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Abstract: The motion of two-phase flow in a porous medium under the condition @itaéequilibrium can be described by a viscous
conservation law that involves a non-convex flux function with two inflecgioimts. In ], a first order Godunov scheme was used to
numerically approximate solutions of the model. In this paper we show #ireg instead the high resolution Weighted Essentially Non
Oscillatory (WENO) technology, and an IMEX strategy to handle the capitiam by an implicit discretization, leads to a noticeable
increase in resolution power and efficiency. We carefully discuss théeimgmtation of WENO schemes for the model equation,
paying special attention to the choice of the definition of the numerical \itgctd¥e also present numerical simulations when the
capillary number is negligible (i.e., the model is a homogeneous catsmmtaw) and non-negligible (i.e. the model equation becomes
a 'viscous’ conservation law). The numerical results are compartédtirose obtained with the method proposed5hih terms of
accuracy, resolution power and global efficiency.

Keywords: Numerical methods, WENO schemes, IMEX schemes, Porous meaiaphase flow, Vertical equilibrium, Conservation
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1 Introduction for vertical equilibrium displacements, which in
dimensionless variables takes the form

o raFeng (Fod) -0
In a porous medium, vertical equilibrium for two-phase Jt -~ ox ox ox

flow occurs when the sum of the velocities of the two

phases is zero, which amounts to assuming that the Wheres(x.t) is the liquid phase saturatiof is the
motion of two immiscible fluids is governed by the capillary number, ané(s) andF (s) are known functions

balance between capillary and gravitational forces. Then(S€€ bl for details). A related model has been proposed in

the denser fluid flows downward while the lighter fluid [4]| to St”_dﬁ’ the (\j/_ertilcial migr?;[ji%n 0CO; through a
flows upward, with velocities that are equal in magnitude.CO umn with periodiical layers of different porosity.

The assumption of vertical equilibrium is used in the The §econd and third terms ir)( represent the
modeling of several two-phase flow problems of contributions of buoyancy and capillary effects,

engineering interest, such as oil and gas reservaji], respectively. The flux functiof (s) in the buoyancy term

ground water contaminatior8], CO, storage sites4] depends on the absolute and relative permeabilities
etc. ' between the two phases and the porous media, and turns

out to be a bell-shaped function, with a local maximum
In [5], a mathematical model for the displacement of aand two inflection points. As pointed out iB][ the fact
gas phase through a liquid phase in a porous medium i¢hat F(s) changes concavity twice adds more difficulties
derived from basic principles. Using Darcy’s la] and  to the mathematical and numerical analysis of the
mass conservation, the authors obtain a model equatioassociated models than the simpler (and rather extensively
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studied) Buckley-Leverett model, for which the flux is an of the appropriat&iumerical viscositywhich depends on
Sshaped function, with only one inflection point. the flux functionF(s). The computation of this estimate
The specific form of-(s) depends on the model used for a bell-shaped non-convex flux, such a& Enly
for the relative permeabilities. IrB], the Brooks-Corey depends on the knowledge of the two inflection points. To
models [[] were considered, leading to the following define properly the numerical viscosity is of paramount
expression for the flux function importance. Otherwise, the scheme may give rise to
unwanted oscillations.
£ (1-9)? 5 We propose then numerical schemes for Mie= 0
TR (1-9s)2 @ andN # 0 cases that incorporate the WENO construction
in the numerical fluxes, instead of the lower order
The third term in {) is due to capillary effects and it Godunov construction used, for example, 8], [[4] or
involves the capillary pressure, as a function of the liquid[10]. We propose implicit-explicit (IMEX) Runge-Kutta
saturations. As in [5], we shall consider the following solvers to overcome the stability restrictions on the time

F(s)

expression for the normalized capillary pressieys), step size wheiN # 0. The nonlinear systems that arise in
this formulation are solved by a lagged diffusivity fixed
Pe(s) =s /2, 3) point solver. The results obtained are compared with

those in p] from the point of view of the accuracy,

which is consistent with Brooks-Corey models and resolution power and global efficiency.

Leverett relationshipd]. This term approaches zero when The paper is organized as follows. In section 2, we
the capillary numbeN is small, which occurs when the recall the basic ingredients of the WENO schemes that we
size of the pore of the medium is very large. Capillary propose for the discretization of the buoyancy term,
effects are, thus, negligible in many situations of pradtic paying special attention to the numerical viscosity of the
interest and, in such cases]) (reduces to a scalar scheme for non-convex fluxes. In addition, the IMEX
conservation law, with a non-convex flux. strategy that we use to handle the capillary term is shown.

