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Abstract: In recent years, more and more researchers have focused on various significant issues of resource configuration, such as
maximum computing performance and minimum response time, especially taking existing resource utilization into account. The goal
of this research is to design a resource configuration optimization system under networked manufacturing environment. A prediction
mechanism is realized by using support vector regression (SVR) to estimate resource utilization according to network protocol of each
manufacturing process, while redistributing resources based on the current status of existing resources pool. A resource configuration
mechanism applying genetic algorithm working along with the tabu search process (GA-TS) is proposed in this study to determine the
redistribution of resources. The experimental results show that the proposed scheme achieves an effective configuration via reaching
the balance between the utilization of resources within existing resources and network protocol of each manufacturing process between
potential resource requirements and the network resource providers.

Keywords: Networked manufacturing resources configuration, support vectorregression, genetic algorithm, tabu search, resources
requirement prediction module

1 Introduction

The world-wide vertical and horizontal mergers wave
clearly shows that global networked manufacturing has
become the development trend in the 21st century
recently [1, 2]. Supply chains are often modeled as a
multi-stage production and inventory network under a
periodically reviewed base-stock policy. Deciding what
option should be used at each node and deciding where
inventory (resources) should be placed among these
nodes is what Graves and Willems refer to as supply
chain configuration (SCC) [3], especially for networked
manufacturing resources configuration (NMRC). In fact,
a network representation provides such a powerful visual
and conceptual aid for portraying the relationships
between the components of systems that it is used in
virtually every field of scientific, social and economic
endeavor. One of the most significant developments in
operational research in recent years has been the rapid
advance in both the methodology and application of
network optimization models. A number of algorithms
have had a major impact and are being used to solve huge
problems on a routine basis that would have been
completely intractable two or three decades ago.

A structured NMRC scheme, handling changes
systematically so that a system maintains its integrity over
time, ensures that resources (e.g., requirements, design,
and test) for manufacturing are accurate and consistent
with the actual physical operations, which can be divided
into five fundamental components as follows:(i) resource
pool;(ii) resource leveling;(iii) tracking system;(iv)
configuration scheme;(v) resource requirement. The goal
of scheme planning is to achieve adequate utilization at
the lowest reasonable cost, when weighted by important
metrics and subject to constraints, for example: meeting a
minimum service level. The main objective of resource
leveling is to smooth the stock of resources on hand,
reducing both excess inventories and shortages. The
required data are: the demands for various resources,
forecast by time period for the planning horizon, as well
as the resources’ configurations required in those
demands, and the supply of the resources, again forecast
by time period for the planning horizon. Tracking
planning is an important part of NMRC scheme planning,
which track requirements throughout the life cycle
through acceptance and operations and maintenance to
determine an optimal network configuration according to
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changes growth, the scheduling of activities and the
resources required by those activities while taking into
consideration both the resource availability and system
economy.

In general, tracking network planning is generally
divided into two stages: (i) scheme formation; (ii) scheme
evaluation. At the former stage, the topology and capacity
of the tracking lines are determined, whereas at the latter
stage, an analysis is performed of the network’s
characteristics, such as change flow, inadequate tracking
capacity, stability analysis, reliability, etc. Many
well-established methods of analysis have been applied at
the scheme evaluation stage and new ones are under
constant development [4–6]. Scheme formation can be a
complex task with many constraints. Optimal network
designs are important because they can result in large cost
savings. Clearly, further work is needed to develop
methods for the design of networks that are as near to
optimal as is possible.

Networked manufacturing resources configuration is a
complex mathematical optimization problem that is
mostly applied in the form of some rearrangement of
manufacturing resources, which have their own different
usages in problem solving and decision making [2].
Different resources configuration strategies for making
selections will result in different costs and levels of
capacity utilization. Therefore, it is a demanding task to
find a sub-optimal resources configuration strategy,
especially for limited resources aiming at each type of
goal. This research work focused on the application of
Evolutionary Algorithms (EA) under network
environment. Numerous researchers have proposed
genetic algorithm (GA) and tabu search (TS) to deal with
optimization problems, and the schema theorem for GA
proposed by Holland illustrated that GA is a robust
searching approach. And TS proposed by Glover and
Laguna is a well-known meta-heuristic that guides a local
heuristic search procedure to explore the solution space
beyond local optimality.

