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Abstract: Scale-spaces play an important role in many computer vision tasks. Automatic scale selection is at the foundation of multi-
scale image analysis, but its performance is still very subjective and empirical. To automatically select the appropriate scale for a
particular issue, a scale selection model based on information theory is proposed in this paper. The proposed model utilizes mutual
information as a measuring criterion of similarity for the optimal scale selection in multi-scale analysis, with applications to image
denoising and segmentation. Firstly, we focus on the morphological operator based scale selection to image denoising. This technique
does not require the prior knowledge of the noise variance and can effectively eliminate the variation of illumination. Secondly, we
develop a clustering based unsupervised image segmentation algorithm byrecursively pruning the Huffman coding tree. The proposed
clustering algorithm can preserve the maximum amount of information at aspecific clustering number from the information-theoretical
point of view. Finally, for the feasibility of the proposed algorithms, its theoretical properties are analyzed mathematically and its
performance is tested by a series of experiments, which demonstrate that it yields the optimal scale for our developed image denoising
and segmentation algorithms.

Keywords: scale selection, mutual information, denoising, segmentation

1 Introduction

Scale is of an important concept in the mathematical
modeling process for a variety of modeling fields. But the
choice of scale is quite complex. In a wide range of
chemical, physical, and biological systems, macroscopic,
coherent behavior emerges from interactions between
microscopic entities (molecules, cells, individuals in a
population) among themselves and with their
environment. In many cases, a macroscopic model (such
as the Navier-Stokes equations for fluid flow or a
reaction-diffusion equation) has been formally derived
that quantitatively describes behavior at this level to
perform a variety of tasks (e.g. simulation, optimization,
bifurcation analysis) using analytical and numerical
techniques [1–3]. For many complex systems, however,
although evolution is observed at a macroscopic scale of
interest, accurate models are only given at a more detailed
(fine-scale, microscopic) level of description (e.g., lattice
Boltzmann, kinetic theory of active particles, molecular

dynamics, cellular automata) [4–6]. Recently, effects have
been made to build the connection between macroscopic
and microscopic level in physicochemical
modeling [7–9].

It is vast for the application of scale-space theory and
its relationship among scales is complex. This study
focuses only on the optimal scale selection for the image
processing task. Scale analysis is one of the most useful
frameworks for many image processing tasks [10–12].
The fundamental ideal behind hierarchical multi-scale
representation is to analyze with respect to scales [13,14]
and it is commonly defined as the collection of the filtered
image.

In some classical literatures, multi-scale
representation could be distinguished as three types. The
first one is the wavelet transform [15], which is
widespread used in the field of image processing, such as
image denosing [16], image and video
compression [17, 18], and multi-modality
registration [19]. By employing the windowing technique
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with variable-size region, wavelet transform is capable of
decomposing a signal into multi-scale representation. The
second type is derived from the diffusion process and
based on partial differential equations [20]. It originates
from the conventional isotropic heat flow equation and
has been widespread used in image filtering [21–24],
segmentation [25–27] and inpainting [28–30]. And the
third type is based on the mathematical
morphology [31–33]. Most of the morphological filters
generate nonlinear scales, which have exhibited
excellence performance in most image processing tasks
comparing with the linear scale analysis. For example, the
features (e.g. edges, corners) of an image could be well
preserved by the nonlinear operator.

Scale is the key parameter in the application of
multi-scale analysis and its performance critically
determines the success of a multi-scale algorithm. Several
existing techniques for selecting the proper scale in image
denoising have been proposed recently by using optimal
control theory [34, 35], asymptotic perturbation
methods [36], minimization of the correlation of signal
and noise [37], statistical model [38, 39], and Markov
random field model [40]. However, all these methods
require some prior of noise variance and its evaluation is
time-consuming and sometimes impractical. To improve
the robustness of scale selection, we extend the
information-theoretic model [41] and propose a new scale
selection algorithm, which is based on the maximization
of mutual information for morphological multi-scale
representation.

Further, our proposed scale selection model is used
for unsupervised image segmentation, where the
determination of number of cluster (NC) is treated as the
selection of optimal scale. And the measuring criterion is
from the computation of mutual information. Such
criterion has been adopted towards image segmentation
along with binary space partition method [42], simulated
annealing method [43] and fuzzy C-means method
(FCM) [44,45]. Differ from those methods, our proposed
algorithm could maintain the maximum amount of
information between the original image and segmented
images, and the convexity of solution could be guaranteed
by employing the Huffman coding strategy. And all these
well-pose properties are proved mathematically.