In the mathematical literature, the standard approachn section 3, we show the numerical results obtained for a
to obtain reliable approximations to the solution of set of numerical experiments for the cadés= 0 and
hyperbolic conservation laws and systems is given by theN £ 0, together with a comparison of computational
so-called conservative approachNumerical solutions times and errors with respect to the Godunov type scheme
obtained with conservative schemes represent of [5]. Finally, in section 4 we present some conclusions
discontinuities in the true solution of a homogeneousand perspectives for future work.
conservation law as sharp transitions, involving ofteryonl
a few discrete solution values, and are often caédck
capturing’ schemes. Many of these conservative scheme
follow the path laid out by Godunov and use the solution
of the so-called Riemann Problem, for which the initial ) ) )
data is a step function, as a building block of the schemeShock-capturing  techniques  for ~ the  numerical
We refer the interested reader @] [for details on approximation of discontinuous solut|on_s to hyperbolic
Godunov schemes. conservation laws are based on a classical result by Lax

The conservative framework is only recently finding @nd Wendroff (see e.g9)) that establishes that if the limit
its place in the engineering literature, where the methodsolution of aconservative schembas discontinuities,
of characteristics was often used to handle hyperbolidhese will propagate according to the Rankine-Hugoniot
equations, probably due to the physical intuition behindconditions. T_hls regul'g ensures that conservative sche_mes
it. For the model problem1j, a Godunov scheme is capturethe dlscont_|nU|t|e§ in the solution, and gives rise
proposed in%], and its behavior is tested against a known 0 theshock-capturingerminology. _ _
exact solution of a specific initial-boundary value problem  Shock capturing schemes are now routinely used in
for (1) whenN = 0. However, one of the main advantages applications involving discontinuous  solutions  of
of following the "conservative approach’ in the numerical hyperbolic conservation laws. 18][a first order Godunov
simulation of equations such as)(is the fact that there Scheme is proposed in order to obtain numerical
exists nowadays a (rather large) pool of well establishecsimulations of the model problem without capillary
high resolution shock capturing numerical techniques.effects. As we shall demonstrate, the use of more
Understanding the principles behind the basic design ofophisticated techniques, such as the WENO construction
these numerical techniques allows the user to adapt th@dvocated in this paper, can lead to a noticeable increase
technique to the particular problem at hand, in order toin res_olutlon and efflc:le.ncy,.prowdmg areliable tool to be
obtain well resolved and robust numerical simulations. ~ used in more general situations.

In this paper, we discuss the implementation of the ~ The discrete set-up we shall consider is as follows: a
modern Weighted Essentially Non-Oscillatory (WENO) uniform grid is laid out on the spatial domain, taken as
schemes for the model equatiah).(As we shall see, the [0, 1] for simplicity. For convenience, the grid-points are
general setting for WENO schemes requires an estimatj = (j+3)h, j=0,1,...m—1,m-h=1, andx;_1,%, 1]

2 WENO schemes for the model equation
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is the j-th computational cellj = 0,1,....,m— 1, where  where the parameter above should satisfy
the cell-endpoints arg; 1 = (j+Dh, j=-1,....m— )
1. Notice that, with this definition, the domain boundaries a >max{|F(s),s€ [s,s]}, (6)
x =0 andx = 1 correspond to cell-endpoints. The time
interval [0, T] is uniformly discretized, hendg = n-k, k,
wherek is the discrete time-step amgk = T for some
integerny. It is well known (see e.g9]) thatk andh must
be related by a stability condition, which depends on the
type of equation being discretized, as well as the type of
numerical technique used. with

Any conservative scheme computes discrete values,
s', associated to the discrete grid-pointgi,t,). In _ 1 1
finite-volume schemes, such as the Gogxan\)/ scheme F (s):é(F(s)—as), F(s) = E(F(s)—kas)
proposed in %], these discrete values are interpreted as
approximations to the cell-averages of the true solutionThe choice ofx specified in §) guarantees that theigned
s(x,t), while in finite-difference conservative schemes, fluxes F* satisfy (F*)" > 0, (F7)' <0 in [s,s], i.e.
such as the WENO scheme advocated in this paperround the interface. Hende; in (7) are evaluated at the
s ~ s(Xj,t), i.e. they are considered as approximationsupwind point, which turns out to be crucial for the
to the point-values of the true solution. stability of the conservative scheme having) (as

WENO schemes are nowadays routinely used fornumerical flux. _
applications involving convex conservation laws and If F(s)is aconvex (or concave) function, then
systems. We shall see next that its application in the

non-convex case only requires a careful definition of the , , ,
numerical viscosity of the scheme. a =max{|F'(s)],s€ [s,s]} = max{|F'(s)|,|F (5r)|g’8)

where[s,s] represents the closed intengl< s < s if
g<s ors <s<gif 5 <g. The reason for this
requirement can be understood by noticing that

F'FP(s,s)=F (s)+F*(s) ©)

satisfies §).
However, for a bell-shaped, non-convex, function,
such as 2), the value ofa depends on the location of the

