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Abstract: The notion of a (closed) double-framed soft ideal (briefly, a (clp&#eS-ideal) in BCK/BCl-algebras is introduced, and
related properties are investigated. Several examples are provitedel@tion between a DFS-algebra and a DFS-ideal is considered,
and characterizations of a (closed) DFS-ideal are established. A F&aideal from old one is constructed, and we show that the
int-uni DFS-set of two DFS-ideals is a DFS-ideal. Conditions for a DF&tittebe closed are discussed.
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1 Introduction In this paper, we introduce the notion of a (closed)
double-framed soft ideal (briefly, a (closed) DFS-ideal) in
BCK/BCl-algebras. We discuss the relation between a

Molodtsov [L9] introduced the concept of soft set as a DFS-algebra and a DFS-ideal. We establish

new mathematical tool for dealing with uncertainties thatcharacterizations of a (closed) DFS-ideal, and make a

is free from the difficulties that have troubled the usual "€W DFS-ideal from old one. We show that the int-uni

theoretical approaches. Molodtsov pointed out severaPFS-set of two DFS-ideals is a DFS-ideal. We provide

directions for the applications of soft sets. Worldwide, conditions for a DFS-ideal to be closed.

there has been a rapid growth in interest in soft set theory

and its applications in recent years. Evidence of this can

be found in the increasing number of high-quality articles2 Preliminaries

on soft sets and related topics that have been published in

a va(iety of !nternational journa}ls, symposia, Works'hops,z.l Basic results on BCK/BCl-algebras

and international conferences in recent years. Maji et al.

Ejle?]:is(ijc?rfcr:;zek?ng;hSroat)ﬁg:faRAO;}i c;ft Z(I):{t{)]S:rséhgtolJrc)jli;g an BCK/BCl-algebra is an important class of logical
. : Igebras introduced by K. é&i and was extensively

several operations on the theory of soft sets. Jun and Par]

! > L investigated by several researchers.
[BléL?gjgll?;gzgfggatlons of soft sets in ideal theory of An algebra (X;+,0) of type (2,0) is called a

BCl-algebraif it satisfies the following conditions:
We refer the reader to the papet$, [2], [3], [4], [5],

[8], [10], [11], [12], [13], [20] and [21] for further (D) (vxy.z€ X) (((x*Y) * (X*x2)) x (zxy) = 0),
information regarding algebraic structures/propertiés o (I) (¥X,y € X) ((xx (xxy)) xy=0),
soft set theory. Ing], Jun et al. introduced the notion of () (VX € X) (xxx=0),
double-framed soft sets (briefly, DFS-sets), and applied iflV) (¥x,y € X) (xxy=0,y*x=0= x=Yy).
to BCK/BCl-algebras. They discussed double-framed so ) o o -
algebras (briefly, DFS-algebras) and investigated reIatef:Ijfa BCl-algebraX satisfies the following identity:

properties. (V) (vxe X) (0xx=0),
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thenX is called aBBCK-algebra. Any BCK/BCl-algebraX
satisfies the following conditions:

(Vx € X) (xx0=Xx), (@)
(WX, ¥,z€ X) (X<y = Xxz2<y*2Z zxy < ZxX), (2)
(WX, y,z€ X) ((xxy)*xZ= (Xx2)*Y), (©))
(WX, y,z€ X) ((x*2) * (y*2) < XxY) 4

wherex <y if and only if xxy = 0. Note that(X,<) is a
partially ordered set (se&T)).

A nonempty subseS of a BCK/BCl-algebraX is
called asubalgebraof X if xxy € Sfor all x;y € S A
subset of a BCK/BCl-algebraX is called arideal of X if
it satisfies:

Oel,
(WxeX)(Wwel)(xxyel = xel).

®)
(6)

We refer the reader to the bool®] [7] and [17] for
further information regarding BCK/BCl-algebras.

2.2 Basic results on soft sets

Molodtsov [L9] defined the soft set in the following way:
Let U be an initial universe set an& be a set of
parameters. We say that the péit, E) is asoft universe.
Let #(U) denotes the power setofandA B,C,--- CE.