GA is not only an adaptive heuristic search algorithm
based on the evolutionary ideas of natural selection and
genetic, but also represents an intelligent exploitation of a
random search in a vase search space. Compared with
other heuristic methods, its main advantage is that it only
needs a fitness function to evaluate the quality of different
solutions and there is no necessary to offer a particular
algorithm to solve a given problem. Topcuoglu et al.
presented a GA-based method for the uncapacitated
single allocation hub location problem [7]. Randaccio et
al. applied a GA-based solution to find the appropriate
combination of the trees to comply with the bandwidth
needs of the group of multicast sessions simultaneously,
while allowing the operator to find the desired balance
between quality of service and network resource
utilization [8]. Feng et al. presented a method to select
members from different departments to resolve a
manpower distribution problem by using an improved
non-dominated sorting genetic algorithm (INSGA) [9]. In

recent years, TS has emerged as a highly efficient, search
paradigm for finding high quality solutions quickly to
combinative problems [10].

However, GAs often takes a lot of time in order to find
the global optimum [11–15], and some studies have
utilized a hybrid genetic algorithm to improve its
performance. The drawback of TS is that its effectiveness
depends very much on the strategy for manipulation of
the tabu list. Clearly, how to specify the size of the tabu
list in the searching process plays an important role in the
search for good solutions. Smirnov et al. used genetic
algorithms (GA) to find sub-optimal solution applying the
theory of games with fuzzy coalitions, and constraint
satisfaction problem solving for resource allocation
task [16]. Cantarella et al. specified some metaheuristics
(Hill Climbing, Simulated Annealing, Tabu Search,
Genetic Algorithms and Path Relining) for urban road
network topology design singularly or jointly. More tests
are required for more accurate calibration of the
parameters by using other transportation systems [17].Lin
et al. used a design point’s relative efficiency score from
data envelopment analysis(DEA) as its fitness value in the
selection operation of genetic algorithm(GA) to
determine optimal resource levels in surgical
services [18]. Schneider et al. also developed a Flexibility
Design Genetic Algorithm (FGA) that exploits qualitative
insights into the structure of good solutions, such as the
well-established chaining principle, to enhance its
performance [19].

A support vector machine (SVM) is a supervised
learning technique from the field of machine learning
applicable to both classification and regression. Rooted in
the Statistical Learning Theory, SVMs are based on the
principle of structural risk minimization (SRM), which
attempts to minimize an upper threshold on the
generalization rather than minimize the training error, and
is expected to perform better than the traditional
empirical risk minimization (ERM) approach. Support
vector machines (SVMs) have a novel neural network
algorithm based on statistical learning theory. Due to the
SVMs structure risk minimization principles, they have
great generalization ability and provide superior
performance in practical applications. With the
introduction of Vapnik’sε-insensitivity loss function, the
regression model for SVMs, called SVR, has also
received increasing attention in the solution of nonlinear
estimation problems. It has been successfully applied to
problems of time series prediction, such as production
value forecast of the machinery industry [20,21]. Yang et
al. proposed the localized support vector regression
(LSVR) model to improve the performance of the
standard SVR model for time series prediction, by
offering a systematic and automatic scheme to adapt the
margin locally and flexibly. The experimental results on
synthetic data and real financial data demonstrate its
advantages over the standard SVR [22]. In addition, Zou
et al. compared three regression approaches, including
SVR, Artificial Neural Networks (ANNs), and Partial
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Least Squares (PLS), in quantitative analysis of
components of solid pharmaceutical samples on
near-infrared spectroscopy, and the results showed that
SVR obtained better performance in terms of
parameter-selecting process than those obtained with the
traditional methods [23]. Although utilizing SVR in time
series prediction has yielded many successful results,
there has been far less research on the application of SVR
to demand forecasting problems. Pai et al.’s work on a
support vector regression model with scaling
preprocessing and marriage in honey-bee optimization,
however, suggests that SVR can be used to accurately
forecast developments in the IC industry [21].

