, we also used infovmati
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prior, including prior 1a=1,b=1 ¢ =3 andd = 2. In two cases, we used the squared error loss function t@eEm
the Bayes estimates. We also computed the Bayes estimaied da 10000 MCMC samples and discard the first 1000
values as ‘burn-in’

Itis clear from Tables 1 and 2 that the proposed Bayes esimmperform very well for different andm. As expected,
the Bayes estimators based on informative prior performmingdter than the Bayes estimators based on noninformative
prior in terms of biases, MSEs. Also the Bayes estimatoredags noninformative prior and informative prior perform
much better than the MLEs in terms of biases, MSEs.

Table 1. Average values of the different estimators and ¢heesponding MSEs
it in parentheses whem = 0.22 and@ = 1.5.

k n m Scheme MLE Bayes (proir 0) Bayes (prior 1)
a B a B a
1 3 20 (10,19 0.2327  1.8364 0.2248  1.7703 0.2349  1.6902
(0.0043) (0.4508) (0.0038) (0.3423) (0.0032) (0.1263)
(5°,104,5%)  0.2366  1.8022 0.2244  1.8064 0.2336  1.6915
(0.0052) (0.4641) (0.0038) (0.3943) (0.0033) (0.1296)
(19°,10) 0.2338  1.8074 0.2206  1.8346 0.2289  1.7032
(0.0057) (0.4794) (0.0039) (0.3999) (0.0033) (0.1298)
40 20 (20,19 0.2373  1.7935 0.2269  1.7971 0.2375  1.7083
(0.0042) (0.4408) (0.0038) (0.3403) (0.0031) (0.1257)
(5°,10%,5°)  0.2413  1.7007 0.2343  1.8077 0.2397  1.6879
(0.0045) (0.4723) (0.0040) (0.3592) (0.0035) (0.1262)
(19°,20) 0.2526  1.7145 0.2392  1.7093 0.2408  1.7214
(0.0050) (0.4837) (0.0045) (0.3933) (0.0036) (0.1283)
40 30 (10,29 0.2290  1.8481 0.2214  1.7198 0.2308  1.6594
(0.0030) (0.4256) (0.0029) (0.3346) (0.0022) (0.1208)
(1d°,104,10°)  0.2309  1.7627 0.2220  1.7353 0.2288  1.7083
(0.0031) (0.4313) (0.0030) (0.3549) (0.0023) (0.1208)
(29, 10) 0.2367  1.7707 0.2291  1.8558 0.2338  1.7060
(0.0033) (0.4088) (0.0030) (0.3732) (0.0023) (0.1401)
4 30 20 (1019 0.2569  1.7629 0.2106  1.6223 0.1959  1.5548
(0.0025) (0.3321) (0.0023) (0.3176) (0.0021) (0.1114)
(5°,104,5°)  0.2511  1.6563 0.2286  1.4449 0.2082  1.4972
(0.0026) (0.3229) (0.0023) (0.3223) (0.0021) (0.1205)
(19°,10) 0.2767  1.6585 0.1974  1.5366 0.2094  1.6022
(0.0028) (0.3342) (0.0024) (0.3467) (0.0022) (0.1228)
40 20 (2019 0.2614  1.5897 0.1921  1.5533 0.2034  1.5850
(0.0022) (0.3198) (0.0021) (0.2963) (0.0020) (0.1012)
(5°,10%,5°)  0.2545  1.5439 0.1868  1.5385 0.2094  1.6022
(0.0022) (0.3226) (0.0021) (0.2967) (0.0021) (0.1068)
(19°,20) 0.2852  1.5232 0.2196  1.4405 0.2099  1.5681
(0.0023) (0.3325) (0.0022) (0.2975) (0.0021) (0.1116)
40 30 (10,29 0.2567  1.5791 0.2272  1.5669 0.2066  1.5768
(0.0019) (0.2664) (0.0018) (0.2519) (0.0017) (0.0994)
(10°,101,10°)  0.2409  1.6295 0.2117  1.5873 0.1901  1.5849
(0.0019) (0.2666) (0.0018) (0.2598) (0.0017) (0.0996)
(29,10) 0.2587  1.6234 0.2059  1.5227 0.2164  1.5517