The remainder of this paper is organized as follows.
Section 2 describes the proposed scale selection model
and its application to image denoising and segmentation
based on the objective functional of mutual information
maximization. Experimental results are presented in
section 3 and conclusions are drawn in section 4.

2 The proposed model

2.1 The model description

In the information theory, the mutual information is
defined as a measuring metric of statistical correlation for

two random variablesX andY. We model an imageu(x)
as a random variable. Thus, the probability density ofu(x)
is denoted bypu(i) and is usually estimated from image
histogram bins. Given two imagesu(x) andv(x), and then
the mutual informationI(u,v) is written as follows:

I(u,v) = H(u)+H(v)−H(u,v), (1)

H(u) =−
n

∑
i=1

pu(i)log(pu(i)), (2)

H(u,v) =−
n

∑
i=1

m

∑
j=1

pu,v(i, j)log(pu,v(i, j)), (3)

whereH(u) denotes the Shannon entropy. It expresses the
average information or uncertainty of a random variable
and obtains its maximum entropy only in the case of
equally occurrence of the probability bins.H(u,v) is the
joint entropy of u(x) and v(x) and expresses the
misalignment between them.pu,v(i, j) is the joint
probability and measures the similarity betweenu(x) and
v(x). The joint probability is defined by:

pu,v(i, j) =

∣

∣

∣

∣

xk|u(xk) = i
⋂

v(xk) = j
Ωuv

∣

∣

∣

∣

. (4)

The mutual information maximizes the amount of
information if random variablesu(x) and v(x) are
correctly aligned. To express the relationship between the
original image u(x) and the processed image with
multi-scale algorithm, we define an information-theoretic
functionalJt as follows:

Jt = I(u(x),Pt(u(x))), (5)

wherePt is an operational operator parameterized by scale
t, for instance, the morphological open operator for image
denoising and clustering operator for image segmentation.

We seek to estimate the scalet that parameterizes the
multi-scale operator by maximizing its mutual information
over the scalet by:

t = arg max
t

Jt . (6)

We denote the mutual information between the original
image and the processed image as follows:

I1 = I(u,Ptu). (7)

And the computation for the mutual information
between the original image and the residual of the
processed image is formulated as:

I2 = I(u,u−Ptu). (8)

With the increase of the scale variablet, it is observed
that the growth for the amount of mutual information
between (7) and (8) is opposite. One is increasing while
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the other is decreasing. For the convenience of
comparison between (7) and (8), we normalize and
rewrite them as follows:

I1 =
I(u,Ptu)
I(u,u)

, (9)

and

I2 =
I(u,u−Ptu)

I(u,u)
. (10)

In the following sections, we apply the above
normalized equations as a determining criterion for the
problem of scale selection in image denoising and
segmentation, respectively.

2.2 Maximization of mutual information for
denoising

2.2.1 Description of the denoising algorithm

In this section, we focus on the denoising algorithm in the
multi-scale representation of morphological open
operator. Accordingly, we replace the function operator in
(9) and (10) with the specific open operatorOt . Open
operation is a combination of dilation and erosion
operators, which are fundamental operators in
mathematical morphology. And the selection of the shape
and size of the structuring element (SE) is very
fundamental and crucial. Unfortunately, the selection of
SE is subjective and empirical to a specific image
processing task. To automate the selection of SE, we
parameterize the size of SE with scalet and re-formulate
the fundamental morphological operator from the
multi-scale point of view. Then the problem of
determining the size of the SE becomes the problem of
selecting the proper or optimal scale for a specific image
processing task.

The dilation operatorD that computes the maximized
gray value over a given size of SEB with scale t is
described as:

Dtu(x) = sup
y∈x+tB

u(y). (11)

When an image is dilated by the dilation operator,
finer details (or noise) whose size is smaller than the SEB
will be eliminated from the image. By increasing the
scalet from 0 to larger scale, a stack of filtered images is
obtained.

