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Abstract: The motion of two-phase flow in a porous medium under the condition of vertical equilibrium can be described by a viscous
conservation law that involves a non-convex flux function with two inflectionpoints. In [5], a first order Godunov scheme was used to
numerically approximate solutions of the model. In this paper we show that using instead the high resolution Weighted Essentially Non
Oscillatory (WENO) technology, and an IMEX strategy to handle the capillaryterm by an implicit discretization, leads to a noticeable
increase in resolution power and efficiency. We carefully discuss the implementation of WENO schemes for the model equation,
paying special attention to the choice of the definition of the numerical viscosity. We also present numerical simulations when the
capillary number is negligible (i.e., the model is a homogeneous conservation law) and non-negligible (i.e. the model equation becomes
a ’viscous’ conservation law). The numerical results are compared with those obtained with the method proposed in [5] in terms of
accuracy, resolution power and global efficiency.

Keywords: Numerical methods, WENO schemes, IMEX schemes, Porous media, Two-phase flow, Vertical equilibrium, Conservation
laws

1 Introduction

In a porous medium, vertical equilibrium for two-phase
flow occurs when the sum of the velocities of the two
phases is zero, which amounts to assuming that the
motion of two immiscible fluids is governed by the
balance between capillary and gravitational forces. Then,
the denser fluid flows downward while the lighter fluid
flows upward, with velocities that are equal in magnitude.
The assumption of vertical equilibrium is used in the
modeling of several two-phase flow problems of
engineering interest, such as oil and gas reservoirs [1] [2],
ground water contamination [3], CO2 storage sites [4],
etc.

In [5], a mathematical model for the displacement of a
gas phase through a liquid phase in a porous medium is
derived from basic principles. Using Darcy’s law [6] and
mass conservation, the authors obtain a model equation

for vertical equilibrium displacements, which in
dimensionless variables takes the form

∂s
∂ t

+
∂
∂x

F(s)+N
∂
∂x

(

F(s)
∂Pc(s)

∂x

)

= 0, (1)

wheres(x, t) is the liquid phase saturation,N is the
capillary number, andPc(s) andF(s) are known functions
(see [5] for details). A related model has been proposed in
[4] to study the vertical migration ofCO2 through a
column with periodical layers of different porosity.

The second and third terms in (1) represent the
contributions of buoyancy and capillary effects,
respectively. The flux functionF(s) in the buoyancy term
depends on the absolute and relative permeabilities
between the two phases and the porous media, and turns
out to be a bell-shaped function, with a local maximum
and two inflection points. As pointed out in [5], the fact
that F(s) changes concavity twice adds more difficulties
to the mathematical and numerical analysis of the
associated models than the simpler (and rather extensively
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studied) Buckley-Leverett model, for which the flux is an
S-shaped function, with only one inflection point.

The specific form ofF(s) depends on the model used
for the relative permeabilities. In [5], the Brooks-Corey
models [7] were considered, leading to the following
expression for the flux function

F(s) =
s2 (1−s)2

s2+(1−s)2 . (2)

The third term in (1) is due to capillary effects and it
involves the capillary pressure, as a function of the liquid
saturations. As in [5], we shall consider the following
expression for the normalized capillary pressurePc(s),

Pc(s) = s−1/2, (3)

which is consistent with Brooks-Corey models and
Leverett relationship [8]. This term approaches zero when
the capillary numberN is small, which occurs when the
size of the pore of the medium is very large. Capillary
effects are, thus, negligible in many situations of practical
interest and, in such cases, (1) reduces to a scalar
conservation law, with a non-convex flux.

In the mathematical literature, the standard approach
to obtain reliable approximations to the solution of
hyperbolic conservation laws and systems is given by the
so-called conservative approach. Numerical solutions
obtained with conservative schemes represent
discontinuities in the true solution of a homogeneous
conservation law as sharp transitions, involving often only
a few discrete solution values, and are often called’shock
capturing’ schemes. Many of these conservative schemes
follow the path laid out by Godunov and use the solution
of the so-called Riemann Problem, for which the initial
data is a step function, as a building block of the scheme.
We refer the interested reader to [9] for details on
Godunov schemes.

The conservative framework is only recently finding
its place in the engineering literature, where the method
of characteristics was often used to handle hyperbolic
equations, probably due to the physical intuition behind
it. For the model problem (1), a Godunov scheme is
proposed in [5], and its behavior is tested against a known
exact solution of a specific initial-boundary value problem
for (1) whenN = 0. However, one of the main advantages
of following the ’conservative approach’ in the numerical
simulation of equations such as (1) is the fact that there
exists nowadays a (rather large) pool of well established
high resolution shock capturing numerical techniques.
Understanding the principles behind the basic design of
these numerical techniques allows the user to adapt the
technique to the particular problem at hand, in order to
obtain well resolved and robust numerical simulations.