(0.0020) (0.2668)  (0.0019) (0.2615)  (0.0018) (0.0997)
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Table 2. Average values of the different estimators and dneesponding MSEs
it in parentheses whem = 0.5 andf3 = 2.2.

k n m Scheme MLE Bayes (proir 0) Bayes (prior 1)
a B a B a B
1 30 20 (10,190) 0.5485 2.4789 0.4507 1.7974 0.4993 1.8477
(0.0337) (0.2941) (0.0314) (0.2837) (0.0145) (0.1257)
(50, 10t 50) 0.5271 2.4346 0.4508 2.0163 0.4626 1.8399
(0.0344) (0.3087) (0.0331) (0.3051) (0.0155) (0.1381)
(190, 10) 0.5076 2.4846 0.4210 1.9355 0.4296 1.7781
(0.0353) (0.3109) (0.0332) (0.3064) (0.0159) (0.1395)
40 20 (20,190) 0.5186 2.4294 0.4434 1.9059 0.4686 1.8583
(0.0312) (0.2573) (0.0300) (0.2562) (0.0127) (0.1169)
(201) 0.5179 2.4204 0.4397 1.9761 0.4448 1.9087
(0.0315) (0.2644) (0.0306) (0.2674) (0.0129) (0.1194)
(190,20) 0.5132 2.5903 0.4152 1.9271 0.4178 1.8600
(0.0316) (0.2850) (0.0309) (0.2797) (0.0138) (0.1263)
40 30 (10,290) 0.5194 2.3885 0.4110 1.9243 0.4693 1.9751
(0.0305) (0.2167) (0.0293) (0.2097) (0.0084) (0.1099)
(100,101,100) 0.5324 2.5341 0.4489 1.9807 0.4554 1.9448
(0.0308) (0.2187) (0.0281) (0.2104) (0.0085) (0.1148)
(290, 10) 0.5281 2.4653 0.4446 1.9699 0.4526 1.8204
(0.0310) (0.2274) (0.0289) (0.2140) (0.0085) (0.1282)
4 30 20 (10,190) 0.5656 2.6291 0.5966 1.9932 0.5487 1.9629
(0.0277) (0.2001) (0.0262) (0.2023) (0.0081) (0.1072)
(50,101,50) 0.5247 2.5386 0.5374 2.1063 0.5713 2.1166
(0.0284) (0.2328) (0.0276) (0.2131) (0.0088) (0.1043)
(190,10) 0.6175 2.3532 0.5196 2.3883 0.5760 1.9998
(0.0292) (0.2377) (0.0282) (0.2145) (0.0093) (0.1131)
40 20 (20,190) 0.5556 2.1645 0.5241 2.2522 0.5502 2.4339
(0.0245) (0.1970) (0.0233) (0.1903) (0.0079) (0.1023)
(201) 0.5692 2.3340 0.5270 2.3109 0.5883 2.1262
(0.0256) (0.2006) (0.0236) (0.1992) (0.0083) (0.1033)
(190,20) 0.6120 2.3269 0.5334 1.9992 0.5914 2.2128
(0.0265) (0.2083) (0.0243) (0.2054) (0.0089) (0.1126)
40 30 (10,290) 0.4734 2.1088 0.5349 1.9983 0.5544 2.2434
(0.0199) (0.1903) (0.0192) (0.1896) (0.0073) (0.0987)
(100,101,100) 0.5154 2.4364 0.5142 2.2989 0.5201 2.396
(0.0216) (0.2049) (0.0201) (0.1973) (0.0091) (0.0999)
(290,10) 0.5209 2.2412 0.5247 2.3721 0.5546 2.5138

(0.0221) (0.2099)  (0.0206) (0.1988)  (0.0092) (0.1022)