This paper aims to consider the efficiency and
optimization of resource configuration under networked
manufacturing environment. A resources requirement
prediction module built with SVR is used to evaluate
resource utilization according to network protocol of each
manufacturing process. When potential resources are
demanded, the system will consider the individual
loading to precede the prediction with SVR. If the result
needs to change the configuration strategies, the scheme
will utilize GA-TS at this stage to try its best to achieve
the global deployment of the resources effectively,
including creating or collecting resources, to make sure
that the proposed scheme can satisfy the network protocol
requested by the customers. The remainder of this paper
is organized as follows. Section 2 formulates the
algorithm for the proposed resource configuration
mechanism. Section 3 gives comparative results between
the non-optimized approach and the optimized approach
proposed in this paper. Conclusions are given in Section
4.

2 Resource Management Pattern

Fig.2.1 illustrates the architecture of the resource
configuration scheme under networked manufacturing
environment proposed in this paper. An operation
resources pool is used to collect all operation resources
provided by the networked manufacturing, recording the
overall utilization of system resources. In addition, an
existing resources pool is used to provide resources,
material, information, capital, or knowledge, for the
network nodes; and two query tables, including the
remaining resource table and the resource utilization rate
table, are used to assist in determining the strategies of
increasing or decreasing potential resources required by
each manufacturing process from network nodes. Here, a
resources requirement prediction module built with
Support Vector Regressions (SVRs) is used to estimate
resource utilization according to network protocol of each
manufacturing process. Meanwhile, a networked
resources configuration module applied with the hybrid
GA-TS algorithm is utilized to redistribute the aggregated
resources to route tasks to the most suitable execution
nodes, including creating or collecting resources,

allocating tasks to idle nodes, to make sure that the
proposed scheme can minimize the global makespan and
fulfill deadline requirements from the customers.

2.1 Resources Requirement Prediction Module

This module mainly estimates the resource
requirements of manufacturing process to remind the
system to create or collect resources in accordance with
the reality of networked manufacturing. Furthermore, a
well-known time series predictor, namely SVR, is
embedded in this module to evaluate resource utilization
according to network protocol of each manufacturing
process with the assistance of two query tables, that is,
remaining resource table, which records all related usable
resources along the manufacturing processes, and
resource utilization rate table, which stores the utilization
rate of each type of resources in the manufacturing
system. With the above-mentioned methods, this module
will determine whether the resources should be increased
or decreased for the requests from the network protocol.

Figure 2.1: The structure of the resource configuration
scheme

The model produced by SVR depends only on a
subset of the training data, because the cost function for
building the model ignores any training data close to the
model prediction (within a threshold). To solve a
nonlinear regression or functional approximation problem
using SVR, the inputs are first nonlinearly mapped into a
high dimensional feature space (F) wherein they are
correlated linearly with the outputs. The parameters can
then be derived by solving a quadratic programming
problem with linear equality and inequality constraints.

Consider a training data setG = {(xi,qi), i = 1, ..., l},
where xi ∈ ℜl ,and qi ∈ ℜ.The input xi terms are
l-dimensional vectors, and the system responseqi terms
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are continuous values. The SVR attempts to approximate
the following function using data setG:

f (x,w) =
l

∑
i=1

wi ×ϕi(x)+b (1)

whereb denotes the bias term, and thewi terms represent
the subjects of learning. Furthermore, a mappingz = Φ(x)
is selected in advance to map input vectorsx into a higher-
dimensional feature spaceF , which is spanned by a set of
fixed functionsϕi(x).