In this paper, we discuss the implementation of the
modern Weighted Essentially Non-Oscillatory (WENO)
schemes for the model equation (1). As we shall see, the
general setting for WENO schemes requires an estimate

of the appropriatenumerical viscosity, which depends on
the flux functionF(s). The computation of this estimate
for a bell-shaped non-convex flux, such as (2) only
depends on the knowledge of the two inflection points. To
define properly the numerical viscosity is of paramount
importance. Otherwise, the scheme may give rise to
unwanted oscillations.

We propose then numerical schemes for theN = 0
andN 6= 0 cases that incorporate the WENO construction
in the numerical fluxes, instead of the lower order
Godunov construction used, for example, in [5], [4] or
[10]. We propose implicit-explicit (IMEX) Runge-Kutta
solvers to overcome the stability restrictions on the time
step size whenN 6= 0. The nonlinear systems that arise in
this formulation are solved by a lagged diffusivity fixed
point solver. The results obtained are compared with
those in [5] from the point of view of the accuracy,
resolution power and global efficiency.

The paper is organized as follows. In section 2, we
recall the basic ingredients of the WENO schemes that we
propose for the discretization of the buoyancy term,
paying special attention to the numerical viscosity of the
scheme for non-convex fluxes. In addition, the IMEX
strategy that we use to handle the capillary term is shown.
In section 3, we show the numerical results obtained for a
set of numerical experiments for the casesN = 0 and
N 6= 0, together with a comparison of computational
times and errors with respect to the Godunov type scheme
of [5]. Finally, in section 4 we present some conclusions
and perspectives for future work.

2 WENO schemes for the model equation

Shock-capturing techniques for the numerical
approximation of discontinuous solutions to hyperbolic
conservation laws are based on a classical result by Lax
and Wendroff (see e.g. [9]) that establishes that if the limit
solution of a conservative schemehas discontinuities,
these will propagate according to the Rankine-Hugoniot
conditions. This result ensures that conservative schemes
capturethe discontinuities in the solution, and gives rise
to theshock-capturingterminology.

Shock capturing schemes are now routinely used in
applications involving discontinuous solutions of
hyperbolic conservation laws. In [5] a first order Godunov
scheme is proposed in order to obtain numerical
simulations of the model problem without capillary
effects. As we shall demonstrate, the use of more
sophisticated techniques, such as the WENO construction
advocated in this paper, can lead to a noticeable increase
in resolution and efficiency, providing a reliable tool to be
used in more general situations.

The discrete set-up we shall consider is as follows: a
uniform grid is laid out on the spatial domain, taken as
[0,1] for simplicity. For convenience, the grid-points are
x j = ( j+ 1

2)h, j = 0,1, . . .m−1,m·h= 1, and[x j− 1
2
,x j+ 1

2
]
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is the j-th computational cell,j = 0,1, . . . ,m− 1, where
the cell-endpoints arex j+ 1

2
= ( j + 1)h, j = −1, . . . ,m−

1. Notice that, with this definition, the domain boundaries
x = 0 andx = 1 correspond to cell-endpoints. The time
interval [0,T] is uniformly discretized, hencetn = n · k, k,
wherek is the discrete time-step andnTk = T for some
integernT . It is well known (see e.g. [9]) thatk andh must
be related by a stability condition, which depends on the
type of equation being discretized, as well as the type of
numerical technique used.

Any conservative scheme computes discrete values,
sn

j , associated to the discrete grid-points(x j , tn). In
finite-volume schemes, such as the Godunov scheme
proposed in [5], these discrete values are interpreted as
approximations to the cell-averages of the true solution
s(x, t), while in finite-difference conservative schemes,
such as the WENO scheme advocated in this paper,
sn

j ≈ s(x j , tn), i.e. they are considered as approximations
to the point-values of the true solution.

WENO schemes are nowadays routinely used for
applications involving convex conservation laws and
systems. We shall see next that its application in the
non-convex case only requires a careful definition of the
numerical viscosity of the scheme.

2.1 N= 0: The homogeneous case

According to [5], a fully discrete conservative numerical
scheme for a homogeneous conservation law, such as the
model equation (1) whenN = 0, has the form

sn+1
j = sn

j −
k
h

[

F̂n
j+1/2− F̂n

j−1/2

]

, (4)

whereF̂n
j+1/2 is the numerical flux through the boundary of

the cell. In any conservative scheme, this numerical flux is
computed using a set of values around the interfacex j+1/2.
For a first order scheme, only the nearest neighbors,sn

j and
sn

j+1 are involved, but in higher order schemes more values
might be necessary in order to improve the accuracy of the
scheme. Hence, in general,F̂n

j+1/2 = F̂(sn
j−r , . . . ,s

n
j+r+1),

wherer ≥ 0 andF̂ is known as thenumerical flux function,
the trademark of the scheme, which determines many of its
properties.

