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Abstract: Many phenomena coming from the biology, economy, engineering are modeled using discrete dynamical systems. The
concept of backward orbit is an essential concept for understanding the dynamics of the system. In the literature various definitions
of the concept of the alpha–limit point (respectively set) have been historically used. The aim of this paper is to analyze the forcing
relationships between them via the proof of the valid relationships and the construction of counterexamples for the converse situation
in order to clarify the scenario for the computation of these objects. Moreover, we present a discrete dynamical system(X, f ) with the
following paradoxical behavior: for every pointx ∈ X, its alpha–limit set is equal to the whole spaceX; there is a complete negative
trajectory ofx whose alpha–limit set is equal to a fixed point; there is a complete negative trajectory ofx whose alpha–limit set is equal
to X.
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1 Introduction and statement of the main
results

A discrete dynamical system(briefly, dynamical system)
is defined as an ordered pair(X, f ) where f is a
continuous map defined on a compact metric spaceX.
This kind of systems are the mathematical environment
for modelling many phenomena from different areas such
as biology, economics and engineering (for further details
see [2] and [5] and references therein). To understand the
dynamical properties of a system it is necessary to have
information on the behavior of thetrajectories of any
point x ∈ X under the iteration off . For these purposes
many tools are used. In this paper attention is focused on
the concept of theα–limit set.

The notion of theω–limit set, i.e. the set of limit
points of a trajectory, has been studied in depth in the
literature and its definition is not involved at any
controversy. The problem with this notion is its
topological characterization which is open for the
majority of systems (see [9] and references therein). In
contrast, the notion of the α–limit, which is
philosophically its dual notion since it can be regarded as
the source of the trajectory of a point, presents some
problems from the point of view of its definition due to

the many possibilities that can be chosen to construct the
backward trajectory and its limits.

Up to now, there have been only a few results
concerningα–limit sets, mainly in the setting of a system
given by continuous maps defined on the unit closed
interval and on graphs. X. Jincheng [8] and E. M. Coven,
Z. Nitecky [3] found some interesting properties of
α–limit sets for continuous interval self–maps: More
precisely they proved that the set of allα–limit points
strictly contains the set of non–wandering points; a point
x is non–wandering if and only ifx belongs to its own
α–limit set. Finally, H. Cui and Y. Ding, see [6] and [4],
studiedα–limit sets for special types of continuous maps
of the interval (expanding Lorentz maps and unimodal
maps without homtervals). S. TaiXiang et al [10] proves
that specialα–limits points are contained on the closure
of recurrent points. In this setting, the main difficulties
come from the fact that the inverse image of a point is
generally a set whose cardinality is rather large. Hence, it
is quite difficult to follow the backward orbit.

The most general definition of theα–limit set (see
Definition 1) is very natural, but unfortunately very
approximate. This notion was refined firstly by M. W.
Hero [7] (see Definition2) in such a way that only some
branches of the backward orbit are considered and
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recently by F. Balibrea et al [1] (see Definition4) in such
a way that exactly one branch of the backward orbit is
considered. The aim of this paper is to state the forcing
relationships between these three different notions of the
concept of theα–limit set by proving valid implications
and presenting counterexamples for invalid cases.

The statement of our main results is as follows. The
relationship between Definitions1, 2 and4 are shown in
the scheme below. A missing arrow means that the
implication is not valid. Implication (A) is proved by
Theorem1; implication (B) by Theorem2 and the final
one (C) follows from the transitivity. The counterexample
for the converse implication of (A) was given by M. W.
Hero [7] in Example 1. For the counterexample of the
converse to (B) see Theorem3 and for the final one (C)
see Remark2.

(A)
y∈ sα f (x) −→ y∈ α f (x)

տ (B) (C)ր
y∈ α f ({x∞

n=0})

In Section 2 different definitions of theα–limit set and
some auxiliary results are stated. Section 3 is devoted to
the proof of main results.

2 Definitions of theα–limit set and auxiliary
results

The aim of this section is to present three different
definitions of the notion of anα–limit set, the notation,
and some auxiliary results which are needed for stating
the proof of the main results and the construction of the
counterexamples that are presented in the next section.

The first notion is the classical definition of theα–limit
set which is analogous to the definition of theω–limit set.

Definition 1.Let (X, f ) be a dynamical system and x∈ X.
A point y∈ X is called anα–limit point of x under f if and
only if there is a strictly increasing sequence of positive
integers{kn}

∞
n=0 and a sequence of points{yn}

∞
n=0 such

that

1. fkn(yn) = x,
2.limn→∞ yn = y.

The setα f (x) of all α–limit points of x under f is called
theα–limit set.