By defining a linear loss function with the following
ε-insensitivity zone as illustrated in Fig.2.2:

|qi − f (xi,w)|ε =

{

0; i f |qi − f (xi,w)| ≤ ε
|qi − f (xi,w)|− ε;otherwise (2)

Figure 2.2: A plot ofε-insensitive loss function
Thewi terms in Eq.(1)can be estimated by minimizing

the risk:

R =
1
2
||w||2+

C
l
(

l

∑
i=1

|qi − f (xi,w)|ε) (3)

where C denotes a user-chosen penalty parameter that
determines the trade-off between the training error and
VC-dimension of the SVR model. Significantly, the
VC-dimension is a scalar value that measures the capacity
of a set of functions [24]. Eq.(3)can be further derived as
the following constrained optimization problem:

R(w,ζ ,ζ ∗) =
1
2
||w||2+

C
l
(

l

∑
i=1

ζi +
l

∑
i=1

ζ ∗
i ) (4)

subject to constraints:






qi −wT xi −b ≤ ε +ζ ∗
i

wT xi +b−qi ≤ ε +ζi
ζi,ζ ∗

i ≥ 0
(5)

whereζi andζ ∗
i denote the respective measurements

above and below the zone with the radiusε in Vapnik’s
loss function as given in Eq.(2).

Scḧolkopf et al. [25] developed a modification of
Vapnik’s original SVR algorithm, called v-SVR, and
claimed that it can automatically minimize the radiusε .

Lagrange multiplier methods can be employed to
demonstrate that the constrained optimization problem in
Eqs.(4) and (5) maximizes the solution of the following
equation:

W (α,α∗)=
l

∑
i=1

(α∗
i −αi)qi−

1
2

l

∑
i, j=1

(α∗
i −αi)(α∗

j −α j)k(xi,x j)

(6)
subject to







∑l
i=1(αi −α∗

i ) = 0
0≤ αi,α∗

i ≤ C
l , i = 1, ..., l

∑l
i=1(α∗

i +αi)≤C× v
(7)

where(αi,α∗
i ) denotes one ofl Lagrange multiplier

pairs; C represents a regularization constant specified a
priori; v is a constant greater than or equal to zero, and
k(xi,x j) denotes normally a Gaussian kernel or
polynomial kernel. The regression estimate can be shown
to take the form

f (x) =
l

∑
i=1

(α∗
i −αi)× k(xi,x j)+b (8)

whereb denotes the optimal bias.

2.2 Networked Resources Configuration Module
As shown in Fig. 2.1, this module collects the

information from the resources requirement prediction
module and two query tables, along with network
protocol requested by the different network nodes, to
achieve optimal resource utilization and fairness among
competing end-to-end flows. A hybrid GA-TS algorithm
is applied in this paper to deal with the NMRC
optimization problem, and the fitness function is designed
in accordance with the reality of networked
manufacturing.

Fig.2.3 shows the procedures of the SVR model with
GA-TS algorithm. We first transfer the potential resources
which are established in the existing resource into a
binary code as the initial population, called
chromosomes. Each element in the chromosome is either
0 or 1, and the higher fitness value will be kept to
generate the next generation during the procedure of
recombination and mutation. The new generation will run
the same steps as their parents did until the stop criteria
are satisfied. In addition, we do not need to set fixed time
interval to activate GA because the system will proceed
with the adjustment strategies according to the real-time
demand of potential resources. Once a new request of
potential resources arrives, the system will run GA to
adjust the overall configuration of the resources.

2.2.1 Conventional genetic algorithm (CGA)
The binary coded Conventional GA (CGA) with one-

point crossover is described below.
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Figure 2.3: A flowchart of the SVR model with
GA-TS algorithm

Step 1.Generate randomly the initial population ofN
individuals, each one is a bit string chosen from{0,1},
and let current generationk = 1 andKmax is the maximum
number of generation/iteration. Initializepc and pm as
crossover probability and mutation probability,
respectively.

Step 2.Evaluate the fitness score for each individual
xi, i ∈ {1, ...,N} of the population based on the objective
function f (xi).

Step 3.Select a pair of individualsxα and xβ at
random, depending on their fitness values (using roulette
wheel method) from the population ofN individuals.
Here, selection refers to choosing parents for
recombination; a new population was formed, usually
with a probabilistic mechanism.