In Godunov’s method, the design of the numerical
flux function is based on the solution of a Riemann
problem at each cell-boundary x j+1/2, hence
Fn

j+1/2 = F̂(sn
j ,s

n
j+1). In the WENO schemes designed in

[12] (see also [15,16] and references therein) the
numerical flux function is based on the entropy-satisfying
Local-Lax-Friedrichs scheme, for which the numerical
flux function at an interface separating two states,sl and
sr , is given by

F̂LLF(sl ,sr) =
1
2
(F(sl )+F(sr)−α(sr −sl )) , (5)

where the parameterα above should satisfy

α ≥ max{|F ′(s)|,s∈ [sl ,sr ]}, (6)

where[sl ,sr ] represents the closed intervalsl ≤ s≤ sr if
sl ≤ sr or sr ≤ s ≤ sl if sr ≤ sl . The reason for this
requirement can be understood by noticing that

F̂LLF(sl ,sr) = F−(sr)+F+(sl ) (7)

with

F−(s) =
1
2
(F(s)−αs) , F+(s) =

1
2
(F(s)+αs)

The choice ofα specified in (6) guarantees that thesigned
fluxes F± satisfy (F+)′ ≥ 0, (F−)′ ≤ 0 in [sl ,sr ], i.e.
around the interface. Hence,F± in (7) are evaluated at the
upwind point, which turns out to be crucial for the
stability of the conservative scheme having (5) as
numerical flux.

If F(s) is a convex (or concave) function, then

α = max{|F ′(s)|,s∈ [sl ,sr ]}= max{|F ′(sl )|, |F ′(sr)|}
(8)

satisfies (6).
However, for a bell-shaped, non-convex, function,

such as (2), the value ofα depends on the location of the
two inflection pointsS1, S2 with respect to the values
sl ,sr . In this case, an appropriate definition is as follows

α = max
{

|F ′(s)|/s∈ {sl ,sr}∪
(

{S1,S2}∩ ]sl ,sr [
)

}

,

(9)
where]sl ,sr [ is the open interval determined bysl andsr .

In subsection3.4, we see that to choose the appropriate
definition is a key point to obtain a well behaved numerical
solution.

The scheme (4) with the numerical flux function at
each interface defined by the formula (5), or equivalently,

F̂n
j+1/2 = F−

j+1/2(s
n
j+1)+F+

j+1/2(s
n
j ),

F±
j+1/2(s) = F(s)±α j+1/2s (10)

where α j+1/2 is computed as specified before, with
sl = sn

j andsr = sn
j+1, gives rise to a first order accurate

conservative scheme, since it is easy to prove that (10)
leads to a flux difference satisfying

1
h

(

F̂n
j+1/2− F̂n

j−1/2

)

= ∂x(F(s))|(x j ,tn)+O(h),

for sn
j = s(x j , tn).

Its numerical behavior is similar to that of the Godunov
scheme used in [5], but with a larger degree of smearing
around the location of the shocks in the numerical solution.
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A high order WENO scheme is designed in such a
way that the flux difference is abetterapproximation of
∂x(F(s))|(x j ,tn), thus allowing for an improvement in
spatial accuracy. The WENO numerical flux has the form

F̂n
j+1/2 =R

+
(

F+
j+1/2(s

n
j−r), . . . ,F

+
j+1/2(s

n
j+r);x j+1/2

)

+

R
−(F−

j+1/2(s
n
j−r+1), . . . ,F

−
j+1/2(s

n
j+r+1);x j+1/2

)

.

(11)

Here R± represent specific non-oscillatory,
upwind-biased, data-dependent polynomial
reconstruction procedures, which are evaluated at the cell
boundaryx j+1/2. These procedures are nowadays almost
a black-box type of routine (see [15] and references
therein).

The number of points involved in the WENO flux
computation (11) is determined byr. This number
determines also the spatial accuracy of the flux difference.
It can be proven (see [15]) that, under appropriate
smoothness conditions,

1
h

(

F̂n
j+1/2− F̂n

j−1/2

)

= ∂x(F(s))|(x j ,tn)+O(h2r+1),

hence the spatial order of accuracy of the associated
conservative scheme(4) is 2r + 1. For the WENO5 [12]
constructionr = 2. Whenr = 0, we recover (10).

A WENO numerical flux computation amounts, then,
to the use of a sophisticated, upwind-biased,
non-oscillatory reconstruction technique on the functions
F±

j+1/2(s) = F(s)±α j+1/2s, whereα j+1/2 is a parameter
associated to thex j+1/2 interface, whose value is
computed as specified above, withsl = sn

j andsn
j+1. These

reconstruction procedures are, however, straightforward
to implement, following the steps outlined in [15].

We end this section by recalling (see e.g. [9]) that the
stability condition for a numerical scheme such as (4) is of
the type

k
h

max|F ′(s)| ≤C≤ 1 (12)

where the valueC depends on the specific method being
used.

We propose the following explicit Runge-Kutta 2
scheme to compute the time evolution of eq. (1) when
N = 0:

sn+1/2 = sn+
k
2
L

n (13)

sn+1 = sn+kL n+1/2

where

L
l
j =

1
h
(F̂ l

j+1/2− F̂ l
j−1/2), 1≤ j ≤ m (14)

andF̂ l
j+1/2 is the WENO numerical flux.