Definition 1([19]). A pair (a,A) is called a soft set over
U, wherea is a mapping given by

a:A— ZU).

In other words, a soft set ovér is a parameterized
family of subsets of the univerdé. Fore € A, a(g) may
be considered as the setofipproximate elements of the
soft set (a,A). Clearly, a soft set is not a set. For
illustration, Molodtsov considered several examples in
[19].

In what follows, we takeE = X, as a set of
parameters, which is a BCK/BCl-algebra aA®B,C, - -
be subalgebras & unless otherwise specified.

Definition 2([9]). A double-framed soft paif(a, 3); A) is
called a double-framed soft set of A over U (briefly, DFS-
set of A), wherer and 8 are mappings from A ta”?(U).

Definition 3([9]). A DFS-set((a,);A) of A is called a
double-framed soft algebra of A over U (briefly,
DFS-algebra of A) if it satisfies :

3 Double-framed soft ideals

Definition 4. ADFS-set(a, 3); A) of Ais called a double-
framed soft ideal of A over U (briefly, DFS-ideal of A) if it
satisfies:

(vx e A) (a(0) 2 a(x), B(O) S B(X)). ®)
a(x) 2 a(xxy)na(y),
(™yeh) (B(X) C B(x+y) UB(Y) > ©)

Example 1Let (U,E) = (U,X) whereX = {0,1,2,a,b}
is aBCl-algebra with the following Cayley table:

Let {y1, Vo, V5, Va, 5} and {11, T2, 73, Ts, T5} be classes of
subsets ofJ which are posets with the following Hasse
diagrams:

T5
V6
Ty
Ya T
3
Y2 V3
i 1

Define a DFS-sef(a, B); E) of E as follows:

¥ if x=0,
v if x=1,
a:E—2U), x—( ya ifx=2,
ys If x=a,
vi if x=Db
and
171 if x=0,
T if x=1,
B:E— ZU), x—( 13 if Xx=2,
s if Xx=a,
15 if x=Nh.

Routine calculations show théta, 3);E) is a DFS-ideal
of E.

Proposition 1. Every DFS-ideak(a,8);A) of A satisfies
the following conditions:

alxy) 2 a()nay) ey = o S B a) na
fiegm ’ a(x) 2 aly)na(z),
(VX,YEA)(B(x*y)gﬁ(x)uﬁ(y) ) @) (2)(Vx,y,ze A) <X*Y§ Zé{B(X)QB(V)UB(Z) )
@© 2013 NSP
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B a((xx2)x(yx2)) D o ((Xxy)*2)
z:](()jo;.él) Letx,y € Abe suchthat <y Thenxxy=0€ A, (2) (vx,y,z€e E) <B (x52) * (y£2)) C B ((x+Y) +2) > .
a(y)=a0)na(y) = a(xxy)n a(y) C a( ), Proof. Assume that (1) is valid and lgty,z € E. Since
ey 2 Abe such that«y < 2 Then it follows from (3), (1) and Corollaryl(1) that
a(z)=a(0)na(z) = a((xxy)*2)Na(z) C a(xx*y), O ((xx2) % (yx2)) = a (X (y*2)) *2)
B(2) = B(0O)UB(2) = B((xxy) x2) UB(2) 2 B(XxY). 2 a(((xx(yx2)*2)x2)
It follows from (9) that 2 a((xxy)x2)
ay)na@ C aly)nalxxy) < a(), and
B()UB(2) 2 B(y) UB(x*y) 2 B(X). B((x*2)* (y*2)) = B ((x* (y2)) *2)
This completes the proof. CB(((xx(y*2)x2)*2)
Corollary 1. Every DFS-ideal((a,3);E) of E satisfies S B(Oxry)+2).
the following conditions: Conversely, suppose that (2) holds. If we tgke zin
(D(vxy€eE)(x<y = a(x) 2 aly), B(x) CB(Y)), (2), then
(2)(¥xy,2€ E) (x*y< 7= {ggg ég(;?ggg)) ) , a((x+2)+2) C a((x+2)  (2+2))

a
a((x#2)%0)
a

Proposition 2. Every DFS-ideal(a,3);E) o (x*x2)

the following conditions:

_,,
m
n
2
7
=
D
n
I

a(xxy) 2 a(xxz)yna(zxy) and
(D(vxy,z€ E) (f(x*)y) C ?()X*Z)Uég()Z*y) ())’ B((xx2)x2) 2 B((x*2)* (zx2))
a(xxy)=a(0) = a(x)Daly =B((xx2)0)
@)%y <E) (ﬁ(X*y) =B(0) = B(x) CB(Y) ) =Bx+2)

Proof. (1) Since(x*y)  (xx2) < zxyforall x,y,z€ E, it py (lll) and (1). This proves (1).
follows from Corollary1(1) that
Theorem 1.In a BCK-algebra, every DFS-ideal is a DFS-
a(zxy) Ca((xxy)x(x*x2), algebra.

Proof. Let E = X be aBCK-algebra and let(a,3);E) be
C .
B((xxy)*(xx2)) € B(z*y) a DFS-ideal of. For anyx,y € E, we have
Using ©) we have

a(xxy) 2 a ((xy) « (x+2)) Na(xx2) a((x+%) +y) 1 a(x)
Da(xxz)Nna(zxy), a(0xy)na(x)
Blxxy) C B((xxY) * (x+2)) UB(x+2) ~a)na(y
C B(x+2)UB(z+Y). 2a()na)
(2) Letx,y € E be such thatr (xxy) = a(0) andB(x+  and
y) = B(0). Then B(xxy) C B((xxy)*X) UB(X)
a(x) 2 a(xxy)na(y) =a(0)nafy) =a(y) = B((xxx) xy) U B(X)
B(x) € B(xxy)UB(y) =B(O)UB(Y) = B(Y) =B(0xy)UB(X)
=BO)UB(X)
by (&) and €). CBX)UB(Y)
Proposition 3.1f {(a,B);E) is a DFS-ideal of Ethen the )
following are equivalent: Therefore((a, B);E) is a DFS-algebra d.
a(xxy) 2 a((x«y)+y) Th f Theorethis not t in th
(1) (x.y € E) <[3(X*y) TN ) . foIIowiigcgz\grar:;?e.o eorerhis not true as seen in the
@© 2013 NSP
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Example 2Let U = N be the initial universe set and let Then{((a,);E) is a DFS-ideal ok, but it is not a DFS-

E = {0,a,b,c,d} be aBCK-algebra with the following
Cayley table:

Define a DFS-sef(a, B); E) of E as follows:

N ifx=0,
4N if x=a,
a:E—2U), x—<¢ 2N if x=Db,
3N if x=c,
8N if x=d

and
12N if x=0,
3N if x=a,
B:E— 2ZU), x—( 6N if x=Dh,
BN if x=c,
N ifx=d.

Then((a,B); E) is a DFS-algebra d&, but it is not a DFS-
ideal of E since

a(d«b)na(b)=3NN2N=6N ¢ a(d)
and/or
B(d«b)UpB(b) =5NUBN 2 B(d).

The following example shows that Theoretris not
true inBCl-algebras.

Example 3Consider thdCl-algebraZ, x,0) as the initial
universe set), whereaxb =a—b for all a,b € Z. Let

E = X = {0,a,b,c} be aBCl-algebra with the following
Cayley table:

Define a DFS-sef(a, B); E) of E as follows:

algebra ofE since
a(@na(b)=2ZN3Z ¢ 8Z=a(axb)
and/or
B(a)uB(c) =8ZU2Z 2} 3Z = B(axc).
For a DFS-set(a, 3); A) of A and two subsetg and
J0 of U, the y-inclusive setand the d-exclusive sebf

((a,B);A), denoted by ia(a;y) and ea(B;d),
respectively, are defined as follows:

ia(a;y):={xeAlyCa(x)}
and

ea(B;0) :={xeA|32B(X)},
respectively. The set

DFa(a,B) .5 :={X€A[yC a(x), d 2 B(x)}

is called adouble-framed including sé€t9]) of ((a,3);A).
It is clear that

DFa(a,B)y.5 =ia(aiy)Nea(B;d).