Step 4.Conduct crossover between the chosen
individualsxα andxβ with pcand mutate each of their bits
with mutation probability pm. Each pair of parents
(xα ,xβ ) thus creates a pair of new individuals called
offspring (x′α ,x

′
β ) to generate a pool of individuals,

x′j, j ∈ {1, ...,N} as a population of next generation.
Step 5.Terminate the process if the stopping criterion

(k > Kmax) is satisfied. Otherwise,k = k+1 and go to Step
2.

2.2.2 Tabu Search (TS)
Tabu search is a metaheuristic local search algorithm

that can be used for solving combinatorial optimization
problems. Tabu search enhances the performance of a
local search method by using memory structures; i.e.,
once a potential solution has been determined, it is
marked as “taboo” (“tabu” being a different spelling of
the same word) so that the algorithm does not visit that
possibility repeatedly. Generally, the tabu list size should
grow with the size of the given problem.

The iterative search procedure starts with a set of
probable or feasible solutions. Each solution is a string of
bits, chosen from{0,1}. Let ARtr , ARcu andARbe denote
the trial, current, and best array(s),OBtr ,OBcu and OBbe
denote the corresponding trial, current, and best objective
function value(s), respectively. The process assigns the
current solutionARcu for starting its operation. Then the
trial solutionsARtrs are generated through some moves.
At each iteration step, a best solutionARbe is found. With
the progress of the search process if it is found that the
best solution is in the forbidden or tabu list but satisfies
theaspiration criteria, then it is considered to be the new
current solution. An aspiration criterion is a rule that
overrides tabu restrictions; i.e., if a certain move is
forbidden by a tabu restriction, the aspiration criterion,
when satisfied, can make this move allowable. The
aspiration criterion used in the present method is the
overriding of the tabu status of a move if this move yields
a solution which has a better objective function than the
one obtained earlier with the same move. The stopping
criteria are the conditions under which the search process
will terminate. In the present method, the search will
terminate if one of the following criteria is satisfied: the
number of iterations since the last change of the best
solution is greater than a prespecified number; or the
number of iterations reaches the maximum allowable
number. The TS algorithm is given by the following steps.

Step 1: Initialize the parametersSmtl (Maximum Tabu
List Size), the number of trial solutionsµ , and the
maximum number of iterationsImax. Let ARcu be an
arbitrary solution and OBcu be the corresponding
objective function value. Initially, let
ARbe = ARcu,OBbe = OBcu,Ltl (Tabu List Length)= 0
and iterationI = 1.

Step 2: Using ARcu, generate µ trial solutions
AR1

tr,AR2
tr, ...,ARµ

tr and evaluate their corresponding
objective function valuesOB1

tr,OB2
tr, ...,OBµ

tr. Given a
current solutionARcu, one can generate a trial solution
using several strategies. In our case, givenARcu , we have
flipped a bit ofARcu if the probability threshold is higher
than a randomly generated value between 0 and 1.
Otherwise, the corresponding bit is kept unchanged.

Step 3: Arrange the objective function values
OB1

tr,OB2
tr, ...,OBµ

tr in ascending order and denote them

asOB1′
tr ,OB2′

tr , ...,OBµ ′

tr . If OB1′
tr is not tabu or if it is tabu

but OB1′
tr < OBbe (in case of minimization) then make

ARcu = AR1′
tr and OBcu = OB1′

tr . Next, go to step 4.
Otherwise, letARcu = ARL

tr andOBcu = OBL
tr, whereOBL

tr
is the best objective function values of

OB1′
tr ,OB2′

tr , ...,OBµ ′

tr , that is not tabu and go to step 4. If

OB1′
tr ,OB2′

tr , ...,OBµ ′

tr are all tabu, then go to step 2.
Step 4: InsertARcu at the bottom of the tabu list and

incrementLtl by 1. If Ltl = Smtl + 1 then delete the first
element in the list andLtl = Ltl −1 . If OBbe > OBcu then
ARbe = ARcu andOBbe = OBcu. Terminate the process if
I = Imax with ARbe as the best solution andOBbe as the
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corresponding best objective function. Otherwise, make
I = I +1 and go to step 2.