2.2 N 6= 0: The viscous case

When capillary pressure is included in the model, eq. (1)
becomes a so-calledviscousconservation law. The model
equation is now of parabolic type, hence its solutions are
smooth. However, it is expected that for small values of
N, the convection processes due to buoyancy lead to very
sharp transitions that resemble shocks. In such cases, it is
advantageous to still use the high resolution shock
capturing numerical flux functions described in the
previous section, combined with an appropriate
discretization of the parabolic term describing the
capillary effects, in order to get a high resolution
numerical approximation to the exact solution of the
model problem.

In [5], the authors propose a numerical scheme of the
form

sn+1
j = sn

j −
k
h

[

F̂n
j+1/2− F̂n

j−1/2

]

+Bn
j (15)

where the conservative discretization of the buoyancy
term is based on Godunov’s numerical flux, andBn

j
represents a second order discretization of the capillary

termN ∂
∂x

(

F(s) ∂Pc(s)
∂x

)

, in eq. (1).

We propose to use the WENO5 numerical fluxes
defined in the previous section (r = 2) for the
conservative discretization of the buoyancy term,
combined with the same second order accurate
discretization of the capillary term as in [5].

It is known that the stability requirements of the
capillary terms lead to an excessive restriction in the size
of the time stepk. Then, we propose to use an IMEX
scheme: implicit for the parabolic term and explicit for
the hyperbolic term. In addition, for time discretization,
we consider a second order Runge-Kutta scheme.

Decoupling the spatial and temporal issues, we rewrite
eq. (1) as follows:

ds
dt

= L(s)+C(s), (16)

whereL(s) denotes the advective term− ∂ f (s)
∂x andC(s) =

−N ∂
∂x

[

F(s)P′(s) ∂s
∂x

]

is the diffusive capillary term.

We shall consider the following Implicit - Explicit
(IMEX) Runge-Kutta 2 scheme described in [17]:

sn+1/2 = sn+
k
2

(

L
n+C

n+1/2
)

(17)

sn+1 = sn+k
(

L
n+1/2+C

n+1
)

where the termC l is the vector that contains the second
order spatial discretization of the parabolic term

C(s) =−N ∂
∂x

[

F(s)P′(s) ∂s
∂x

]

, obtained from the valuessl
j ,

j = 0, . . . ,m, l = n,n+1/2, as follows:
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C
l
j =

1
2h2

[

(gl
j+1+gl

j)s
l
j+1− (gl

j+1+2gl
j +gl

j−1)s
l
j+

(gl
j +gl

j−1)s
l
j−1

]

(18)

where

gl
j =−NF(sl

j)P
′(sl

j), (19)

for j = 0, ...,m+1,and l = n,n+1/2.
Notice that the discretization of the hyperbolic term is

computed in an explicit manner, from the known solution
valuessl

0, . . . ,s
l
m, l = n,n+1/2, whereas the discretization

of the parabolic term is computed in an implicit manner in
both steps of the scheme.

It is well known that the stability restrictions on the
time step for the IMEX scheme are less severe than those
of the explicit scheme, which makes the IMEX scheme
more efficient, in some cases, than the explicit scheme
[17].

To solve eq.(17) we need to solve a nonlinear system
of equations in each one of the two steps. To do this, we
perform a Fixed Point Iteration method.

Let us consider the first step in eq.(17). It can be
rewritten in matrix form as follows:

M(sn+1/2)sn+1/2 = Q(sn) (20)

whereM(sl ) is them×m tridiagonal matrix given by:

M(sl ) =













Bl
1 Cl

1 0 ... 0
Al

2 Bl
2 Cl

2 ... 0
... ... ... ... ...
0 ... Al

m−1 Bl
m−1 Cl

m−1
0 ... 0 Al

m Bl
m













(21)

where

Bl
j = 1+

k
4h2 (g

l
j+1+2gl

j +gl
j−1) (22)

Al
j =− k

4h2 (g
l
j +gl

j−1)

Cl
j =− k

4h2 (g
l
j+1+gl

j)

andQ(sl ) is a column vector whose components are:

Q(sl ) j = sl
j +

k
2
L (sl ) j , for j = 2, ...,m−1 (23)

and

Q(sl )1 = sl
1+

k
2
L (sl )1+

k
4h2 (g

l
1+gl

0)s
l
0 (24)

Q(sl )m = sl
m+

k
2
L (sl )m+

k
4h2 (g

l
m+1+gl

m)s
l
m+1

Since the vectorsn+1/2 is implicit in eq.(20) we have
to approximately solve it by means of an iterative method.
We propose to use a lagged diffusivity Fixed Point
Iteration whose algorithm is as follows:

Input: approximate solution vectorsn at t = tn as
a starting value

v0 = sn andk= 0
while e> Tol andk≤ Niter

solve for vk+1 the linear system
M(vk)vk+1 = Q(sn)

k= k+1
e= ||vk+1−vk||∞

endwhile
sn+1/2 = vk+1

Output: approximate solution vectorsn+1/2 of
the nonlinear system M(sn+1/2)sn+1/2 = Q(sn)

The second step of the IMEX-RK2 method is solved
analogously.