Theorem 2.For a DFS-set{(a, 3); A) of A, the following
are equivalent:

(1){(a,B);A) is a DFS-ideal of A

(2)The nonempty-inclusive set and-exclusive set of
((a,B);A) are ideals of A for any subsejsand o of
u.

Proof. Suppose that(a, 3); A) is a DFS-ideal ofA. Lety
andd be subsets dfJ such thaia(a;y) # 0 # ea(B;9d).
Theny C a(x) and d 2 B(a) for somex,a € A, which
imply from (8) that y € a(x) € a(0) and
0 D B(a) D B(0). Hence Oc ia(a;y) Nea(B;d). Let
x,y,a,b € A be such thakxy € ia(a;y), y € ia(a;y),
axb € ea(f;0) andb € ea(B;9). Theny C a(xxy),
yCa(y), o O B(axb)andd > B(b). It follows from (9)
that
yCa(xxy)na(y) € a(x)

and
32 B(axb)UB(b) 2 B(a)
so thatx € ia(a;y) anda € ea(B; 8). Henceia(a;y) and
ea(B;9d) are ideals ofA for any subsety andd of U.
Conversely, assume that the nonempiynclusive set
and o-exclusive set of (o, 3);A) are ideals ofA for any
subsetsy andd of U. Let x,a € A be such thatr(x) = K

7 ifx=0, andf(a) = da. Thenx e ia(a; ) anda € ea(B; da). Since
27 if x—a ia(d; %) andea(B; 0a) are ideals ofA by assumption, we
a:E—PU), X4 37 it x—b, have Oc ia(a; ) Nea(B; 8a). Hencea (x) = y C a(0)
87 if x=c andpB(a) = 2 2 B(0). Letx,y,a,b € Abe such thatr (xx
y) =y, a(y) =y, B(axb) = & andf(b) = &. Let us
and takey=yiNy andd = 5 U . Thenxxy €ia(a;y),
127 if x=0, yeia(a;y), axb e ea(f;0) andb € ea(;9). It follows
_ 87 if x=a, from (6) thatx € ia(a;y) anda € ea(3;9). Thusa(x) 2
B-E=2U), X= 937 itx—b y=wnny=ax:y)naly) andp(a) C =5 U&=
27 if x=c. B(axb)UB(b). Therefore((a, B); A) is a DFS-ideal of.
© 2013 NSP
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Corollary 2. For a DFS-sef(a, 3);E) of E, the following ~ Example 4Suppose that there are ten houses in the initial
are equivalent: universe set) given by

(1) ((a,B);E) is a DFS-ideal of E _
(2) The nonempty-inclusive set and-exclusive set of U = {ha, 2,13, ha, hs, s, 7, g, o, Mo}

((a,B);E) are ideals of E for any subsejsand d of

N Let a set of parameteEBs= {ey, €1, e, €3} be a set of status

of houses in which
Corollary 3. If {(a,B);E) is a DFS-ideal of E, then the eo stands for the parameter “beautiful”,

nonempty double-framed including set/t#, 3); E) is an e1 stands for the parameter “cheap”,
ideal of E e stands for the parameter “in good location”,