2.2.3 Hybridization of GA with TS process (GS-TS)
The genetic methods are hybridized with the local TS

process described in Section 2.2.2. The hybridization of
each genetic method eventually enhances the performance
of the respective hybrid genetic approach.

The genetic process starts with a populationpt(g)
(where 1≤ t ≤ Tmax and 1≤ g ≤ Gmax) of N (population
size) randomly created individuals. The new GA (NGA)
adopted in our paper differs from CGA in two ways: the
search is transferred from a larger hypercube to a smaller
one for a specified number of timesTmax and the search
space resolution is redefined with the transfer of the
search process to the newly defined hypercube. Here, we
define the parameters of the functionf (x) in Rn where
x = (x1, ...,xn) andRn represents then-dimensional space.
The searching process starts with low resolution and the
algorithm finds a best solution
xt

BE = (xt
BE,1,x

t
BE,2, ...,x

t
BE,n) which has not changed for

several consecutiveKg generations. The search is then
transferred to a smaller hypercube aroundxt

BE . At the t th
stage the hypercube onn-dimensional space can be
represented as Rt,n = {rt,1,rt,2, ...,rt,n} , where
1≤ t ≤ Tmax andrt, j > 0, j = 1,2, ...,n .

Once the search process converges at(t − 1)th step,
the GA is reinvoked in the new hypercubeRt,n with same
mutation rate and higher space resolution. The population
pt(g) at t th step is reproduced after transfer of the search
process toRt,n hypercube. The individuals that are located
both in Rt−1,n and in Rt,n except the elitist individual in
Rt−1,n are removed from the populationpt−1(g)(where
1< t ≤ Tmax and 1< g ≤ Gmax) . A new populationpt(g)
of N individuals is regenerated withN − 1 randomly
created new individuals and the elite one ofpt−1(g).
Thus, the diversity of the population is restored at each
stage.

We propose a hybrid genetic algorithm where the
NGA works along with the TS process. From the
discussions above, it is known that the NGA advances its
search process hierarchically in multiple stages. Attth
stage (initially t = 1 ), it starts with a populationpt(g)
(where 1≤ t ≤ Tmax and 1≤ g ≤ Gmax) of N individuals
and finds the best solutionxt

BE in the initial hypercube in
the multi-dimensional space. In the hybrid process the TS
technique is invoked at this point at the same hypercube
without the change of resolution. The TS algorithm starts
processing with the best solutionxt

BE found as its current
solution ARcu and generates randomly a pool of trial
solutions consisting ofµ individuals whereµ < N . The
trial solutions are denoted byAR j

tr, j ∈ {1, ...,µ} Each
AR j

tr consists of the same number of bits ofxt
BE . The

fitness values ofµ trial solutions are calculated and the
best solutionARbe is picked, depending on the fitness
values. IfARbe satisfies the conditions of TS algorithm to
be considered as the new current solution for the next
generation, thenARcu = ARbe . The process is continued

Imax times (Imax ≪ Gmax) to achieve the final best solution
ARt

be (at tth stage) of the TS process. At the end,ARt
be

may or may not be better (but not worse) thanxt
BE . The

GA is then reinvoked where the search domain jumps
from the hypercubeRt−1,n to the new smaller hypercube
Rt,n with ARt

be as its best solution. The GA generates a
new population ofpt(g) of N individuals includingARt

be
while redefining its search space resolution. The GA
restarts with a new population and it may again converge
to a solution. As before, TS is again initiated at that point.
Thus, to find the global optimal solution the hybrid
genetic process is continued with the transfer of the
search location from one hypercube to the neighboring
hypercube for at mostTmax times. The changeover from
GA to TS is continuedTmax times. The algorithmic steps
of the hybrid process are briefly discussed below where
the steps of the GA and the TS process remain as before.
Both algorithms are executed equal number of times for a
problem.

Step 1: Sett = 1 . Initialize the GA as well as the TS
parameters.

Step 2: Start the GA with a pool ofN individuals and
continue the process.

Step 3: If the best solution of GA has not changed
duringKg iterations, invoke TS.