To ensure the stability of the explicit numerical scheme
(15) proposed in [5], a von Neumann analysis suggests a
stability condition of the form (see Appendix A):

k
h

max
s

|F ′(s)|+ 2kN
h2 max

s
|F(s)P′

c(s)| ≤C1 ≤ 1 (25)

Assuming,mh= 1, wherem is the number of points,
the condition for the ratiok/h can be expressed as:

k
h

ρ1+
2kN
h2 ρ2 ≤C1 ≤ 1 (26)

or

k
h
≤ C1

ρ1+2ρ2mN
. (27)

whereρ1 is the maximum value of|F ′(s)| andρ2 denotes
the maximum value of|F(s)P′

c(s)|.
According to this estimate, when the number of points

m increases, the value ofk/h allowed has to decrease. This
means that the parabolic term may dictate the maximum
time step for stability in a very stringent manner if 2ρ2mN
is not very small compared withρ1 .

On the other hand, for IMEX-RK2 the stability
condition suggested by the analysis performed in
Appendix A is of the form:

k
h

max
s

|F ′(s)| ≤C2 ≤ 1 (28)

which can be rewritten as:

k
h
≤ C2

ρ1
. (29)

Hence, the ratiok/h does not depend on the number of
pointsm considered.

The constantsC1 and C2 in eqs. (25) and (28),
respectively, depend strongly on the ODE solver. We
show in Appendix A, that for the case of the Euler
scheme, both constants are equal to one.
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However, since they are obtained from a stability
analysis of a linearization of (1), the precise value ofC1
andC2 is subject to some empirism that has been a matter
of research for the present work.

3 Numerical results

To test the proposed numerical schemes, we follow [5] and
consider that the gas is initially concentrated near the base
(x= 1) and the rest of the core is filled with liquid. Thus,
the initial condition is a step function of the form

s(x,0) =

{

1 for 0< x≤ a,
β for a≤ x< 1.

}

. (30)

whereβ represents the initial saturation of water in the
lower part of the column of the porous media. On a finite
domain, such as the core, vertical equilibrium is
simulated by sealing the ends of the core. This implies a
zero-fluxboundary condition, to be imposed on both ends
of the computational domain.

For the uniform discretization stated in section2.1, the
domain boundaries correspond to cell-endpoints:x= 0=
x−1/2, andx= 1= xm−1/2. Hence, the zero-flux boundary
conditions [18] [19] are particularly simple to implement
in this setting, since they become

F̂n
−1/2 = 0, F̂n

m−1/2 = 0, n= 0,1,2. . .

3.1 N= 0: The homogeneous case

When N = 0, (1) becomes a non-convex scalar
conservation law. In an infinite domain, equation (1)
together with the initial data (30) constitute a so-called
Riemann problem, a self-similar hyperbolic initial value
problem with piecewise constant data on both sides of an
imaginary membrane. Even though the Riemann problem
is not of direct interest in applications, it is relatively
simple to find analytic solutions, which can be used for
the validation and comparison of numerical methods
applied to the model problem. The geometric construction
described in [5] serves to compute the exact solution to
the initial-boundary value problem corresponding to a
given set of parametersa, β as a combination of two
Riemann solutions.

We consider next the test casea = 0.6, β = 0.3, and
use the exact solution for validation of the numerical
technique. Figure1 shows that our choice of parameters
corresponds to situation II of proposition 1 and V of
proposition 2 in [5]. Hence, denoting the states as
(s,F(s)), the exact solution consists of a shock wave
connecting the point(1,0) (at x = 0) in Figure1 and the
intermediate state (s1,F(s1)), a rarefaction wave
connecting (s1,F(s1)) with (β ,F(β )), a shock
connecting (β ,F(β )) with an intermediate state

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

β s
1

s
2

S
i1 S

i2

Fig. 1 Graph of the flux functionF(s) showing the intermediate
statess1,s2 and its relationship withβ and the inflection points
S1,S2.

(s2,F(s2)) and a rarefaction wave between(s2,F(s2))
and(1,0) ( at x= 1). The values ofs1 ands2 are obtained
as follows (see [5], and Figure1):

–(s1,F(s1)) is such that the tangent line to the graph of
F at(s1,F(s1)) intersects the graph of F at(1,0).

–The line that connects(β ,F(β )) and (s2,F(s2)) is
tangent to the graph of F at the point(s2,F(s2)).

For β = 0.3 andF(s) given by eq. (1), we have the
intermediate states:

s1 = 0.6033917422 (31)

s2 = 0.9429648815 (32)

The corresponding shock speeds, according to the
Rankine-Hugoniot jump condition, can be readily
computed as

σ(1,s1) =
F(1)−F(s1)

1−s1
=−0.2769531793 (33)

σ(β ,s2) =
F(β )−F(s2)

β −s2
=−0.1132151033 (34)

The minus sign indicates that shocks are moving to the left
in the graphic.

