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Abstract: In this paper, we determine some stability results concerning the cubic functional equation

kf(x+ ky) + f(kx− y) =
k(k2 + 1)

2
[f(x+ y) + f(x− y)] + (k4

− 1)f(y),

wherek ≥ 2 is a fixed integer, in the setting of intuitionistic fuzzy normed spaces (IFNS).Further we study the intuitionistic fuzzy
continuity through the existence of a certain solution of a fuzzy stability problem for approximately cubic functional equation.
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1. Introduction and preliminaries

Sometime in modeling applied problems there may be a
degree of uncertainty in the parameters used in the model
or some measurements may be imprecise. Due to such fea-
tures, we are tempted to consider the study of functional
equations in the fuzzy setting. The notion of fuzzy sets was
first introduced by Zadeh [31] in 1965 which is a powerful
hand set for modeling uncertainty and vagueness in vari-
ous problems arising in the field of science and engineer-
ing. For the last four decades, fuzzy theory has become
very active area of research and a lot of developments have
been made in the theory of fuzzy sets to find the fuzzy
analogues of the classical set theory. The notion of intu-
itionistic fuzzy norm (see [13,16–19,22,29]) is also useful
one to deal with the inexactness and vagueness arising in
modeling. There are many situations where the norm of a
vector is not possible to find and the concept of intuition-
istic fuzzy norm seems to be more suitable in such cases,
that is, we can deal with such situations by modeling the
inexactness through the intuitionistic fuzzy norm.

In 1940, S.M. Ulam [30] raised the following question.
Under what conditions does there exist an additive map-
ping near an approximately addition mapping? The case
of approximately additive functions was solved by D.H.
Hyers [3] under certain assumption. In 1978, a generalized

version of the theorem of Hyers for approximately linear
mapping was given by Th.M. Rassias [26]. A number of
mathematicians were attracted by the result of Th.M. Ras-
sias. The stability concept that was introduced and inves-
tigated by Rassias is called the Hyers-Ulam-Rassias sta-
bility. During the last decades, the stability problems of
several functional equations have been extensively investi-
gated by a number of authors (c.f. [1,4–12,14,15,21,23–
25,27,28]) and references therein.

Recently, Bae, Lee and Park [2] established some sta-
bility results for the functional equation

kf(x+ ky) + f(kx− y)

=
k(k2 + 1)

2
[f(x+ y) + f(x− y)] + (k4 − 1)f(y),

wherek ≥ 2 is a fixed integer, in the setting of non-
ArchimedeanL-fuzzy normed spaces.

In this paper, we determine some stability results
concerning the above cubic functional equation in the
setting of intuitionistic fuzzy normed spaces (IFNS). We
also study the intuitionistic fuzzy continuity through the
existence of a certain solution of a fuzzy stability problem
for approximately cubic functional equation.

∗ Corresponding author e-mail:mursaleenm@gmail.com

c© 2013 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/070504


1678 M. Mursaleen , K. J. Ansari : Stability Results in Intuitionistic Fuzzy...

In this section we recall some notations and basic
definitions used in this paper.

Definition 1.2.A binary operation∗ : [0, 1]× [0, 1] →
[0, 1] is said to be acontinuous t-norm if it satisfies the
following conditions:
(a) ∗ is associative and commutative,(b) ∗ is continuous,
(c) a ∗ 1 = a for all a ∈ [0, 1], (d) a ∗ b ≤ c ∗ d whenever
a ≤ c andb ≤ d for eacha, b, c, d ∈ [0, 1].

Definition 1.3.A binary operation♦ : [0, 1]× [0, 1] →
[0, 1] is said to be acontinuous t-conorm if it satisfies the
following conditions:
(a′) ♦ is associative and commutative,(b′) ♦ is contin-
uous,(c′) a♦0 = a for all a ∈ [0, 1], (d′) a♦b ≤ c♦d
whenevera ≤ c andb ≤ d for eacha, b, c, d ∈ [0, 1].