Conversely, the erosion operatorE computes the
minimized gray value near the neighborhood and is
defined as follows:

Etu(x) = in f
y∈x+tB

u(y). (12)

Then the open operatorO is defined as the dilation
operator applied after the erosion:

Otu(x) = sup
B′∈tB

in f
y∈x+B′

u(y). (13)

Using Taylor expansion to (13), we have:

Otu(x) = sup in f
y∈tB

u(y) = u(x)− t ·▽u(x)+o(t), (14)

whereo(t) is an infinitesimal of higher order to scalet, and
▽u(x) is the derivative with respect to original imageu(x).
Thus, we obtain the limit of the open operator as scalet
vanishes:

lim
t→0

Otu(x) = u(x). (15)

Meanwhile, we obtain easily the limitation of the open
operator as scalet tends to infinite:

lim
t→∞

Otu(x) = lim
t→∞

sup
B′∈tB

in f
y∈x+B′

u(y) =C, (16)

whereC is a constant. Equation (16) indicates that if the
selected scale is sufficiently large, the filtered image by
open operator is a flat (or constant) image.

The residual of the opening compared to the original
image represents the top-hat transformation:

Ttu(x) = u−Otu. (17)

The open operator suppresses fine details in the
images successively. Thus, when the opened image is
subtracted from the original, the desired detail is
obtained [46]. One of the potential applications for the
top-hat transformation is to estimate uneven background
illumination. However, top-hat transformation would
underestimate the uneven background for small scale.
Otherwise, it would overestimate the uneven background
for large scale. In other words, if the selected scale is too
small, the result obtained from the top-hat transformation
is sensitive to noise. On the other hand, if the selected
scale is too large, the top-hat transformation has no effect
on the original image, since the opening is a flat image.
Utilizing (16) and (17), we formulated previous remark as
followings:

lim
t→0

Ttu
t

= lim
t→0

u−Otu
t

=▽u(x), (18)

and
lim
t→∞

Ttu(x) = lim
t→∞

(u−Otu) = u−C. (19)

In order to choose the proper scale in the top-hat
transformation based image denoising, we utilize the
mutual information of (9) and (10) as the quantitative
criterion and present the following scale selection
algorithm (i-De).

Algorithm: i-De

Parameter:
DenoteT as the number of iteration,
ε as a small threshold parameter.
CalculateI t

1 (u,Otu) at the initial scalet = 1.

Do for t = 2, ...,T
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1.Compute top-hat transformation as in (17);
2.Calculate mutual informationI1 andI2 as follows:

I1 =
I(u,Otu)
I(u,u)

, (20)

I2 =
I(u,u−Otu)

I(u,u)
. (21)

3.If I1 < I2 andabs
(

I t−1
1 − I t

1

)

< ε, then output selected
scalet.

In the following experiments, we set the small
threshold parameterε to 0.01.

2.2.2 Analysis of thei-De algorithm

For the feasibility of thei-De algorithm, we give some
proofs for the monotonicity of the proposed formula. We
firstly introduce the following theorem [33] upon the
open (or sup-inf) operator.

Theorem 1. Let F(u∈ F) be a set of functions and it is
stable under contrast change, andO be a function
operator having a sup-inf form, namely
Otu(x) = sup

B′∈tB
in f

y∈x+B′
u(y). Then the sup-inf operator is

monotone and contrast invariant.
According to monotonicity of the open operator given

in theorem 1, we introduce the following two propositions
that describe the monotonicity of (20) and (21).

Proposition 1. Let O be an open operator,T be a top-hat
transformation, andI(u,v) be the mutual information for
two random variablesu(x) and v(x). Then the mutual
information defined by (20) is monotonically decreasing,
and the mutual information defined by (21) is
monotonically increasing.

Proof. Equations (15) and (16) show that the opened
image is the original image at scale 0 and it tends to a flat
image at infinite scale. Combining with the monotonicity
stated in theorem 1 we tell that the opened imageOtu(x)
is decreasing monotonously from original image to the
flat image as the scale increasing from 0 to infinite.
Meanwhile, maximum mutual information is obtained
only when we calculate the mutual information of the
image to itself, i.e.,I(u,u) ≥ I(u,v). Thus we conclude
that the mutual information of (20) is decreasing
monotonously. Similarly, the mutual information of (21)
is increasing monotonously.�.