A di fully di . ical two inflection pointsS;, S with respect to the values
ccording to pl, a fully discrete conservative numerica sé,s{. In this case, an appropriate definition is as follows
scheme for a homogeneous conservation law, such as th

model equationX) whenN = 0, has the form

2.1 N= 0: The homogeneous case

» Ko o a =max{|F'(s)|/s€ {s.s}U({SLS}Nls s )},
ST =8¢ [Fj+1/2 - Fj—l/Z} ; (4) )
where|s, s [ is the open interval determined Byands;.
wherelfjn is the numerical flux through the boundary of ~ In subsectior8.4, we see that to choose the appropriate

+1/2 T SHPS . ; ;
the cell. In any conservative scheme, this numerical flux isd€finition is a key point to obtain a well behaved numerical
computed using a set of values around the interface . solution. , , _
For a first order scheme, only the nearest neighlsdend The scheme4) with the numerical flux function at

s, are involved, but in higher order schemes more value€ach interface defined by the formufg,(or equivalently,

might be necessary in order to improve the accuracy of the

. An _ ke —
scheme. Hence, in generEIj,H/2 = F(§j1r,...,§;+r+l), |:J_n+1/2 _ Fj+1/2(§j“+l) + thl/z(sr;%

wherer > 0 andF is known as th@aumerical flux function 4
the trademark of the scheme, which determines many of its Fii1/2(8) =F(8) £aj1/28 (10)
properties.

In Godunov’'s method, the design of the numerical
flux function is based on the solution of a Riemann
problem at each cell-boundaryx; i, hence

where aj, 1/, is computed as specified before, with
§ = §J” ands = §j“+1, gives rise to a first order accurate
conservative scheme, since it is easy to prove thé} (
leads to a flux difference satisfying

Fer-l/Z = If(§j1 S{;1)- In the WENO schemes designed in

[12] (see also 15,16 and references therein) the 1

numerical flux function is based on the entropy-satisfying Z(gn __En — O(F(3)(y 11 +O(h

Local-Lax-Friedrichs scheme, for which the numerical h( i+1/2 171/2) K(F(8))log o) O,

qu>§ funct|0n at an interface separating two statgsand for & = s(x;.tn).

S, is given by ] ! L

Its numerical behavior is similar to that of the Godunov

ALLE 1 scheme used irg], but with a larger degree of smearing
F(s.s) =5 (F(s)+F(s)-a(s—s)), (5)  aroundthe location of the shocks in the numerical solution.
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A high order WENO scheme is designed in such a2.2 N+ O: The viscous case
way that the flux difference is betterapproximation of
x(F(9)|(x; 1), thus allowing for an improvement in when capillary pressure is included in the model, @j. (
spatial accuracy. The WENO numerical flux has the form becomes a so-calledscousconservation law. The model
equation is now of parabolic type, hence its solutions are

FAjrlL]_/Z =B (F1)2(S] 1) Filaa(ST o)X 12) + smohoth. However, it is expec(‘;ed thag for smal: ve;llues of
e : - : - N, the convection processes due to buoyancy lead to very
7 (Fi+l/2(sr11—f+1)’ T FJ'+1/2(ST“+1)’XJ+1/2)' sharp transitions that resemble shocks. In such cases, it is

(11) advantageous to still use the high resolution shock

N n . capturing numerical flux functions described in the

Here 7 represent  specific  non-oscillatory, previous section, combined with an appropriate
upwind-biased, data-dependent polynomial giscretization of the parabolic term describing the
reconstruction procedures, which are evaluated at the CeEapiIIary effects, in order to get a high resolution

boundaryx; 1 /,. These procedures are nowadays almost, merical approximation to the exact solution of the
a black-box type of routine (seel§] and references ogel problem.

therein). o _ In [5], the authors propose a numerical scheme of the
The number of points involved in the WENO flux ¢4

computation {1) is determined byr. This number

determines also the spatial accuracy of the flux difference.

Kra .
It can be proven (seelf§]) that, under appropriate s?“:s?—ﬁ [Fjll/z_an_1/2:|+B? (15)
smoothness conditions, _ ) o
where the conservative discretization of the buoyancy
1 /2 2n - 1 term is based on Godunov’s numerical flux, a
h (FJ'“/Z*FJ'—l/Z) = %x(F(9))]o ) + O, represents a second order discretization of the capillary
3 IR(s))

hence the spatial order of accuracy of the associate®®MN3x (F(S) ax ) ineq. Q).
conservative schem@)(is 2r + 1. For the WENO5 12 We propose to use the WENO5 numerical fluxes
constructiorr = 2. Whenr = 0, we recover 10). defined in the previous sectionr (= 2) for the

A WENO numerical flux computation amounts, then, conservative discretization of the buoyancy term,
to the use of a sophisticated, upwind-biased,combined with the same second order accurate
non-oscillatory reconstruction technique on the function discretization of the capillary term as ][