In Figure 2 we show that the numerical scheme
correctly reproduces the basic features of the exact
solution. Here, the numerical solution is computed on a
uniform mesh withh = .002 and snapshots att = 0,
t = 0.3 and t = 0.5 are shown. The
shock-rarefaction-shock-rarefaction structure of the
solution is clearly appreciated, and the shocks are moving
to the left, as expected.
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Fig. 2 Numerical solution for the caseN = 0 att = 0, t = 0.3 and
t = 0.5 (full line, +, and x, respectively) on a uniform mesh with
h= 0.002 andk/h= 0.1.
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Fig. 3 Numerical solutions corresponding toh = 1/40, h =
1/80,h= 1/160 andh= 1/320 att = 0.5 with the exact position
of the shocks. The solid line corresponds to an ’exact’ solution
computed on a uniform mesh of 2000 points.

Figure3 shows the numerical solutions att = 0.3 on
several meshes, together with the ’true solution’, which
has also been obtained applying the numerical scheme on
a very fine mesh with 2000 points. We also display the
exact position of the shocks, marked as vertical lines,
computed according to their true Rankine-Hugoniot speed
in (33), (34). We clearly observe that decreasing the mesh
width leads to finer resolution and better precision in the
position of the shocks,which is a clear indication of the
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Fig. 4 Comparison between the numerical solutions forN = 0,
N = 0.01 andN = 0.03 att = 0.3. Hereh= 0.002.

convergence of the numerical scheme. This convergence
study shows that the numerical solution converges to the
’true solution’ of the problem as the mesh size,h,
converges to zero. In addition, it shows that the numerical
solution is reliable already on coarse meshes. This is a
specific feature of high order/high resolution shock
capturing schemes, and its relevance can be clearly
appreciated in Figure6, where we compare the numerical
results obtained with the WENO5 numerical flux, and the
Godunov numerical flux proposed in [5].

We have considered other test cases, using a different
set of parameters, obtaining analogous results (see also
section3.3).

3.2 N 6= 0: The viscous case

As mentioned before, whenN 6= 0, (1) becomes aviscous
conservation law. For small values of theviscosity
parameter N, the smooth solution of this parabolic PDE,
bears a great similarity to the corresponding solution for
N = 0. The shock discontinuities that occur in theN = 0
case become smooth transitions whenN 6= 0, which may
be very sharp for very small values ofN. The use of a
conservative formulation for the flux difference leads to
an adequate representation of these transitions, even for
very small values ofN. This can be readily appreciated in
Figure4, where the numerical solution corresponding to
(1) with N = 0 and (30), with a = 0.6 andβ = 0.3, is
displayed together with the numerical approximations
corresponding to the same initial data andN = 0.01 and
N = 0.03.

A convergence study is shown in Figure5. The exact
solution is obtained by applying the scheme on an
extremely fine mesh of 10240 points. It is worth noticing
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Fig. 5 Convergence study forN = 0.03 att = 0.3

that ’numerical convergence’ is attained on rather coarse
meshes. This issue will be further considered in the
following section.

3.3 The IMEX-WENO scheme versus the
Godunov scheme

In this section we shall compare the numerical results
obtained with our proposed scheme to those obtained
with the first order Godunov scheme proposed in [5] for
the same model equation.

In Figure 6 we show a comparison of numerical
results for the test casea = 0.6, β = 0.3 on uniform
meshes containing 20 and 40 points on[0,1]. We clearly
appreciate that, on coarse meshes, the numerical solutions
obtained with the IMEX-WENO scheme are more
reliable than those obtained with the Godunov scheme. In
particular, a highly visible ’dog-leg’ effect can be
observed in the Godunov simulations aroundx = 0.6.
This numerical pathology occurs in some schemes with
insufficient numerical viscosity; the ’glitch’ is
proportional to the mesh size, hence it is not observable
on the much finer meshes used in the numerical
simulations of section3.1. The bottom row of figure6
shows snapshots att = 1. At this time, the left moving
shock that originated atx = 1 has already interacted with
the rarefaction wave and there is no constant state. The
glitch atx= 0.6 still persists on the Godunov simulations,
but it does not show up in any of the IMEX-WENO
simulations.

In Figure 7 we have chosen a set of parameters that
reproduces the situation shown in Figure 3 of [5]. The
bottom figure corresponds to the same mesh resolution
and can be directly compared with the results shown in
[5]. The plots on the top row confirm the observations
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Fig. 6 A comparison of IMEX-WENO versus Godunov
numerical simulations on coarse meshes. Topt = 0.3, bottom
t = 1.

made earlier: in all situations, the IMEX-WENO scheme
produces more accurate results. It is worth observing that
even on the finest mesh, with 1000 points on[0,1], the
first order scheme produces a smeared profile around the
location of the second shock, while the IMEX-WENO
scheme gives a sharp transition that can be easily
identified as a shock.