For any DFS-set(a, B); E) of E, let {(a*, 8*): E) be e3 stands for the parameter “in green surroundings,
a DFS-set oE defined by with the following binary operation:

n otherwise,

B E = 2(U), xis {WX) if x € ee(B; 3),

P otherwise,

a*:E— 2(U), XH{“(X) if xcie(ayy),

wherey, 5,1 andp are subsets df with n ¢ a(x) and Then(E, x,ey) is a BCl-algebra (se®]). Consider a DFS-

p2BX). set((a,B);E) of E as follows:
Theorem 3.1f {(a,B);E) is a DFS-ideal of Ethen so is ,
(@ B)E).- L{Jh hu, he, he, hio} X e
. 2,N4, N6, Ng, N1oy 1T X= €4,
Proof. Assume that(a,3); E) is a DFS-ideal oE. Then a:B=2U), x> {hs,he,ho} if x= ey,
the nonempty-inclusive seig (a;y) and thed-exclusive {hg} if x= es,
seteg(B;0) of ((a, B); E) are ideals oE for every subsets {he} if x —
yandd of U. If xcig(a;y)Nee(B;d), then 6 1 X="%,
. {hs, hg, ho} if x= ey,
a*(0) = a(0) 2 () = & (¥ BB = P X7 ) fh e he, oo} i x= ez
- ) if x=e3.
and i . .
B*(0) = B(0) C B(x) = B*(X). Note thatie (a;{hs}) = {eo,e1, €3} is not an ideal ofE
sinceeyxe3 = e € ig(aq; 8}) and e, ¢ ig(a;{hs}).

{
Using Corollary2, ((a,B);E) is not a DFS-ideal oE.

If x¢ig(a;y),thena*(x) =n.Hencea*(0) 2 n = a*(x).
If x¢ ez (B;0), thenB*(x) = p. HenceB*(0) Cp=B*(X).  Note that ic(a;y) = {en.e1} = ee(B;8) for
Letx,ye E. If xxy,y€ig(a;y), thenxcig(a;y). Thus y = {h2,hs,hg,hg,hio} and & = {hs,hg,hg}. Let

((a*,B*); E) be a DFS-set of defined by
a*(x) = a(x) 2 a(xxy)na(y) = a*(xxy)na‘(y).

If xxy ¢ ig(asy) ory¢ig(ay), thena*(xxy) =n or aE—= 2(U), x— {8(X> gt)rignl/\ﬁgg;y)’
a*(y) =n. Hence '

; ; . - B(x) if xeee(B;9),
a*(x) D n =a*(xxy)na*(y). B E—2(), XH{U otherwise

Now, if x+y,y € eg(B;9), thenx € eg(3; ). Thus

B () = B(X) € B(xxy) UB(Y) = B (x+y) UB*(y). u it x = e

If xxy ¢ e(B:3) ory ¢ es(B:;5), thenB*(xxy) =por @ ‘E—= (), x {{h27h47h67h87h10} if x=ey,
B*(y) jp. IE|enc)e # =(B:0) (xx) if x € {e2,6e3},

* _n* * h if x= €p,
B9 € p =B (xxy) UB(y). B e U {}hg}‘h&hg} fx=
Therefore((a*, B*);E) is a DFS-ideal of. if x € {ez, €3}

that is,

The following example shows that the converse of It is routine to verify that{(a*, 3*);E) is a DFS-ideal of
Theorem3 is not true in general. E.

© 2013 NSP
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Let ((a,B);A) and{(a,B);B) be DFS-sets oA and
B, respectively. The(a,, By)-product (see P]) of
{((a,B);A) and {(a,B);B) is defined to be a DFS-set
<(aA/\87BA\/B);AX B> of A x B in which

aag:AxB— ZU), (xy) = a(x)Nna(y),
Bavg :AxB— 2(U), (X,y) — B(X)UB(Y).

Theorem 4. For any BCK/BCl-algebras E and F as sets
of parameters, let{(a,B);E) and ((a,B);F) be
DFS-ideals of E and F, respectively. Then the,,
Bv)-product of((a,B);E) and {(a,3);F) is a DFS-ideal
of ExF.