Fjil/z(s) = F(s) £ aj 128 wherea;,/, is a parameter It is known that the stability requirements of the
associated to thexj,;,, interface, whose value is capillary terms lead to an excessive restriction in the size

computed as specified above, with= s ands, ;. These of the time stepk. Then, we propose to use an IMEX

reconstruction procedures are, however, straightforwargcneéme: implicit for the parabolic term and explicit for

to implement, following the steps outlined ibd]. the hyperbolic term. In addition, for time discretization,
We end this section by recalling (see eg]) that the ~ We consider a second order Runge-Kutta scheme.

stability condition for a numerical scheme such4si§ of Decoupling the spatial and temporal issues, we rewrite
the type eq. (1) as follows:

k

—max|F'(s)] <C<1 12

h Fel=Cs (12) %f:L(S)—FC(S), (16)

where the valu€ depends on the specific method being

used. he foll I whereL (s) denotes the advective term% andC(s) =
We propose the following explicit Runge-Kutta 2 P oy os] e .

scheme to compute the time evolution of et) when  —Nox {F(S)P (S)ﬁ] is the diffusive capillary term.

N = 0: We shall consider the following Implicit - Explicit

(IMEX) Runge-Kutta 2 scheme described v]:

k
SHE=S+ Eiﬂn (13 +1/2 K (oo ooni1/2
Gy 12 S22 (g ) (17)
where Sk ($n+1/2 I %n+1>
where the tern¥’ is the vector that contains the second
gjl = }(ﬁjlﬂ/z, ﬁjl_l/2)7 1<j<m (14)  order spatial discretization of the parabolic term
h C(s) = —Nd% {F(S)P/(S)%} , obtained from the valueﬁ,
andlfj'ﬂ/2 is the WENO numerical flux. j=0,...,mI1l=nn+1/2, as follows:
@© 2013 NSP
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Since the vectos™1/2 is implicit in eq.Q0) we have
to approximately solve it by means of an iterative method.
We propose to use a lagged diffusivity Fixed Point

1
¢ = 2 [(glj+l+g|j)slj+l_(glj+l+29lj +d_)s+ ) - a _
Iteration whose algorithm is as follows:

(g)+ g'j,1)§j,1} (18) ~ Input: approximate solution vectasf att =t, as
a starting value
where vV =g"andk=0
while e> Tol antld(klg Niter
L = _NF(3)P'(3), 19 solve for v**1 the linear system
d (S)P'() 19 ok - oo
for j=0,...m+1andl =nn+1/2. k=k+1
Notice that the discretization of the hyperbolic term is e= ||V —vK||q
computed in an explicit manner, from the known solution endwhile

valuess,, ..., | =n,n+1/2, whereas the discretization
of the parabolic term is computed in an implicit manner in
both steps of the scheme. the nonlinear system (\gn+1/2)§“+1/2 — Q(sn)

It is well known that the stability restrictions on the The second step of the IMEX-RK2 method is solved
time step for the IMEX scheme are less severe than thosanalogously.
of the explicit scheme, which makes the IMEX scheme  To ensure the stability of the explicit numerical scheme
more efficient, in some cases, than the explicit schemg15) proposed in§], a von Neumann analysis suggests a

[17]. stability condition of the form (see Appendix A):
To solve eq.17) we need to solve a nonlinear system

of equations in each one of the two steps. To do this, we

H1/2 _ \kt+l
Output: approximate solution vectat1/2 of

perform a Fixed Point Iteration method.
Let us consider the first step in etf. It can be
rewritten in matrix form as follows:

M(s™/2) M2 = (") (20)

whereM(s ) is them x mtridiagonal matrix given by:

B'fL C;L 0O .. O
AB, C, .. 0
M(S)=|.. .. e (21)
o..A ,B ,Cl
0.. 0 A, B,
where
k
Blj =1+ W(glj+1+29lj +g|j—1) (22)
k

Alj = _W(glj +9|J;1)
k
C} = *W(gljﬂJrglj)

andQ(s) is a column vector whose components are:

Q(g)j=§j+;g(s})j, for j=2,..m—1 (23)

and

Q)=+ S LSt g+ b

QS m =+ 5 Z (St 7 (G + G

(24)

2kN
! /
h msax|F (s)|+ 3 msax\F(s)PC(s)\ <C <1

Assuming,mh= 1, wherem is the number of points,
the condition for the ratié/h can be expressed as:

k 2kN
HPH’ FPZS(:lS 1

(25)

(26)
or

k C1

Qe 27
h = p1+2pomN (27)

wherep; is the maximum value of=’(s)| andp, denotes
the maximum value of~ (s)P.(s)|.

According to this estimate, when the number of points
mincreases, the value &fh allowed has to decrease. This
means that the parabolic term may dictate the maximum
time step for stability in a very stringent manner g2nN
is not very small compared withy .

On the other hand, for IMEX-RK2 the stability
condition suggested by the analysis performed in
Appendix A is of the form:

k
pmaxF(s)<Co<1 (28)
which can be rewritten as:
k G
- < =, 29
h™ m (29)

Hence, the rati/h does not depend on the number of
pointsm considered.