Using the notions of continuoust-norm andt-conorm,
Saadati and Park [29] introduced the concept of intuition-
istic fuzzy normed space as follows:

Definition 1.4. The five-tuple(X,µ, ν, ∗,♦) is said to
be anintuitionistic fuzzy normed spaces (for short, IFNS)
if X is a vector space,∗ is a continuoust-norm,♦ is a con-
tinuoust-conorm, andµ, ν are fuzzy sets onX × (0,∞)
satisfying the following conditions. For everyx, y ∈ X
ands, t > 0
(i) µ(x, t)+ν(x, t) ≤ 1, (ii) µ(x, t) > 0, (iii) µ(x, t) = 1
if and only if x = 0, (iv) µ(αx, t) = µ(x, t

|α| ) for each
α 6= 0, (v) µ(x, t)∗µ(y, s) ≤ µ(x+y, t+s), (vi) µ(x, ·) :
(0,∞) → [0, 1] is continuous,(vii) lim

t→∞
µ(x, t) = 1 and

lim
t→0

µ(x, t) = 0, (viii) ν(x, t) < 1, (ix) ν(x, t) = 0 if and

only if x = 0, (x) ν(αx, t) = ν(x, t
|α| ) for eachα 6= 0,

(xi) ν(x, t)♦ν(y, s) ≥ ν(x + y, t + s), (xii) ν(x, ·) :
(0,∞) → [0, 1] is continuous,(xiii) lim

t→∞
ν(x, t) = 0 and

lim
t→0

ν(x, t) = 1.

In this case(µ, ν) is called anintuitionistic fuzzy norm.

Example 1.1.Let (X, ‖.‖) be a normed space,a ∗ b =
ab anda♦b = min{a + b, 1} for all a, b ∈ [0, 1]. For all
x ∈ X and everyt > 0, consider

µ(x, t) =

{

t
t+‖x‖ if t > 0

0 if t ≤ 0;
and

ν(x, t) =

{

‖x‖
t+‖x‖ if t > 0

0 if t ≤ 0.

Then(X,µ, ν, ∗,♦) is an IFNS.

The concepts of convergence and Cauchy sequences in
an intuitionistic fuzzy normed space are studied in [29].

Let (X,µ, ν, ∗,♦) be an IFNS. Then, a sequencex =
(xk) is said to beintuitionistic fuzzy convergent to L ∈ X
if limµ(xk − L, t) = 1 andlim ν(xk − L, t) = 0 for all

t > 0. In this case we writexk
IF
−→ L ask → ∞.

Let (X,µ, ν, ∗,♦) be an IFNS. Then,x = (xk) is said
to beintuitionistic fuzzy Cauchy sequence if limµ(xk+p−
xk, t) = 1 andlim ν(xk+p − xk, t) = 0 for all t > 0 and
p = 1, 2, · · ·.

Let (X,µ, ν, ∗,♦) be an IFNS. Then(X,µ, ν, ∗,♦) is
said to becomplete if every intuitionistic fuzzy Cauchy se-
quence in(X,µ, ν, ∗,♦) is intuitionistic fuzzy convergent
in (X,µ, ν, ∗,♦).

2. Intuitionistic fuzzy stability

The functional equation

kf(x+ ky) + f(kx− y)

=
k(k2 + 1)

2
[f(x+y)+f(x−y)]+(k4−1)f(y), (2.1)

wherek ≥ 2 is a fixed integer, is called thecubic func-
tional equation, since the functionf(x) = cx3 is its so-
lution. Every solution of the cubic functional equation is
said to be acubic mapping.

We begin with a generalized Hyers-Ulam-Rassias type
theorem in IFNS for the cubic functional equation.

Theorem 2.1. Let X be a linear space and let
(Z, µ′, ν′) be an IFNS. Letϕ : X ×X → Z be a function
such that for someα > k3

µ′

(

ϕ(
x

k
, 0), t

)

≥ µ′(ϕ(x, 0), αt) and

ν′
(

ϕ(
x

k
, 0), t

)

≤ ν′(ϕ(x, 0), αt), (2.2)

and lim
n→∞

µ′

(

k3nϕ( x
kn ,

y
kn ), t

)

=1 and

lim
n→∞

ν′
(

k3nϕ( x
kn ,

y
kn ), t

)

= 0 for all x, y ∈ X and

t > 0. Let (Y, µ, ν) be an intuitionistic fuzzy Banach
space and letf : X → Y be aϕ-approximately cubic
mapping in the sense that

µ

(

kf(x+ ky) + f(kx− y)− k(k2+1)
2

[

f(x+ y)

+f(x− y)

]

−(k4 − 1)f(y), t

)

≥ µ′(ϕ(x, y), t),

ν

(

kf(x+ ky) + f(kx− y)− k(k2+1)
2

[

f(x+ y)

+f(x− y)

]

−(k4 − 1)f(y), t

)

≤ ν′(ϕ(x, y), t)

(2.3)
for all t > 0 and allx, y ∈ X. Then there exists a unique
cubic mappingg : X → Y such that

µ(g(x)− f(x), t) ≥ µ′(ϕ(x, 0),
(α− k3)t

2
) and
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ν(g(x)− f(x), t) ≤ ν′(ϕ(x, 0),
(α− k3)t

2
) (2.4)

for all x ∈ X and allt > 0.