Step 4: Consider the best solution of the GA as the
current solution of TS at the respective stage.

Step 5: Continue the TS process forImax times.

Step 6: If t > Tmax , terminate the hybrid algorithm.
Otherwise,t = t+1 and consider the best solution of TS as
the best solution of the GA for the next generation.

Step 7: Redefine the new hypercubic search space
with higher resolution. Generate a pool ofN individuals
including the best solution found in Step 6 and go to Step
2.

3 Simulation results

We first observed the difference between the
non-optimized approach and the optimized approach
proposed in this paper. Six existing groups which were
equipped with 12 lathes and 8 lathemen, and a simulation
software installed in the Windows XP platform with Intel
Core 2 Quad 3.2 GHz and 4 GB RAM, was adopted in
this work as the simulator of networked manufacturing
infrastructures. The maximum number of potential
resources was set to 100. To reflect the characteristics of
the real world, different complexities of service
applications were designed to verify the feasibility and
effectiveness of our proposed work.
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Figure 3.1: The comparison of the accumulated
counts of fulfilling resource requirements

Fig.3.1 shows the comparison of the accumulated
counts of fulfilling resource requirements between
optimized and non-optimized approaches. Our proposed
SVR-GA-TS mechanism adopted the SVR technique as a
predictor that can moderately assign potential resources
according to current network utilizations. Additionally,
the hybridization of GA with TS process is applied to find
out an optimized set of resource allocation strategies. The
system that utilized GA without executing the prediction
module via SVR is denoted by NO SVR-GA-TS. NO
SVR-GA-TS used random allocation in the initialization
step of GA without allocating potential resources in
advance. The difference between SVR-GA-TS and NO
SVR-GA-TS is that the latter cannot determine if the
distribution strategies of potential resources need
adjusting, and also cannot undergo local preallocation for
individual demands in the initialization. Therefore, our
approach can fulfill more resource requirements
compared with the non-optimized method.

Figure 3.2: The comparison of time consumption for
each resource requirement.

Fig.3.2 shows the comparison of time consumption
for processing each resource requirement between the
optimized and non-optimized approaches. Obviously,
with the help of the application of resources requirement
prediction module, the proposed approach can
dynamically modify the requirement of the potential
resources and the networked resources configuration
module can effectively meet the requirements of existing
resources by using the GA-TS algorithm. Because the
system utilized SVR as a prediction mechanism before
applying GA-TS, the total waiting time of executing
applications can be thus dramatically decreased through
allocating potential resources in appropriate existing
resources pool in advance. Besides, our proposed
SVR-GA-TS can undergo the operation of local
allocation in advance for individual demands in the
initialization step of GA. Therefore, we can decrease the
computation complexity of GA-TS and increase the
overall performance. We realize that GA-TS can obtain
the optimal solution accurately, but the problem is that the
traditional GA needs much time to converge, and this will
be the main problem for real-time applications. That is
the reason we combined SVR as a prediction mechanism
to decease the computational times of GA-TS, and the
advantage can be thus shown without affecting the overall
performance in real-time systems.

4 Conclusions

In this paper, a resource configuration optimization
scheme under networked manufacturing environment is
proposed. According to our experimental findings, the
proposed approach, which employs a resources
requirement prediction module built with SVR, can
estimate the number of resource utilization according to
network protocol of each manufacturing process more
accurately and efficiently than those non-optimized
approaches found in the recent literature.

This paper mainly examines the performance of NGA
working along with the TS process, applied in networked
manufacturing. At present stage, we only evaluated two
resources, including lathe and latheman, and the
experimental results showed the effectiveness of applying
GA-TS in the resource configuration of networked
manufacturing. In future work, we will focus on more
resources, such as the access of networked information to
make our work more practical in real manufacturing
processes.

In addition, the networked resources configuration
module applied with GA-TS can effectively adjust the
resource configuration strategies and accomplish more
applications in a limited time, compared with the
non-optimized approach. In future work, we plan to
choose other Evolutionary Algorithms, such as the hybrid
meta-heuristic algorithm, called evolution strategy, as
compared methods.
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