The constantsC; and C, in eqs. 5 and @8),
respectively, depend strongly on the ODE solver. We
show in Appendix A, that for the case of the Euler
scheme, both constants are equal to one.

© 2013 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

1870 NS 2 R. Donat et al : IMEX WENO Schemes for Two-phase Flow Vertical...

However, since they are obtained from a stability
analysis of a linearization ofl}, the precise value df;
andC; is subject to some empirism that has been a matter
of research for the present work.

0.12f

0.1f

3 Numerical results 008l
To test the proposed numerical schemes, we follwaipd 0.06f
consider that the gas is initially concentrated near the bas | |
(x = 1) and the rest of the core is filled with liquid. Thus, 0.04
the initial condition is a step function of the form ! '
0.02- | |
_[1 for 0<x<a, S.li B S sizi

S(X’ O) o {B for a<x< 1-} ’ (30) % 0z 0a 06 o8 s, 1

where 3 represents the initial saturation of water in the
lower part of the column of the porous media. On a finite

domain, such as the core, vertical equilibrium is Fig 1 Graph of the flux functior (s) showing the intermediate
simulated by sealing the ends of the core. This implies astatess;, s, and its relationship wit and the inflection points
zero-fluxboundary condition, to be imposed on both endss,;s,.

of the computational domain.

For the uniform discretization stated in sectibd, the
domain boundaries correspond to cell-endpoixts:0 = )
X_1/2, andx = 1 = Xy, 1. Hence, the zero-flux boundary (S2,F(s2)) and a rarefaction wave betweds,F(s))
conditions [L8] [19] are particularly simple to implement and(1,0) (atx= 1). The values o$; ands, are obtained
in this setting, since they become as follows (seeq], and Figurel):

—(s1,F(s1)) is such that the tangent line to the graph of
F at(s1,F(s1)) intersects the graph of F ét,0).

Fly2=0, Fn12=0, n=012.. —The line that connect$p,F(B)) and (s, F(s2)) is
tangent to the graph of F at the po(st, F(s2)).
3.1 N= 0: The homogeneous case For B = 0.3 andF(s) given by eq. 1), we have the

intermediate states:

When N = 0, (1) becomes a non-convex scalar s, = 0.6033917422 (31)
conservation law. In an infinite domain, equatiot) ( ’

together with the initial data3Q) constitute a so-called

Riemann problem, a self-similar hyperbolic initial value s, = 0.9429648815 (32)
problem with piecewise constant data on both sides of an
imaginary membrane. Even though the Riemann problenh
is not of direct interest in applications, it is relatively a
simple to find analytic solutions, which can be used for
the validation and comparison of numerical methods F(1)—F(s)
applied to the model problem. The geometric construction o(ls)=

The corresponding shock speeds, according to the
nkine-Hugoniot jump condition, can be readily
computed as

— —0.2769531793  (33)

described in ] serves to compute the exact solution to =%

the initial-boundary value problem corresponding to a F(B)—F(s)

given set of parameters, B as a combination of two 0(B,s) = =-0.1132151033  (34)
Riemann solutions. B-

We consider next the test caae= 0.6, 3 = 0.3, and  The minus sign indicates that shocks are moving to the left
use the exact solution for validation of the numerical in the graphic.
technique. Figurd shows that our choice of parameters In Figure 2 we show that the numerical scheme
corresponds to situation Il of proposition 1 and V of correctly reproduces the basic features of the exact
proposition 2 in §]. Hence, denoting the states as solution. Here, the numerical solution is computed on a
(s,F(s)), the exact solution consists of a shock wave uniform mesh withh = .002 and snapshots at= 0,
connecting the point1,0) (atx=0) in Figurelandthe t = 03 and t = 05 are shown. The
intermediate state (s;,F(s;)), a rarefaction wave shock-rarefaction-shock-rarefaction structure of the
connecting (s1,F(s1)) with (B,F(B)), a shock solution is clearly appreciated, and the shocks are moving
connecting (B,F(B)) with an intermediate state to the left, as expected.
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0.9r
0.8F
0.7r
0.6r
0.5F
0.4r
0.3r
0.2F

0.1r

Fig. 2 Numerical solution for the cagé= 0 att = 0,t =0.3 and
t = 0.5 (full line, +, and x, respectively) on a uniform mesh with
h=0.002 anck/h =0.1.