Remark. In our experimental results, we observed that
the mutual information of (20) is indeed decreasing
monotonously, which conforms to our proposition 1.
However, the mutual information of (21) is increasing
gradually with very small oscillation, but not
monotonicity. Such a phenomenon comes from the fact
that the computation of (20) is insensitive to noise since

the opened image could be viewed as a smoothed version
to the original image. Conversely, the top-hat transformed
image is the residual of the opened image to the original
image. In other words, top-hat transformed image is
comparable to noise at small scale, just as demonstrated
in (18). Such an oscillation is caused by the existence of
noise, but the trend of the mutual information of (21) is
increasing.

Proposition 2. The formula of mutual information defined
in (20) and (21) will intersect at a certain scale.

Proof. By substituting (15) and (16) into (20), we could
easily conclude that the mutual information of (20) is
decreasing from maximum mutual information (i.e.1) to
minimum mutual information (i.e. 0). Similarly, by
substituting (18) and (19) into (21), we conclude that the
(21) is increasing from 0 to 1. Thus there is an
intersection for (20) and (21) at a certain scale.�.

Remark. According to proposition 2, there is an
intersection point for the curves of (20) and (21) as the
scalet increases. And this point is indeed a turning point
as both of the mutual information become convergent.
However, the scale at this point is not optimal as it is
demonstrated in our experimental results. And thei-De
algorithm gives a more optimized answer.

Not only does the scale model resolve the
morphological denoising but also unsupervised
clustering. Next we present another algorithm of using the
scale model to determine the NC in unsupervised
segmentation.

2.3 Maximization of mutual information for
segmentation

2.3.1 Description of the segmentation algorithm

Most of the unsupervised segmentation algorithms
require some prior knowledge on the determination of
NC. For example, we have the prior that the brain image
of magnetic resonance imaging (MRI) can be classified
into cerebrospinal fluid, white matter, grey matter and
background. However, it is sometimes difficult or
impossible for us to know the true NC without the
specific domain knowledge.

In this section, we present an algorithm for solving
the problem of selecting the proper or optimal NC in
unsupervised image segmentation, where level set
functions are commonly used to describe the contrast
invariant properties [33]. The level set of an imageu(x)
with level t is written as Φtu(x) = {x : u(x)> t}, for
t ∈ RRR. Here we treat a specific levelt as a threshold for
image segmentation. By adopting the Huffman entropy
coding methodology, our algorithm subdivides an image
into similar regions recursively according to a predefined
criterion. The algorithm and its analysis are based on the
information-theoretical functional described in section
2.1 and the Huffman coding methodology. The Huffman
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sorting for the histogram bins in each stage guarantees
that our solution to the problem of mutual information
maximization is not a local one, but a global one. We
denote our proposed segmentation method asi-Se
algorithm and its pseudo-code is described as follows.

Algorithm: i-Se

Parameter:
DenoteT as the number of maximum intensity bin for an
imageu(x), Sas the clustering operation.

CalculateI t
1 (u,Stu) at scalet = T.

Do for t = T −1, ...,2,1

1.Calculate probability densitypu(i), i ∈ [1, t];
2.Sortpu(i) in descending order;
3.Combine the lowest two ordered probabilities, and

produce a weighted intensity as follows:

k=
i ∗ pu(i)+ j ∗ pu( j)

pu(i)+ pu( j)
. (22)

Now the probability of intensityk becomes:

pt−1
u (k) = pt

u(k)+ p
′

u(k), (23)

where
p
′

u(k) = pu(i)+ pu( j). (24)

And the following diagram illustrates our clustering
process based on Huffman coding strategy:

4.Calculate following mutual information:

I t
1 = (u,Stu) , (25)

I t
2 = (u,u−Stu) . (26)

5.If I1 < I2 andabs
(

I t+1
1 − I t

1

)

< ε, then output selected
NC t.

2.3.2 Analysis of the segmentation algorithm

The main idea behind the analysis fori-Sealgorithms is
to derive monotonic and smooth properties on the mutual
information based formula of (25) and further to point out
that the solution to thei-Sealgorithm is convex. We begin
with the following two inequality equations (proofs for the
following two lemmas are given in the appendix).
Lemma 1. Let p, q be the probability density function and
r = p+q, then we have−rlog(r)<−(plog(p)+qlog(q)).
Lemma 2. Let Stu(x) be the segmented image at the level
of t for an imageu(x). Then the joint entropyH(u,Stu) is
invariable at any clustering level oft.