Proof. Puty=0 in (2.3). Then for allx ∈ X andt > 0

µ(f(kx)− k3f(x), t) ≥ µ′(ϕ(x, 0), t)

which implies that

µ

(

k3f(x
k
)− f(x), t

)

≥ µ′

(

ϕ(x
k
, 0), t

)

≥ µ′(ϕ(x, 0), αt),

ν

(

k3f(x
k
)− f(x), t

)

≤ ν′
(

ϕ(x
k
, 0), t

)

≤ ν′(ϕ(x, 0), αt).



























(2.5)

Replacingx by x/kn in (2.5), we get

µ

(

k3(n+1)f(
x

kn+1
)− k3nf(

x

kn
), k3nt

)

≥ µ′

(

ϕ(
x

kn
, 0), αt

)

≥ µ′(ϕ(x, 0), αn+1t) and

ν

(

k3(n+1)f(
x

kn+1
)− k3nf(

x

kn
), k3nt

)

≤ ν′
(

ϕ(
x

kn
, 0), αt

)

≤ ν′(ϕ(x, 0), αn+1t).

Replacingt by t/αn+1, we obtain

µ

(

k3(n+1)f( x
kn+1 )− k3nf( x

kn ),
k3nt
αn+1

)

≥ µ′(ϕ(x, 0), t) and

ν

(

k3(n+1)f( x
kn+1 )− k3nf( x

kn ),
k3nt
αn+1

)

≤ ν′(ϕ(x, 0), t).



























(2.6)

It follows from k3nf( x
kn ) − f(x) =

n−1
∑

j=0

(

k3(j+1)f( x
kj+1 )− k3jf( x

kj )

)

and (2.6) that

µ

(

k3nf( x
kn )− f(x),

n−1
∑

j=0

k3jt
αj+1

)

≥
n−1
∏

j=0

µ

(

k3(j+1)f( x
kj+1 )− k3jf( x

kj ),
k3jt
αj+1

)

≥ µ′(ϕ(x, 0), t) and

ν

(

k3nf( x
kn )− f(x),

n−1
∑

j=0

k3jt
αj+1

)

≤
n−1
∐

j=0

ν

(

k3(j+1)f( x
kj+1 )− k3jf( x

kj ),
k3jt
αj+1

)

≤ µ′(ϕ(x, 0), t),



































































(2.7)

for all x ∈ X, t > 0 andn > 0 where
n−1
∏

j=0

aj = a1 ∗ a2 ∗

.... ∗ an,
n−1
∐

j=0

bj = b1♦b2♦....♦bn.

By replacingx with x/km in (2.7), we get

µ

(

k3(n+m)f(
x

kn+m
)− k3mf(

x

km
),

n−1
∑

j=0

k3(j+m)t

αj+m+1

)

≥ µ′

(

ϕ(
x

km
, 0), t

)

≥ µ′(ϕ(x, 0), t) and

ν

(

k3(n+m)f(
x

kn+m
)− k3mf(

x

km
),

n−1
∑

j=0

k3(j+m)t

αj+m+1

)

≤ ν′
(

ϕ(
x

km
, 0), t

)

≤ ν′(ϕ(x, 0), t)

Thus,

µ

(

k3(n+m)f(
x

kn+m
)− k3mf(

x

km
),

n+m−1
∑

j=m

k3jt

αj+1

)

≥ µ′(ϕ(x, 0), t) and

ν

(

k3(n+m)f(
x

kn+m
)− k3mf(

x

km
),

n+m−1
∑

j=m

k3jt

αj+1

)

≤ ν′(ϕ(x, 0), t)

for all x ∈ X, t > 0, m ≥ 0 andn ≥ 0. Hence

µ

(

k3(n+m)f( x
kn+m )− k3mf( x

km ), t

)

≥ µ′

(

ϕ(x, 0), t
n+m−1∑

j=m

k3jt

αj+1

)

and

ν

(

k3(n+m)f( x
kn+m )− k3mf( x

km ), t

)

≤ ν′
(

ϕ(x, 0), t
n+m−1∑

j=m

k3jt

αj+1

)

,























































(2.8)

for all x ∈ X, t > 0, m ≥ 0 andn ≥ 0.