Proof. Note that(E x F, ®, (0,0)) is a BCK/BCl-algebra.
For any(x,y) € E x F, we have
aexr (0,0) = a(0)na(0) 2 a(x)Na(y) = aesr (XY)
Bevr (0,0) =B(0)UB(0) € B(X)UB(Y) = Bevr (X,Y).
Let(x,y),(a,b) € Ex F. Then
[0 {IN= ((x7y) ® (a, b)) NAgAE (a7 b)
= 0gar (X*xay*b)Naexr (a,b)
= (a(xxa)na(yxh))n(a(a)na(b))
=(a(xxa)na(a)N(a(yxb)yna(b))
Cax)na(y) = aesr (xy)
and
Bevr ((xy) ® (a,b)) UBevr (a,b)
= Beve (Xxa,yxb) U Beyr (a,b)
= (B(xxa)UB(y=b))U(B(a)UB(b))
= (B(xxa)UB(a))U(B(yxb)UB(b))
2 BX)UB(Y) = Bevr (%.Y)-
Hence((aenr, Bevr);E x F) is a DFS-ideal o x F.

Let ((a,B);A) and ((f,g);B) be DFS-sets oA and
B, respectively. Theii(a, 3); A) is called adouble-framed
soft subsefbriefly, DFS-subset) of(f,g); B), denoted by

((a,B); A C ((,0);B), (see P)) if
() ACB,

(i) a(e) andf(e) are identical approximatio for all
B(e) andg(e) are identical approximation
ecA

Theorem 5.Let((a, 3); A) be a DFS-subset d¢f f,g);B) .
If ((f,0);B) is a DFS-ideal of Bthen((a, 3); A) is a DFS-
ideal of A

Proof.Letx € A. Thenx € B, and so
a(0) = (0) 2 f(x) = a(x), B(0) =g(0) € g(x) = B(x).
Letx,y € A. Thenx,y € B. Hence

a(x) = f(x) 2 f(xxy)Nf(y) = a(xxy)na(y)
and

B(x) =g(x) C g(xxy) Ug(y) = B(xxy) UB(Y).
Therefore((a,8); A) is a DFS-ideal ofA.

The converse of Theorefis not true as seen in the
following example.

Example 5Suppose that there are six houses in the initial
universe set) given by

U= {hl7 h25 h3a h4> h57 hG} .

Let a set of parametels = {ep, €1, €2, €3,€4} be a set of
status of houses in which

ey stands for the parameter “beautiful”,

e, stands for the parameter “cheap”,

e stands for the parameter “in good location”,

e3 stands for the parameter “in green surroundings”,
e, stands for the parameter “luxury”,

with the following binary operation:

Then(E
set((a,

,*,€p) is a BCl-algebra (se®)]). Consider a DFS-
);A) of A= {ep, ey, e} as follows:

U if Xx= ey,
{h27h4;h6} if X= e17
{h1,h3,hs} if x= ey,

{he} if x= ey,
{hshe}  ifx—er,
{hz,h4,h6} if X=e.

a:A— PU), x— {

B:A— ZU), x— {

It is routine to verify that{(a,3); A) is a DFS-ideal ofA.
Define a DFS-sef(f,q); E) of E by

0] if Xx=ep,
{hZ,h47h6} if x= €1,
fiE— 2U), x— < {hi,hg,hs} if x=e,
{hg,hs}  if x=e3,
{h1,hs}  if x=e4,
{he} if Xx= ey,
{hshe}  ifx=ey,
g:E— Z), x> ¢ {hy,hg,hg} if x= e,
{h1,hs} if Xx=e;,
{hz,h5,h5} if x= €4.

Thenig (f;{h1,hs}) = {ep, e, €4} is not an ideal ofE.
Also, et (g; {h1,h3}) = {es} is not an ideal ofE. Using
Corollary 2, we know that((f,g);E) is not a DFS-ideal
of E.

For two DFS-sets(a, 8);A) and{(f,g);A) of A, the
int-uni double-framed soft s¢briefly, int-uni DFS-set) of
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((a,B); > and ((f,9);

((anf,pUg);A) of Awhere
anf:A— 2U), x— a(x)Nf(x)
BUg:A— 2(U), x— B(X)Ug(X).

It is denoted by
((a,B);ATI(F,9):A)

(see Pl).