With the two lemmas, we have the following
proposition.
Proposition 3. Let Stu(x) be the segmented image at the
clustering level oft for a random variable ofu(x). With the
attenuation of level variablet, the mutual information for
I(u,Stu) is monotonically decreasing.
Proof. To prove the above proposition, we only need to
prove that the mutual information ofI(u,Stu) is greater
than I(u,St−1u). From (1), we have
I(u,Stu) = H(u) + H(Stu) − H(u,Stu) and
I(u,St−1u) = H(u)+H(St−1u)−H(u,St−1u). According
to the definition of Shannon entropy and lemma 1, we
haveH(Stu) > H(St−1u). With the proved lemma 2, we
immediately haveI(u,Stu)> I(u,St−1u). �.

Construction of Huffman coding tree in thei-Se
algorithm plays an important role in obtaining global
minima. Otherwise, the convexity for the mutual
information of (25) is not guaranteed. Such non-convex
solution is commonly existed in classical FCM algorithm
and could be obviously observed in our following
experimental result for the classification of the
computerized tomography (CT) phantom image. In other
words, the solution for FCM is local minima. Thus, to
find globally minima solution, thei-Se algorithm adopts
the method for the construction of minimum-redundancy
codes in Huffman entropy coding by merging the lowest
two ordered probability density bins successively.
Meanwhile, from proposition 3 we have:

dIt = I t
1(u,Stu)− I t−1

1 (u,St−1u) =△Ht(Stu). (27)

Equation (27) indicates that it is redundancy to
compute some of the terms for the mutual information in
(25). Thus, we simplify thei-Se algorithm to increase
computation speed by deleting redundancy term.

Algorithm: i-Se (simplified version)

Parameter:
DenoteT as the number of maximum intensity bin for an
imageu(x), Sas the clustering operation.

Calculate entropyHt (Stu) at scalet = T.
Do for t = T −1, ...,2,1
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1.Calculate probability densitypu(i), i ∈ [1, t];
2.Sortpu(i) in descending order;
3.Combine the lowest two ordered probabilities, and

produce a weighted intensity as in (22);
4.Calculate Shannon entropy as follows:

Ht = Ht (Stu) . (28)

5.If ∆Ht = Ht+1−Ht < ε, then output selected NCt.

3 Experimental results

3.1 Denoising results

In the experiments of multi-scalei-De denoising
algorithm, we focus on the non-uniform background,
which could be effectively subtracted from the original
image through top-hat transformation [46]. And the
transformed images are further segmented to validate the
i-De scale selection algorithm.

Figure 1(a) is an original rice grains image with
uneven illumination. After the threshold segmentation
applied to the original image, we obtain the segmented
result in Fig. 1(d), where we could observe that the rice
grains at the bottom of the image could not be extracted
ideally from the uneven background. It is pointed out
in [46] that as long as the SE is large enough, a reasonable
estimation of the background illumination could be
obtained by opening the original image. But it is
subjective to select the appropriate scale. Figure 2
demonstrates the diagram for the mutual information of
(20) and (21) with the increasing scalet and it conforms
to our prediction to theI1 and I2 in proposition 1: I1
decreases monotonously andI2 increases monotonously.
However, I1 and I2 are not convex functions. Its
non-convex property is demonstrated in Fig. 3, where it
illustrates the oscillation for the difference ofI1 and I2.
Figure 1(b) illustrates the opened image at scale 6, where
the mutual information of (20) and (21) is intersected.
And it is envisaged that the scale at this intersection point
is not optimal. It is incorrect for the estimation of a rice
grain marked out in a circle in Fig. 1(b). Conforming to
the empirical selection of the scale in [46], the i-De scale
selection algorithm has chosen the scale 10 and the
promising results are illustrated in Figs. 1(c) and (f).

Figure 4(a) is an X-ray vessel medical image with
uneven background. Figure 4(e) demonstrates the
segmentation result by using the level set method [47] to
the original image. The level set stop evolving to the left
bottom part of the vessel and fail to segment such a vessel
image with uneven background. In this study, top-hat
transformation is used to eliminate the uneven
background. The mutual information and its difference of
(20) and (21) for the vessel image are demonstrated in
Figs. 5 and 6, respectively. And thei-De scale selection

Fig. 1: Denoising for rice grains image. (a) Original image. (b)
Opened image at scale 6. (c) Opened image at scale 10. (d)
Threshold image at scale 0. (e) Threshold image at scale 6. (f)
Threshold image at scale 10.