Figures8 and 9 show the comparison between the
methods for the caseN = 0.03, a = 0.6, β = 0.3 on a
uniform mesh with 320 points, together with the ’true’
solution, obtained on a very refined mesh. In the zoomed
pictures we can observe that the numerical solution
obtained with the IMEX-WENO scheme is virtually ’on
top’ of the true solution, but the solution obtained with
the Godunov scheme of [5] is not.

Table 3.3 and Figure10 show theL1-errors (mean
errors) of both schemes with respect to the reference
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Fig. 7 A comparison of IMEX-WENO versus Godunov
numerical simulations.a= 0.5,β = 0.25,t = 0.9. Top:h= 1/40.
Bottomh= 1/1000.

solution, together with the running time of the simulation.
In the table, we clearly observe that the mean error
decreases with the mesh size, and that the IMEX-WENO
simulation is always more reliable (less mean error) than
the Godunov simulation.

The data in Table 3.3 also indicate that the
IMEX-WENO scheme is more efficient than the Godunov
scheme: For the same target error, the IMEX-WENO
scheme needs less computation time than the Godunov
scheme. The same results are shown graphically in Figure
10, where we clearly appreciate that the data for the
IMEX-WENO scheme is always below that of the
Godunov scheme.

The values of the errors have been calculated
comparing the numerical solutions obtained for each
number of pointsm with a reference solution. This
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Fig. 8 Comparison between the numerical solutions for our
method, Godunov type method used in [5] and the reference
solution. The curves are obtained forT = 1.5 with N = 0.03,
h= 1/320 and∆ t/∆x2 = 40

Table 1 Errors and computation times for the Godunov scheme
used in [5] and the IMEX RK2 WENO5 scheme proposed.N =
0.03, t=1.0

Godunov IMEX-WENO
m Error Time (s) Error Time (s)

160 0.0111 0.010 0.00527 0.015
320 0.00643 0.025 0.00252 0.055
640 0.00363 0.140 0.00115 0.220
1280 0.00205 0.940 0.000534 0.905
2560 0.00118 7.505 0.000214 3.620

reference solution has been obtained by means of the
IMEX-WENO scheme with 10240 points.

To obtain the computation times for the Godunov
scheme, we have used the stability restriction given by
(27).

k
h
≤ C1

ρ1+2ρ2mN
. (35)

Experimentally, we have checked that this condition is
valid for our test problem withC1 = 0.89. In addition, for
our flux and pressure functions, eqs. (2) and (3),
respectively, it is easy to see thatρ1 = 0.3977 and
ρ2 = 0.2316. Therefore, when (35) is not satisfied,
oscillations appear in the numerical solution.

On the other hand, the stability condition for the
IMEX-WENO scheme given by (29) is valid withC2 = 1.

k
h
≤ C2

ρ1
. (36)

Accordingly, in this case we have used a constant value
for k/h of 2.5.
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Fig. 9 Enlarged views of the approximated solutions shown in
Figure 8.

In addition, in the IMEX-WENO scheme, we have to
take into account that the running times depend on the
value of the tolerance parameter (Tol) taken in the Fixed
Point Iteration. To determine which is the appropriate
value we must use, we have tested how the error varies
with different values ofTol. Figure 11 shows that the
mean error is roughly constant whenTol < 10−3. In our
simulations, we have set the value of the tolerance as
Tol = 10−6.

3.4 The role of the definition ofα

Finally, we show what happens if we take the wrong
definition of α in the WENO reconstruction of the
numerical flux function.

In Figure12, we can see the numerical solution given
by the IMEX-WENO scheme with the definition ofα
given in (8). This means that for each interval[sj ,sj+1],
we take

α j+1/2 = max{|F ′(sj)|, |F ′(sj+1)|} (37)
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Fig. 10 Comparison between the efficiencies of the IMEX-
WENO scheme and the Godunov type scheme used in [5]. Both
axes have logarithmic scaling.
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Fig. 11 Evolution of the mean errors as a function of the
tolerance parameterTol for different number of points.

The right shock shows a nonphysical oscillation due to
the fact that the numerical viscosityα has a value which is
smaller than necessary.

Figure 13 shows the same area of the numerical
solution, but with the correct definition of the numerical
viscosityα given in (9). This definition takes into account
that any inflection pointS1,S2 may be inside the interval
[sj ,sj+1],

α j+1/2 = max{|F ′(s)| ,sj ≤ s≤ sj+1} (38)
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Fig. 12 Oscillations in the numerical solution with the wrong
definition of α (8). Left: numerical solution forT = 0.5 with
β = 0.1, N = 0, h = 1/320 andk/h = 0.1. Right: zoom of the
right shock area.

In particular, ifSi ∈ [sj ,sj+1] then,α j+1/2 = |F ′(Si)|, for
i = 1,2.

In this case the oscillation does not appear. Therefore,
a right choice of the numerical viscosity parameter is a
key point in the correct behavior of the numerical solutions
obtained with a WENO scheme.