0.9r
0.8F
0.7r
0.6r
0.5F
0.4r
0.3F
0.2F

0.1r

Fig. 3 Numerical solutions corresponding to= 1/40, h =
1/80,h=1/160 anch=1/320 att = 0.5 with the exact position

——T=0
——T=0.3
——T=0.5

N

I
0.2

I
0.4

I
0.6

I
0.8

—e—n=40
—+—n=80
——n=160
—+—n=320
——exact

0.2

0.4

0.6

0.8

0.91

0.8

0.71

0.6

0.51

0.4

0.31

0.2r —N=0
—e—N=0.01
0.1F | ——N=0.03
0 .
0 0.2 0.4 0.6 0.8 1

Fig. 4 Comparison between the numerical solutionsMo 0,
N = 0.01 andN = 0.03 att = 0.3. Hereh = 0.002.

convergence of the numerical scheme. This convergence
study shows that the numerical solution converges to the
‘true solution’ of the problem as the mesh size,
converges to zero. In addition, it shows that the numerical
solution is reliable already on coarse meshes. This is a
specific feature of high order/high resolution shock
capturing schemes, and its relevance can be clearly
appreciated in Figuré, where we compare the numerical
results obtained with the WENOS5 numerical flux, and the
Godunov numerical flux proposed i6]{

We have considered other test cases, using a different
set of parameters, obtaining analogous results (see also
section3.3).

3.2 N=# 0: The viscous case

As mentioned before, wheM # 0, (1) becomes aiscous
conservation law. For small values of théscosity
parameter N the smooth solution of this parabolic PDE,
bears a great similarity to the corresponding solution for

of the shocks. The solid line corresponds to an 'exact’ solutionN — 0. The shock discontinuities that occur in tRe= 0
computed on a uniform mesh of 2000 points.

Figure 3 shows the numerical solutions tat= 0.3 on

case become smooth transitions wineg: 0, which may

be very sharp for very small values bf. The use of a
conservative formulation for the flux difference leads to
an adequate representation of these transitions, even for
very small values oN. This can be readily appreciated in

several meshes, together with the 'true solution’, whichFigure 4, where the numerical solution corresponding to
has also been obtained applying the numerical scheme ofl) with N = 0 and @0), with a= 0.6 and3 = 0.3, is

a very fine mesh with 2000 points. We also display thedisplayed together with the numerical approximations
exact position of the shocks, marked as vertical lines,corresponding to the same initial data add= 0.01 and
computed according to their true Rankine-Hugoniot speed\ = 0.03.

in (33), (34). We clearly observe that decreasing the mesh A convergence study is shown in FiguseThe exact
width leads to finer resolution and better precision in thesolution is obtained by applying the scheme on an
position of the shocks,which is a clear indication of the extremely fine mesh of 10240 points. It is worth noticing
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Fig. 5 Convergence study fad = 0.03 att = 0.3 '
0.9r
0.8-
that 'numerical convergence’ is attained on rather coarse T
meshes. This issue will be further considered in the 0.6f
following section. o5k
0.4r
3.3 The IMEX-WENO scheme versus the 3
0.2t e Lo ]
Godunov scheme L GODUNOV CUNHA 20
0.1 —— Exact 1
In this section we shall compare the numerical results o ‘ ‘ ‘ ‘
0 0.2 0.4 0.6 0.8 1

obtained with our proposed scheme to those obtained
with the first order Godunov scheme proposedShfpr
the same model equation.

In Figure 6 we show a comparison of numerical
results for the test case = 0.6, f = 0.3 on uniform  Fig. 6 A comparison of IMEX-WENO versus Godunov
meshes containing 20 and 40 points[Onl]. We clearly =~ numerical simulations on coarse meshes. Tep0.3, bottom
appreciate that, on coarse meshes, the numerical solutions- 1.
obtained with the IMEX-WENO scheme are more
reliable than those obtained with the Godunov scheme. In

particular, a highly visible 'dog-leg’ effect can be o o
observed in the Godunov simulations arouxd= 0.6. made earlier: in all situations, the IMEX-WENO scheme

This numerical pathology occurs in some schemes withProduces more accurate results. It is worth observing that
insufficient numerical ~ viscosity; the ‘glitch’ is €ven on the finest mesh, with 1000 points [Onl], the
proportional to the mesh size, hence it is not observabldirst order scheme produces a smeared profile around the
on the much finer meshes used in the numericalocation of the second shock, while the IMEX-WENO
simulations of sectior8.1 The bottom row of figures ~ Scheme gives a sharp transition that can be easily
shows snapshots at= 1. At this time, the left moving identified as a shock.
shock that originated at= 1 has already interacted with Figures8 and 9 show the comparison between the
the rarefaction wave and there is no constant state. Th&ethods for the casdl = 0.03,a= 0.6, 3 = 0.3 on a
glitch atx = 0.6 still persists on the Godunov simulations, uniform mesh with 320 points, together with the 'true’
but it does not show up in any of the IMEX-WENO solution, obtained on a very refined mesh. In the zoomed
simulations. pictures we can observe that the numerical solution
In Figure 7 we have chosen a set of parameters thatobtained with the IMEX-WENO scheme is virtually "on
reproduces the situation shown in Figure 3 Bf. [The  top’ of the true solution, but the solution obtained with
bottom figure corresponds to the same mesh resolutiothe Godunov scheme dB][is not.
and can be directly compared with the results shown in  Table 3.3 and Figure10 show thelLi-errors (mean
[5]. The plots on the top row confirm the observations errors) of both schemes with respect to the reference
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Fig. 8 Comparison between the numerical solutions for our
method, Godunov type method used 5] fnd the reference