Let us note that the above mentioned definition is
equivalent to

α f (x) =
⋂

n≥0

⋃

m≥n

f−m(x) (1)

and using the same technique the definition of theω–limit
set ofx under f (denoted byω f (x)) could be equivalently
written as

ω f (x) =
⋂

n≥0

⋃

m≥n

{ f m(x)}. (2)

M. W. Hero [7] introduced the following concept.

Definition 2.Let (X, f ) be a dynamical system and x∈ X.
A point y∈ X is called an sα–limit point of x under f if
and only if there is a sequence of positive integers{kn}

∞
n=0

and a sequence of points{yn}
∞
n=0 such that

1.x= y0,
2. fkn(yn) = yn−1,
3.limn→∞ yn = y.

The set sα f (x) of all sα–limit points of x under f is called
the sα–limit set.

Many interesting properties were proven by M. W.
Hero [7] on sα–limit sets for continuous maps on the unit
closed interval, see the following proposition. Here, a
point x ∈ X is calledalmost periodicif for a given open
setU containingx, one can find an integern> 0 such that
for any integerq > 0 there is an integerr, q ≤ r ≤ q+ n
with f r(x) ∈ U . A point x is said to berecurrent if it
belongs into itsω–limit set.

Proposition 1.Let ([0,1], f ) be a dynamical system. Then

1.if the sequence{yn}
∞
n=0 corresponds to Definition2

then y∈ sα f (yn) for every n,
2.if x ∈ sα f (y) then fn(x) ∈ sα f (y) for every n and

ω f (x)⊆ sα f (y),
3.if x∈ X is an almost periodic point then x∈ sα f (x),
4.if x∈ X is a recurrent point then x∈ sα f (x).

The following notion, see [2], plays an important role
in the final definition of anα–limit set.

Definition 3.Let(X, f ) be a dynamical system. A complete
negative trajectory of a point x∈ X is an infinite sequence
{xn}

∞
n=0 such that x0 = x and f(xn+1) = xn for any n≥ 0.

The following definition was recently conceived by F.
Balibrea et al [1].

Definition 4.Let (X, f ) be a dynamical system and
{xn}

∞
n=0 be a complete negative trajectory of a point

x∈ X for f . Then the setα f ({xn}
∞
n=0) of all limit points of

{xn}
∞
n=0 is called theα–limit set of{xn}

∞
n=0.

Now, let A be any finite set (an alphabet) containing
n elements (known as symbols). Aninfinite wordis a map
w: N → A , hence it is an infinite sequence
(w1,w2,w3, . . .) wherewi ∈ A for any i ∈ N. The set of
all infinite words over the alphabetA is denoted byΣn.
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The setA is endowed with discrete topology. ThenΣn
is metrizable by the following metric. For anyx,y∈ Σn put

d(x,y) =

{

2−k, if x 6= y,
0, otherwise,

(3)

wherek is the length of the maximal common prefix ofx
andy. Define a shift mapσ : Σn → Σn by

(σ(x))i = xi+1

The dynamical system(Σn,σ) is said to bethe shift on n
symbols.

Now, two elementary results (Lemma1 and Lemma2)
are formulated, that are very useful and analogous to their
ω–limit versions. Note that they are also valid forsα–limit
set andα f ({xn}

∞
n=0) sets. Recall that setA⊂X is called the

invariant if and only if f (A) = A.

Lemma 1.Let(X, f ) be a dynamical system, f be onto and
x∈ X. Thenα f (x) is non-empty, closed and invariant.

Proof.The setα f (x) is non–empty, since the mapf is onto.
Obviously, in accordance with (1) the setα f (x) is closed.

If y ∈ α f (x) then in accordance with Definition1
there is a strictly increasing sequence of positive integers
{kn}

∞
n=0 and a sequence of points{yn}

∞
n=0 such that

f kn(yn) = x and limn→∞ yn = y. Put ln = kn − 1 and
zn = f (yn). Then the strictly increasing sequence of
positive integers{ln}∞

n=0 and the sequence of points
{zn}

∞
n=0 such thatf ln(zn) = x and limn→∞ zn = f (y) = z

are obtained, since

f ln(zn) = f kn−1( f (yn)) = f kn(yn) = x,

and

f (y) = f ( lim
n→∞

yn) = lim
n→∞

f (yn) = lim
n→∞

zn = z.

Consequently,α f (x) ⊂ f (α f (x)). The second inclusion
can be proved analogously.

Remark.It must be pointed out that the assumption thatf
is onto is essential. As an example it is sufficient to put
f (x) = 1/2 for anyx ∈ [0,1]. Thenα f (1/2) = [0,1] and
α f (y) = /0 for anyy∈ [0,1/2)∪(1/2,1], sincef−n(1/2) =
[0,1] and f−n(y) = /0 for anyn> 0. Nevertheless, there is
only one complete negative trajectory{1/2}∞

n=0 for f (x) =
1/2. So,α f ({1/2}∞

n=0) = {1/2}.