4 Conclusions

The advantages of using a shock-capturing scheme for the
numerical simulation of hyperbolic or parabolic equations
such as (1) was pointed out in [5], where the first order
Godunov numerical flux function was combined with a
second order discretization of the parabolic term. In this
paper, we have shown that the use of a modern
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Fig. 13 Oscillations in the numerical solution with the correct
definition of α (9). Left: numerical solution forT = 0.5 with
β = 0.1, N = 0, h = 1/320 andk/h = 0.1. Right: zoom of the
right shock area.

high-order, high-resolution WENO numerical flux
function can lead to a considerable gain in accuracy and
efficiency in the numerical simulations, both for the
N = 0 andN 6= 0 cases.

ForN= 0 the proposed scheme (13) has been tested on
some initial-boundary value problems for which the exact
solution can be computed using geometric arguments.

For theN 6= 0 case (17), it is seen that the numerical
approximations converge to a solution with the expected
properties. The results have been compared to those
obtained with the numerical schemes proposed in [5] and,
in all cases, the high resolution simulations are more
accurate. In addition, this gain in accuracy leads to a gain
in efficiency, since the quality of the solution is better on
coarser meshes.
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As we have seen, the implicit strategy (IMEX) in the
discretization of the parabolic term, forN 6= 0, has less
stringent requirements for stability. This allows larger
time steps and a gain in computation times. In addition,
the use of a second order Runge-Kutta scheme improves
the accuracy of the solution.

The combination of both advantages leads to an
improvement in efficiency that makes the IMEX-WENO
scheme outperform the Godunov scheme.

The numerical results shown in this paper clearly
suggest that the use of a high-order/high resolution shock
capturing scheme for the discretization of the buoyancy
terms and an implicit-explicit strategy for the time
discretization can be a powerful numerical tool, which
can be easily adapted to explore other scenarios of
engineering interest, such as

–To study of hysteresis effects.
–To study three, or more, phase flow problems, with the
vertical equilibrium assumption.

–Non-homogeneous porous media.
–To investigate the effect of the capillary pressure in a
different way to that of Brooks-Corey models.

We conclude that the strong points of the
IMEX-WENO scheme proposed here are:

–The IMEX strategy to handle the capillary term by an
implicit discretization leads to a noticeable increase in
resolution power and efficiency.

–It gives accurate numerical solutions for any value of
the capillary numberN,

–It reproduces properly the structure of shocks and
rarefactions of the exact solution (Godunov scheme
does not, see Figure 7). It can not give unphysical
solutions.

–The use of a correct definition of the numerical
viscosity is crucial. Not being careful at this point can
lead to solutions affected by numerical instabilities.

Acknowledgments: The authors acknowledge
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MTM-2011-22741.

Appendix A

We perform a linearized stability analysis for the equation
(1):

∂s
∂ t

+
∂
∂x

F(s)+N
∂
∂x

(

F(s)
∂Pc(s)

∂x

)

= 0, (39)

The linearized equation for a small perturbationu
about a constant states(0) is obtained by substituting

s= s(0) + u into (1) and neglecting quadratic terms inu.
This yields the following linearized version of (1):

∂u
∂ t

+a
∂u
∂x

= b
∂ 2u
∂x2 , (40)

wherea= F ′(s(0)) andb=−NF(s(0))P′
c(s

(0)).

Euler explicit scheme

We perform the von Neumann stability analysis for (40)
with a,b> 0 and the scheme:

un+1
j = un

j −α(un
j −un

j−1)+β (un
j+1−2un

j +un
j−1), (41)

whereα = ak/h andβ = bk/h2.
Substitutingun

j = eθ i j , for i =
√
−1 and suitableθ , we

get:

un+1
j = eθ i j A(θ),

where

A(θ) = 1+(α +2β )(cosθ −1)− iα sinθ

so that|A|2 ≤ 1,∀θ , is equivalent to

2(α +2β )− (α +2β )2−α2+

+((α +2β )2−α2)cosθ ≥ 0, ∀θ ,

which is equivalent to:

2(α +2β )(1−α −2β )≥ 0

That is,α +2β ≤ 1 or, equivalently:

ak
h
+

2bk
h2 ≤ 1.

Euler implicit-explicit scheme

We perform the von Neumann stability analysis for (40)
with a,b> 0 and the scheme:

un+1
j = un

j −α(un
j −un

j−1)+β (un+1
j+1 −2un+1

j +un+1
j−1),

(42)
whereα = ak/h andβ = bk/h2.

Substitutingun
j = eθ i j , i =

√
−1 and suitableθ , and

settingun+1
j = A(θ)eθ i j we get:

A(θ) = 1−α(1−cosθ + i sinθ)+2βA(θ)(cosθ −1),
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that is:

A(θ) =
1−α(1−cosθ)− iα sinθ

1+2β (1−cosθ)
,

so that|A|2 ≤ 1,∀θ , is equivalent to

α −α2+2β 2+2β −2β 2cosθ ≥ 0,∀θ ,
which is equivalent toα −α2+2β ≥ 0.

So, the necessary and sufficient condition for stability
∀β > 0 is α < 1 or, in terms of parametersa,b defined
above is:

ak
h

≤ 1.
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