1 ‘ ‘ ‘ solution. The curves are obtained for= 1.5 with N = 0.03,
ool ] h=1/320 andAt/Ax? = 40
0.8
T Table 1 Errors and computation times for the Godunov scheme
0.6 1 used in p] and the IMEX RK2 WENOS5 scheme proposét=
osl 0.03, t=1.0
04l Godunov IMEX-WENO
m Error | Time (s) Error Time (s)
03 ] 160 | 0.0111 | 0.010 | 0.00527 | 0.015
02f [—s—LLF-WENO 1000 1 320 | 0.00643| 0.025 | 0.00252 | 0.055
01l | poo NOVECUNRA 1000 ] 640 | 0.00363| 0.140 | 0.00115| 0.220
1280 | 0.00205| 0.940 | 0.000534| 0.905
% 02 04 06 08 1 2560 | 0.00118| 7.505 | 0.000214| 3.620

Fig. 7 A comparison of IMEX-WENO versus Godunov . i
numerical simulations = 0.5, 8 = 0.25,t = 0.9. Top:h=1/40.  feference solution has been obtained by means of the

Bottomh = 1,/1000. IMEX-WENO scheme with 10240 points.
To obtain the computation times for the Godunov
scheme, we have used the stability restriction given by
(27).
solution, together with the running time of the simulation. K c
In the table, we clearly observe that the mean error e 1
decreases with the mesh size, and that the IMEX-WENO h = p1+2p2mN
simulation is always more reliable (less mean error) than
the Godunov simulation.

(35)

Experimentally, we have checked that this condition is

valid for our test problem witlC; = 0.89. In addition, for
The data in Table3.3 also indicate that the our flux and pressure functions, eqs2) (and @),

IMEX-WENO scheme is more efficient than the Godunov respectively, it is easy to see thah = 0.3977 and

scheme: For the same target error, the IMEX-WENOP2 = 0.2316. Therefore, when3p) is not satisfied,

scheme needs less computation time than the Goduno@scillations appear in the numerical solution.

scheme. The same results are shown graphically in Figure On the other hand, the stability condition for the

10, where we clearly appreciate that the data for thelMEX-WENO scheme given by2Q) is valid withC, = 1.

IMEX-WENO scheme is always below that of the

Godunov scheme. k_C (36)

HS o
The values of the errors have been calculated P

comparing the numerical solutions obtained for each  Accordingly, inthis case we have used a constant value

number of pointsm with a reference solution. This for k/h of 2.5.
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axes have logarithmic scaling.
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Fig. 9 Enlarged views of the approximated solutions shown in e e e . —*
Figure 8.
S .,3
s 10 (* A/0 1

In addition, in the IMEX-WENO scheme, we have to
take into account that the running times depend on the J

value of the tolerance parametdro() taken in the Fixed
Point Iteration. To determine which is the appropriate
value we must use, we have tested how the error varie 1070 = = .
with different values ofTol. Figure 11 shows that the 10 10 e 10 10
mean error is roughly constant wha&ol < 10-3. In our

simulations, we have set the value of the tolerance as

Tol =105,

Fig. 11 Evolution of the mean errors as a function of the
tolerance parametdiol for different number of points.

3.4 The role of the definition @f

) ) The right shock shows a nonphysical oscillation due to
Finally, we show what happens if we take the wrong the fact that the numerical viscositiyhas a value which is
definition of a in the WENO reconstruction of the gmaller than necessary.
numerical flux function. Figure 13 shows the same area of the numerical

In Figure12, we can see the numerical solution given solution, but with the correct definition of the numerical
by the IMEX-WENO scheme with the definition af  viscositya given in ©). This definition takes into account

given in @). This means that for each interv@al,sj;1],  that any inflection poin;,S; may be inside the interval
we take [Sj, Sj+1],

aj 172 = max{|F'(sj)], [F'(sj+1) |} (37) ajy1/2 = max{|F'(s)],sj < s<sjia} (38)
@© 2013 NSP
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Fig. 12 Oscillations in the numerical solution with the wrong Fig. 13 Oscillations in the numerical solution with the correct
definition of a (8). Left: numerical solution fofT = 0.5 with definition of a (9). Left: numerical solution fofT = 0.5 with

B =0.1,N=0,h=1/320 andk/h = 0.1. Right: zoom of the 3 =0.1, N =0, h=1/320 andk/h = 0.1. Right: zoom of the
right shock area. right shock area.

In particular, if§ € [sj,sj,1] then,a; = |F’ , for ) . . .
i:pl N § € [sj;sj+1] jryz = F(S) high-order, ~high-resolution WENO numerical flux

In this case the oscillation does not appear. ThereforefUnction can lead to a considerable gain in accuracy and

a right choice of the numerical viscosity parameter is aciciency in the numerical simulations, both for the

key point in the correct behavior of the numerical solutionsN = 0 @ndN # 0 cases.

obtained with a WENO scheme. ForN = 0 the proposed schem&3) has been tested on
some initial-boundary value problems for which the exact
solution can be computed using geometric arguments.