Theorem 6.The int-uni DFS-sef(a, 8); A)M{(f,qg); A) of
two DFS-ideals((a,8); A) and {(f,q);A) of Ais a DFS-
ideal of A

={((anf,pUg);A)

ProofFor anyx € A, we have
(@nf)(0)=a(0)nf(0)2
(BUQ)(0) =B(0)Ug(0) C

For anyx,y € A, we have

(anf)(x)

a(x)n f(><)=(
BMugx) =

a(x)nfx)
xy)na(y)n(fey)nfly)
xy) N T0ey))naly) N f(y)

(@nf)(y),

)N
(a(x
(ar(x f
=(anf)(xxy)n
B(Xx)Ug(x)

(B(xxy)UB(Y)) U (g(x*y)Ug(y))
(B(xxy)Ug(xxy))U(B(y)uga(y))

= (BUQ)(xxy)U(BUQ)(y).
Therefore{(a, B); A)11{(f,q9);A) is a DFS-ideal ofA.

Corollary 4. The int-uni DFS-set(a,3);E) 11 ((f,9);E)
of two DFS-ideals((a,);E) and ((f,g);E) of E is a
DFS-ideal of E

Definition 5. Let (U,E) =
BCl-algebra. A DFS-ideal(a
closed if it satisfies:

(Vx€ E)(a(0*x) 2 a(x), B(0xx) C B(X)).

v ||

(BUg)(x)

1N ||

(U,X) where X is a
,B);E) of E is said to be

(10)

Example 6Let (U,E) be a soft universe which is given in

Example 5. Consider a DFS-set(a,B);E) of E as
follows:

U if X= gy,
{hlahZ} if x= €1,
a:E— 2U), x— < {h,hg,ha} if x=ey,
{hy,hs} if x=es,
{h1} if Xx=ex,
{h5} if Xx= €,
: {ha,hs} if x=ney,
B:E—2U), x— {ha.he} if x= e,

{hg,hg,hs} if x € {€3,€4}.

Then((a,3);E) is a closed DFS-ideal d&.

,B);

A) is defined to be the DFS-set

Example 7Let (U,E) = (U,X) whereX = {2" | ne Z}

is a BCl-algebra with a binary operation=" (usual

division). Let ((a,3);E) be a DFS-set oE defined as
follows:

v ifn>0,
v if n<O,

ﬁ:E—)@(U),X»—){% :;Qfg

wherey, y», &1 andd, are subsets df with y1 O y» and
01 C &. Then((a, B);E) is a DFS-ideal oE which is not

a:E%,@(U),X»—){

closed since
a(1+2)=a(2®) =p2n=0a(2)
and/or
B(1+2)=B(27) =& a=B(2).
Theorem 7. Let (U,E) = (U,X) where X is a

BCl-algebra. Then a DFS-ideal of E is closed if and only
if it is a DFS-algebra of E

Prooflf ((a,B);E) is a closed DFS-ideal &, thena (0
X) 2 o (x) andB(0xx) C B(x) for all x € E. It follows from
(3), (1) and (9) that

Da((xxy)xx)Na(x)
=a(0xy)na(x)
2a(x)nafy)

a(xxy)

and

B(xxy) C B((xxy)*x) UB(X)
=B(0xy)UB(x)
CBX)UB(Y)

for all x,y € E. Hence((a,3);E) is a DFS-algebra dE.
Conversely, let(a,B); E) be a DFS-ideal oE which
is also a DFS-algebra &. Then

a(0xx) 2 a(0)na(x) =

B(0xx) € B(O)UB(x) =
for all x € E. Therefore{(a, B);

a(x),

B(X)

E) is closed.

Let X be aBCl-algebra andB(X) := {x € X | 0 < x}.
For anyx € X andn € N, we definex" by

xh = x, X1

=xx (0xX").
If there is am € N such thak" € B(X), then we say that
is of finite periodic(see [L8]), and we denote its period|
by
IX =min{ne N | x" e B(X)}.
Otherwisex is of infinite period and denoted by| = co.
We provide conditions for a DFS-ideal to be closed.
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Theorem 8.Let(U,E) = (U, X) where X is a BCl-algebra
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