5 Bayesian prediction for future order statistics

Suppose thax® .. XR . XR . is a progressive first-failure censored sample of sizEawn from a population
whose pdf is GR{, ) distribution, defined by1), and thatyy,Y>, ..., Ym, is a second independent random sample (of size
my) of future observations from the same distribution. Bagegirediction bounds are obtained for some order statistics
of the future observationd, Yz, ..., Y, . On the other hand, 16€2 .o XX s o0 XR ik @NAY1, Yz, ..., Y, represent the
informative sample from a random sample of sigeand a future ordered sample of size, respectively. It is further
assumed that the two samples are independent and eachrafdiresponding random samples is obtained from the same
distribution function. Our aim is to make Bayesian predistabout the", 1 < s < my, ordered lifetime in a future sample
of sizem,.

Let Ys be thes" ordered lifetime in the future sample of simg. The density function o¥s for givena, B is of the
form

g9 (¥sla, B) = D(8) [L—F (ysla, B)) ™ [F(yslar, B))°* F(ys|ar, B), @, B >0, (15)
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whereD(s) =s )

heref(.|a,) is given in(1) andF(.|a,B) denotes the corresponding cumulative distribution fuarcof f(.|a,B) as
given in(2), substituting(1) and(2) in (15),we obtain

ds (¥5/@, B) = D()a (ys+B) L [B* (ys+B) %™ [1- B (ys+B) 9] ", (16)

wheremy(s) = m —s+ 1.
By using the binomial expansion, the dengity) takes the form

915 (vs/, B) = D(8)a (v + B)iZ* *ay(9) [B% (s +B) )™ ", ys>0, (17)
where
aj(s) = (—1) (SI 1) and my(s) =my —s+j+1. (18)
The Bayes predictive density functiongfis given by

o sldata) = [ [ gl B) e (0. pldata)dadp, (19)

wherert(a, B|data) is the joint posterior density af andf as given in(11). It is immediate thag?s) (ys|data) can not
be expressed in closed form and hence it can not be evaluasadieally.
A simulation based consistent estimatorg%(ys\data), can be obtained by using the Gibbs sampling procedure as

described in Section 3. Suppo§@;, 5),i = 1,2,...,N} are MCMC samples obtained froni(a, 3|data), using Gibbs
sampling technique, the simulation consistent estimaftg[‘sﬁn(ys|data), can be obtained as

(YS‘data |M+1g (ys|ai, B)wi, (20)

and a simulation consistent estimator of the predictiviitigtion of Ys sayGE‘s>(.|data) can be obtained as

é(*s)(ys‘data) |M+1G ) (Ys|ai, Bi) Wi, (21)

where
wi — _Nai, p|data)
I — 3
iN:M+1h(ai7[3i |da[a)

andGs (ys|a, B) denotes the distribution function corresponding to thestgriunctiong) (ys|a, ), here

=M+1,...,N and M is burn-in, (22)

Gys)(ysla, B) = D(s)agaj(s) ami- (s)

1 (8% (e B )™ ] (23)

wherea; (s) andmy, (s) are defined in(18). It should be noted that the MCMC sampl, 3i),i = 1,2,...,N} can be
used to computg( 2 (ys|data) or GZ‘ (ys|data) for all Ys. Moreover, a symmetric 1§@6 predictive mterval folYs can be
obtained by solvmg the non- Ilnear equatid@d) and(25), for the lower boundl. and upper bound)

1%’ PYs > L|data] = 1— Giy (L|data) — G (L|data) = ; %’ (24)

We need to apply a suitable numerical method as they canrsuilbed analytically.
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6 Bayesian prediction for future record values

Let us consider thaXR ., XR_ . ... XR . is a progressive first-failure censored sample of sizgith progressive
censoring schem® = (R, Ry, ..., Rm), drawn from a GR{, 8) distribution and leZ;, 7>, ..., Zn, is a second independent
random sample of size, of future upper record observations drawn from the samelptpo.