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Scale t

M
ut

ua
l i

nf
or

m
at

io
n

 

 

I1
I2

Fig. 2: Mutual information of (20) and (21) for grains image at
various scales.

algorithm predicts that the optimal scale is 15. For
comparison with other scales, we have chosen the
representative scales at 5 and 30. The images in the first
row of Fig. 4 are the top-hat transformed images at scale
0, 5, 15, and 30, respectively. The images in second row
are the corresponding segmentation results using level set
method. The third row shows the estimation of uneven
background. From these images, we could conclude that
if the scale is not sufficiently large, it would produce an
underestimated image, which could lead to some leakages
in the vessels boundary marked as circles in Fig. 4(f). On
the other hand, larger scale selection would come to an
overestimation to the background. Only the proper scale
could result in the promising segmentation result
demonstrated in Fig. 4(g).
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Fig. 3: Difference of mutual information for Fig. 2.

Fig. 4: Denoising for vessel image. The images in first row are
Ttu at scale 0, 5, 15, and 30, respectively. The images in second
row are the segmentation results corresponding to the first row
using level set method. The third row shows the estimation of
uneven background:Otu, corresponding to the scalet=5, 15, 30.

3.2 Segmentation results

The first experiment for testing thei-Se clustering
algorithm is conducted on a Shepp-Logan head phantom
image, which is used widely by researchers for validating
their numerical accuracy of any two-dimensional CT
reconstruction algorithms. We choose such a test image
for its six known clusters, which has the intensity value of
0, 26, 51, 77, 102, and 255, respectively.
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Fig. 5: Mutual information of (20) and (21) for vessel image at
various scales.
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Fig. 6: Difference of mutual information for Fig. 5.

Figures 7 and 8 illustrate the segmentation results by
using the FCM and thei-Se clustering methods. The
relationship between mutual information and NC are
illustrated in Figs. 9 and 10, where the mutual
information of formulas (25) and (26) are plotted. It
verified to our proposition 3 that the mutual information
of I1 is increasing monotonously and convergent to 1.0 as
the NC increases. Meanwhile,I2 is decreasing
monotonously and reaches to 0.0 as the NC≥ 6.

Figure 11 demonstrates that the amount of mutual
information for thei-Se algorithm is more than for the
FCM clustering algorithm when the NC is 2 or 3. It
means that the segmented result from thei-Sealgorithm
contains more detail information in the image, which is
envisaged by comparing Figs. 7 (b) and (c) with Figs. 8
(b) and (c). Meanwhile, the FCM method is a local
algorithm and leads to different segmentation results due
to the different initialization for clustering center. Such
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Fig. 7: Segmentation of head phantom image using FCM
algorithm.

Fig. 8: Segmentation of phantom image usingi-Sealgorithm.

local phenomenon is illustrated in Fig. 12, where such
local method could not guarantee the monotonicity for the
difference of mutual information. On the contrary, Fig. 12
demonstrates that the curve of the difference of mutual
information for the i-Se algorithm is smoother. More
importantly, it is monotonically decreasing.

The second experiment for testing thei-Sealgorithm
is conducted on a real cerebral CT image. It is not a
synthetic image and we have no prior knowledge to its
exact NC. Figure 13 shows the testing CT image and the
segmentation results using FCM andi-Sealgorithms. The
relationships between mutual information and NC, and
between the difference of mutual information and NC are
demonstrated in Figs. 14 and 15, respectively. As shown
in Fig. 14, with the growth of NC, the mutual information
of equation (25) is increasing both for thei-Seand FCM
algorithms. But it could also be observed that the mutual
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Fig. 9: Mutual information of FCM algorithm for head phantom
image.
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Fig. 10: Mutual information ofi-Sealgorithm for head phantom
image.
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Fig. 11: Comparison of mutual information for FCM andi-Se
algorithms.
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Fig. 12: Comparison of the difference of mutual information for
FCM andi-Sealgorithms.

Fig. 13: Segmentation for CT image. (a) Original image. (b)
FCM segmentation result. (c)i-Sesegmentation result.

information is greater for thei-Sealgorithm than for the
FCM algorithm in the case of the same NC. In
comparison, more detail information is preserved in the
i-Se segmented image compared with the FCM
segmentation result. Such advantage is even more obvious
with the increase of NC. As is shown in Fig. 15, with the
growth of NC, the difference of mutual information for
the FCM algorithm is oscillatory decreasing, while the
decreasing for thei-Se algorithm is monotonically
decreasing.