One of the most important tools in dynamical systems
is conjugacy. That is, two dynamical systems(X, f ) and
(Y,g) areconjugatedif there is a homeomorphismh : X →
Y such thatg◦h = h◦ f . Such homeomorphism is called
theconjugacy.

Lemma 2.Let (X, f ) and(Y,g) be two conjugated systems
with conjugacy h. Then h(α f (x)) = αg(h(x)).

Proof.The task is to show thaty ∈ α f (x) if and only if
h(y) ∈ αg(h(x)). By Definition 1 y ∈ α f (x) if and only if
there is a strictly increasing sequence of positive integers
{kn}

∞
n=0 and a sequence of points{yn}

∞
n=0 such that

f kn(yn) = x and limn→∞ yn = y. So, there is a strictly
increasing sequence of positive integers{kn}

∞
n=0 and a

sequence of points {h(yn)}
∞
n=0 such that

gkn(h(yn)) = h(x) and limn→∞ h(yn) = h(y), since
gn = h◦ f n ◦ h−1 for any n > 0. Hence,h(y) ∈ αg(h(x)).
The other inclusion can be proved similarly.

3 Proof of the main results

The aim of this section is to state and prove our main
results.

Theorem 1.Any sα–limit point isα–limit.

Proof.If y ∈ sα f (x) then in accordance with Definition2
there is a sequence of positive integers{ln}∞

n=0 and a
sequence of points{yn}

∞
n=0 such that x = y0,

f ln(yn) = yn−1 and limn→∞ yn = y. Put kn = ∑n
m=1 lm.

Obviously {kn}
∞
n=0 is strictly increasing sequence of

positive integers and

f kn(yn) = f l1( f l2 . . .( f ln(yn))) =

f l1( f l2 . . .( f ln−1(yn−1))) = f l1(y1) = y0 = x

soy∈ α f (x) ending the proof.

Theorem 2.If y ∈ α f ({xn}
∞
n=0) then y∈ sα f (x).

Proof.If y ∈ α f ({xn}
∞
n=0) then there is strictly increasing

sequence{ln}∞
n=0 of positive integers such thatxln → y for

n→ ∞. Putkn = ln+1− ln andyn = xln+1 for eachn. Hence,
x = x0, f kn(yn) = yn−1 and limn→∞ yn = y. Consequently,
y∈ sα f (x).

Theorem 3.There is a dynamical system(X, f ) such that
for any x∈ X

1.α f (x) = sα f (x) = X,
2.there is a complete negative trajectory{xn}

∞
n=0 and

α f ({xn}
∞
n=0) = {p} where p is the fixed point of f ,

3.there is a complete negative trajectory{xn}
∞
n=0 and

α f ({xn}
∞
n=0) = X.

Proof.Let (X, f ) = (Σ2,σ) andy, x be arbitrary points in
Σ2. Denote by[x]n the blockx1x2 . . .xn of lengthn.

1.Let yn = [y]n[y]n−1[y]n−2 . . . [y]1x be a sequence of
elements inΣ2. Let {kn}

∞
n=0 be a sequence of positive

integers such that kn = n. Hence, y0 = x,
σkn(yn) = yn−1 and limn→∞ yn = y. Since the pointy
was arbitrarily chosen it may be now deduced
sασ (x) = Σ2. The second equality follows from
Theorem1.
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2.It is sufficient to take a complete negative trajectory
{xn}

∞
n=0 = {[0]nx}∞

n=0. Obviously, this trajectory tends
to the fixed point 000· · ·= 0 in Σ2.

3.Let e∈ Σ2 be a point with a dense orbit, constructed
as a concatenation of all blocks of all lengths (for
more details see [5]). Then put{xn}

∞
n=0 = {[e]nx}∞

n=0.
Consequently,ασ ({xn}

∞
n=0) = Σ2.

Example 1.Here the α–limit sets for the tent map
T(x) = 1−|1−2x| defined on[0,1] are discussed. Firstly,
the tent map is onto, so in accordance with Lemma1
αT(x) it is non-empty, closed and invariant. It is possible
to find an inverse image of any point in any
non-degenerate interval forT, sinceT is transitive. So,
for anyx∈ [0,1], αT(x) = [0,1] is obtained. The tent map
restricted to the Cantor ternary set is conjugated to
(Σ2,σ) (see [5]). Hence, in accordance with Lemma2
and Theorem3 α–limit sets are more complex with
respect to the complete negative trajectory. So, it is
possible that they are finite or uncountable.
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