The first sample is referred to as the “informative” (pasthpke, while the second one is referred to as the (future)
sample. Based on an informative progressively first-failcensored sample, our aim is to predict $feupper record
values. The conditional pdf & for givena, 8 is given see Ahmadi and MirMostafaee [22], by

[~ log(1—F (za.p))*
(s—1)!

h(s) (ZS|G7B) - f(ZS‘avB)v (26)
whereF (.|a,B) andf(.|a,B) are given in(2) and(1). Applying (2) and(1) in (26) we obtain

h (zla,B) = ap®(z+pB) "V~ log (B (zs+B) )"t (27)

1
(s—1)!

The Bayes predictive density function4fis then

 (zs/data) = / / o (zs/a, B) 7" (a, B|data)dadp, 28)

As before, based on MCMC samplé&;, 3i),i = 1,2,...,N}, a simulation consistent estimatorrqg)(zs|data), can be
obtained as

(Zs|data) | M+1 h (Zs‘m ,Biwi, (29)
and a simulation consistent estimator of the predictivaitigtion of Ys sayG (.|data) can be obtained as
H(y (zsldata) =\Ly 1 H(s (2l ai. ) wi. (30)

wherew; is same as defined i22) andHg (z|a,) denotes the distribution function corresponding to thesidgn
functionhs (z|a, B), we simply obtain

Hg (zsla,B) = (37711)!/0250!3 (ts+B) =@V [—log (B (ts+B) )] Ldt.

1 B (zs+B) g
— _@/1 (—log(u))Ydu.

= _ [F(s)—T (s,—log(B%(zs+B)"“))]|tag3l (15)

It should be noted that the MCMC samplg®:i, §i),i =1,2,...,N} can be used to compuﬂi(‘s)(zs|data) or I:I(*s>(zs|data)

for all Zs. Moreover, a symmetric 1906 predictive interval foiZs can be obtained by solving the non-linear equations
(32) and(33), for the lower boundl. and upper bound)

1+y y

5 =P[Zs > L|data] = 1—Hy (L|data) = Hy (L|data) = 5 — > (32)
1-y 1 vy
= P[Zs > U|data] = 1—H (U|data) = H g (U |data) = > + > (33)

In this case also it is not possible to obtain the solutior@ydically, and one needs a suitable numerical technique fo
solving these non-linear equations.

© 2013 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

278 NS 2 M. A. W. Mahmoud et. al: Bayesian Inference and Prediction usingressiye...

7 lllustrative example

To illustrate the methods proposed in the previous sectisrset of data consisting of 60 observations were generated
from a GP@, ) the distribution of reparametrized GP with parameters3) = (0.5,1.5), the generated data are given
in Table 3

Table 3. Simulated data from G®5,1.5).
1.0501 6.7579 1.2581 3.1730 1.3025 0.8422 41.464 6.2518704.9 15.896
42410 2.7351 70.796 1.9053 3.8841 9.1233 1.3397 2154 11.142.465
0.1289 7.9931 147.20 6.3203 0.0088 25.356 4.7883 2.7279829.6 0.3433
27.402 5.7937 4.1718 15419 9.2444 0.1746 5.0694 29.243672.8 4.1394
1.5692 4.4158 0.0515 16.594 1.5788 5.6310 0.6328 56.232864.5 1.2436
23.018 0.5258 5.8716 9.9957 1.1576 28.908 4.1059 49.807503.9 0.3648