The third experiment for testing thei-Sealgorithm is
conducted on the Lena image. The experimental results
are demonstrated in Figs. 16-18. To compare the results
between cerebral CT image and Lena image, our method
can effectively preserve the detailed information in the
segmented images. More intensive experiments are
conducted on other testing images to validate the
effectiveness of thei-Se algorithm, which reveals the
internal relationship among the original image and the
segmented images.
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Fig. 14: Comparison of mutual information for CT image using
FCM andi-Sealgorithms.
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Fig. 15: Comparison of the difference of mutual information for
CT image using FCM andi-Sealgorithms.

Fig. 16: Segmentation for Lena image. (a) Original image. (b)
FCM segmentation result. (c)i-Sesegmentation result.
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Fig. 17: Comparison of mutual information for Lena image using
FCM andi-Sealgorithms.
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Fig. 18: Comparison of the difference of mutual information for
Lena image using FCM andi-Sealgorithms.

4 Conclusion and discussion

In this paper, we make use of mutual information as a
measuring criterion of similarity for the optimal scale
selection in multi-scale analysis, with applications to
image denoising and segmentation. Firstly we express the
image processing operator in multi-scale space and
propose a mutual information based functional. To
morphological open operator, we present ai-De scale
selection algorithm, whose advantage is that it can
automate the scale selection for the multi-scale
representation of images. To clustering operator, we
present ai-Seclustering algorithm by treating the specific
level t as a threshold for image segmentation. For the
feasibility of the i-De and i-Se algorithms, we make the
detailed mathematical analysis, mainly to the
monotonicity and smoothness of the objective formulas.

Using thei-De algorithm, we are capable of selecting the
proper scale to eliminate uneven background. Such
non-uniform illumination is a common phenomenon in
most camera or medical images. Finally thei-Se
algorithm outputs the proper level for clustering
segmentation. At such scale we can obtain the maximum
amount of information for segmented image.

A weakness of ouri-Sealgorithm is that only the grey
feature is considered in the model, while other features
(such as spatial correlation among pixels, boundary, and
texture) are not taken into account. A more detailed
model for their local correlation would be needed in order
to produce more reliable results.

Many other modeling tasks, such as chemical,
physical, and biological modeling, could have been
explored using the scale-space theory. However, in the
present study our main aim was to develop a scale
selection criterion for image denoising and segmentation
tasks. In the future, we will do more investigation for the
application of our algorithm to other modeling tasks. And
most of these limitations will be dealt with in future
research.

Appendix

Following we give the detailed proof for the lemmas in
section 2.3.

Lemma 1. Let p, q be the probability density function and
r = p+q, then we have−rlog(r)<−(plog(p)+qlog(q)).

Proof. As p, q are probability functions, we have
0 ≤ p ≤ 1 and 0≤ q ≤ 1. By an increasing argument for
the function f (x) = xa, a ∈ [0,1], x ∈ (0,∞), it can be
shown that(p+q)p

> pp and(p+q)q
> qq. So we have

r r = (p+q)p+q
> pp ∗qq. Applying log operator to both

side yieldsrlog(r) > (plog(p) + qlog(q)). The lemma
follows immediately.�.

Lemma 2. Let Stu(x) be the segmented image at the level
of t for an imageu(x). Then the joint entropyH(u,Stu) is
invariable at any clustering level oft.

Proof. For the self-joint entropyH(u,u), we have
puu(i, j)|i= j 6= 0 andpuu(i, j)|i 6= j = 0. In other words, the
self-joint entropy is a diagonal matrix. Providing that we
combine any of two intensity probabilities estimated from
u(x), e.g.i and j, it produces a weighted intensity as (22).
Now the probability of intensityk for Stu(x) becomes
(23). So we have the following shifting for the joint
histogram in the diagonal matrix of H(u,u):
puu(k,k) → puStu(k,k), puu(i, i) → puStu(i,k) and
puu( j, j) → puStu( j,k). As clustering only shifts the
element in the joint distribution, it does not change the
total value for the joint entropy. That means
H(u,u) = H(u,Stu). Similarly, we have H(u,u) =
H(u,St−1u). So we haveH(u,Stu) = H(u,St−1u) and the
lemma follows immediately.�.
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