4 Conclusions For theN # 0 case 17), it is seen that the numerical

approximations converge to a solution with the expected
The advantages of using a shock-capturing scheme for thproperties. The results have been compared to those
numerical simulation of hyperbolic or parabolic equations obtained with the numerical schemes proposedjmand,
such as 1) was pointed out ing], where the first order in all cases, the high resolution simulations are more
Godunov numerical flux function was combined with a accurate. In addition, this gain in accuracy leads to a gain
second order discretization of the parabolic term. In thisin efficiency, since the quality of the solution is better on
paper, we have shown that the use of a moderrcoarser meshes.
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As we have seen, the implicit strategy (IMEX) in the s= s +uinto (1) and neglecting quadratic terms in
discretization of the parabolic term, fof # 0, has less  This yields the following linearized version of)
stringent requirements for stability. This allows larger
time steps and a gain in computation times. In addition, ou ou d%u

the use of a second order Runge-Kutta scheme improves ot +a& - bﬁ’ (40)

the accuracy of the solution.
The combination of both advantages leads to anVherea= F/(s9) andb = —NF(s9)Ry(s?).
improvement in efficiency that makes the IMEX-WENO
scheme outperform the Godunov scheme. o
The numerical results shown in this paper clearly Euler explicit scheme
suggest that the use of a high-order/high resolution shock
capturing scheme for the discretization of the buoyancyWe perform the von Neumann stability analysis fa0)(
terms and an implicit-explicit strategy for the time with a,b > 0 and the scheme:
discretization can be a powerful numerical tool, which
can be easily adapted to explore other scenarios of
engineering interest, such as u’j‘+1 =ul —a(u] —uj_1) +B(u},; —2u] +-uj_4), (42)
—To study of hysteresis effects. wherea = ak/h andp = bk/hz.

—To ;tudy thr_e_e, or more, pha_se flow problems, with the Substitutings® = €%l fori = v/—1 and suitable@, we
vertical equilibrium assumption. get: !

—Non-homogeneous porous media.
—To investigate the effect of the capillary pressure in a UL — QijA(e)
different way to that of Brooks-Corey models. J ’

) where
We conclude that the strong points of the

IMEX-WENO scheme proposed here are:

—The IMEX strategy to handle the capillary term by an A(8) =1+ (a+2B)(cosd —1) —iasing
implicit discretization leads to a noticeable increase ingq thati/A2 < 1, v, is equivalent to
resolution power and efficiency. -

—It gives accurate numerical solutions for any value of
the capillary numbeN, 2(a+2B)— (a+2B)*—a’+

-t reproduces properly the structure of shocks and 2 2
rarefactions of the exact solution (Godunov scheme +H((a+2B)"—a%)cos6 20, v,
does not, see Figure 7). It can not give unphysicalyhich is equivalent to:
solutions.

—The use of a correct definition of the numerical 2(a+2B)(1-a—-28)=0
viscosity is crucial. Not being careful at this point can -
lead to solutions affected by numerical instabilities.  Thatis,a + 2 <1 or, equivalently:

ak 2bk
ntwe st
Acknowledgments The authors acknowledge
support from the Spanish MINECO through the project
MTM-2011-22741. Euler implicit-explicit scheme
We perform the von Neumann stability analysis fa0)(
Appendix A with a,b > 0 and the scheme:
We perform a linearized stability analysis for the equation
(1 = U () B - 20 ).
(42)

wherea = ak/h and = bk/h?.
ds 0 0 0Pc(s)> Substitutingu? = €% i = \/—1 and suitabled, and
2 ZF(+N—(F =0, 3 1
at T axk NG ( (5=5x 39 settingu™* = A(6)e” we get:

The linearized equation for a small perturbatian
about a constant state? is obtained by substituting A(8) =1—a(1—cos +isin@)+2BA(6)(cosd — 1),
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o oscillatory schemes lll, J. Comput. Phyg], 231-303
AD) — 1—a(l—cosf)—iasind (1987).
(0) = 1+2B(1—cosb) ’ [15] C. W. Shu. High order weighted essentially nonoscillatory
2 . . schemes for convection dominated problen®AM Rev.
so that/A|“ < 1,v6, is equivalent to 51, 82-126 (2009).
2 2 2 [16] C. W. Shu, S. Osher, Efficient implementation of essentially
a—a“+2B°+2B—2B“cost >0,V6, non-oscillatory shock-capturing schemes I, J. Comput.
which is equivalent tar — a?+ 283 > 0. Phys. 83, 32-78 (1989).
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; : : Runge-Kutta methods for time dependent partial differential
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agoie is: < P - equations, Applied Numerical Mathemati®5, 151-167
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