To illustrate the use of the estimation methods proposedim drticle, we assume that the Simulated data are
randomly grouped into 30 groups witk £ 2) items within each group. These groups g@1289, 1.5788, {6.2518,
9.1233, {0.0515, 1.157§, {5.6310, 49.80%, {4.7883, 147.2p, {5.8716, 16.594, {0.8422, 1.339%, {23.018, 28.908,
{4.1718, 27.40%, {41.464, 215.4, {0.3648, 4.1059, {6.3203, 29.248 {5.7937, 9.9957¥, {5.0694, 56.23p, {4.2410,
9.2444, {7.9931, 25.35p, {3.1730, 5.9508, {1.1411, 1.5865, {4.4158, 70.795, {0.1746, 2.727p, {1.5692,1.867%,
{4.9706, 42.46%, {2.7351, 3.884Y, {6.7579, 15.89k, {0.3433, 1.243p, {1.2581, 1.3025} {4.1394, 7.6829,
{0.0088, 1.050}], {0.5258, 1.5419 {0.6328, 1.9058 Suppose that the pre-determined progressively firai+tail
censoring plan is applied using progressive censoringnsetie = (2,1,1,2,0,0,2,2,0,2,0,2,0,1,0). The following
progressively first-failure censored data of sime=¢ 15) out of 30 groups were observed: 0.0088, 0.0515, 0.1289,
0.1746, 0.3433, 0.3648, 0.5258, 0.6328, 0.8422, 1.142581, 1.5692, 6.2518, 6.7579, 7.9931
For this example, 15 groups are censored, and 15 first fdilmes are observed. Using the progressively first-failure
censored sample the MLE’s af and 3, are 0.5473 and 1.6811, respectively. we apply the Gibbs aattddolis
samplers with the help of importance sampling techniquesterthine the Bayesian estimation and prediction intervals
we assumed that both the parameters are unknown. Since wetdwave any prior information available, we used
noninformative priorfa=b=c=d = 0) on botha and 3. The density function of,(3|data) as given in(12) is
plotted Figure(1). It can be approximated by normal distribution function asntioned in the Subsection13 Now
using Algorithm 1, we generate @0 MCMC samples and discard the first 1000 values as ‘buyiased on them we
compute the Bayes estimatescaindf3 as 0.5186 and 1.5138Eespectively. As expected the Bayes estimates under the
non-informative prior, and the MLE’s are quite close to eather. Moreover, the result of 90% and 95% highest
posterior density (HPD) credible intervals@fandf are given in Tables 4 and 5 for the future order statisticsfanate
upper record values, respectively.

Table 4. Two sample prediction for the future order stafssti
90% (HPD) credible intervals fofs | 95% (HPD) credible intervals fofs
Ys | [Lower,Upper] Length [Lower,Upper] Length
Y1 | [0.0084,0.7250]] 0.7166 | [0.0042,0.9799] 0.9758
Yo | [0.0601,1.4470]] 1.3869 | [0.0402,1.9357] 1.8956
Y3 | [0.1471,2.4408]] 2.2938 | [0.1075,3.3300] 3.2224
Y4 | [0.2665,3.9269]] 3.6603 | [0.2032,5.5573] 5.3540
Y5 | [0.4230,6.3025]] 5.8795 | [0.3303,9.3826] 9.0523

Table 5. Two sample prediction for the future upper recotdes

90% (HPD) credible intervals fafs | 95% (HPD) credible intervals fafg
Zs | [Lower,Upper] Length [Lower,Upper] Length

Z; | [0.0439,2.6625]] 2.6186 [0.0213,2.8424] 2.8212

Z, | [0.0822,3.2278]] 3.1457 [0.0549,5.7681] 5.7132

Z3 | [0.1482,4.9041]| 4.7558 [0.1087,6.6587] 6.5500

Z4 | [0.2524,5.3410]] 5.0886 [0.2231,7.9281] 7.7050

Zs | [0.4437,7.5549] 7.1112 [0.3376,10.8731] 10.5355
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8 Conclusions

In this paper, Bayesian inference and prediction problefttseogeneralized Pareto (GP) distribution based on preges
first-failure censored data are obtained for future ordatistics and future upper record values. The prior belighef
model is represented by the independent gamma priors onothesbale and shape parameters. The squared error loss
function is used. We used Gibbs sampling technique to gen&&MC samples and then using importance sampling
methodology we computed the Bayes estimates. The same M@m@lss were used for two sample prediction problems.
The details have been explained using a simulated data.
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