Sinceα > k3 and
∞
∑

j=0

(k
3

α
) < ∞, the Cauchy crite-

rion for convergence in IFNS shows that

(

k3nf( x
kn )

)

is

a Cauchy sequence in(Y, µ, ν). Since(Y, µ, ν) is com-
plete, this sequence converges to some pointg(x) ∈ Y .
Fix x ∈ X and putm = 0 in (2.8) to obtain

µ

(

k3nf(
x

kn
)− f(x), t

)

≥ µ′

(

ϕ(x, 0),
t

n−1
∑

j=0

k3j

αj+1

)

and

ν

(

k3nf(
x

kn
)− f(x), t

)

≤ ν′
(

ϕ(x, 0),
t

n−1
∑

j=0

k3j

αj+1

)

,
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for all t > 0 andn > 0. Thus we obtain

µ(g(x)− f(x), t) ≥ µ

(

g(x)− k3nf(
x

kn
), t/2

)

∗µ

(

k3nf(
x

kn
)−f(x), t/2

)

≥ µ′

(

ϕ(x, 0),
t

2
n−1
∑

j=0

k3j

αj+1

)

,

ν(g(x)− f(x), t) ≤ ν

(

g(x)− k3nf(
x

kn
), t/2

)

♦ν

(

k3nf(
x

kn
)− f(x), t/2

)

≤ ν′
(

ϕ(x, 0),
t

2
n−1
∑

j=0

k3j

αj+1

)

for largen. Taking the limit asn → ∞ and using the
definition of IFNS, we get

µ(g(x)− f(x), t) ≥ µ′

(

ϕ(x, 0),
(α− k3)t

2

)

and

ν(g(x)− f(x), t) ≤ ν′
(

ϕ(x, 0),
(α− k3)t

2

)

,

for all x ∈ X, t > 0. Replacex andy by x/kn andy/kn,
respectively in (2.3), we have

µ

(

k3nf(
x+ ky

kn
) + k3nf(

kx− y

kn
)−

k(k2 + 1)

2
[

k3nf(
x+ y

kn
) + k3nf(

x− y

kn
)

]

+k3n(k4 − 1)f(
y

kn
), t

)

≥ µ′

(

ϕ(
x

kn
,
y

kn
),

t

k3n

)

and

ν

(

k3nf(
x+ ky

kn
) + k3nf(

kx− y

kn
)−

k(k2 + 1)

2
[

k3nf(
x+ y

kn
) + k3nf(

x− y

kn
)

]

+k3n(k4 − 1)f(
y

kn
), t

)

≤ ν′
(

ϕ(
x

kn
,
y

kn
),

t

k3n

)

for all x, y ∈ X and allt > 0. Since

lim
n→∞

µ′

(

k3nϕ(
x

kn
,
y

kn
), t

)

= 1 and

lim
n→∞

ν′
(

k3nϕ(
x

kn
,
y

kn
), t

)

= 0,

for all x, y ∈ X and allt > 0. We observe thatg fulfills
(2.1). Thereforeg is a cubic mapping.

To Prove the uniqueness of the cubic mappingg, as-
sume that there exists a cubic mappingh : X → Y which
satisfies (2.4). For fixx ∈ X, clearlyk3ng( x

kn ) = g(x)

andk3nh( x
kn ) = h(x) for all n ∈. It follows from (2.4)

that

µ(g(x)− h(x), t) = µ

(

k3ng(
x

kn
)− k3nh(

x

kn
), t

)

≥ µ

(

k3ng(
x

kn
)− k3nf(

x

kn
),

t

2

)

∗ µ

(

k3nf(
x

kn
)− k3nh(

x

kn
),

t

2

)

≥ µ′

(

ϕ(
x

kn
, 0),

(α− k3)t

2k3n

)

≥ µ′

(

ϕ(x, 0),
αn(α− k3)t

2k3n

)

and similarly

ν(g(x)− h(x), t) ≤ ν′
(

ϕ(x, 0),
αn(α− k3)t

2k3n

)

.

Since lim
n→∞

αn(α−k3)
2k3n = ∞ asα > k3, we get

lim
n→∞

µ′

(

ϕ(x, 0),
αn(α− k3)t

2k3n

)

= 1,

and

lim
n→∞

ν′
(

ϕ(x, 0),
αn(α− k3)t

2k3n

)

= 0.

Therefore

µ(g(x)− h(x), t) = 1 and ν(g(x)− h(x), t) = 0,

for all t > 0. Henceg(x) = h(x).
This completes the proof.

In the following theorem we consider0 < α < k3.

Theorem 2.2. Let X be a linear space and let
(Z, µ′, ν′) be an IFNS. Letϕ : X ×X → Z be a function
such that for some0 < α < k3

µ′(ϕ(kx, 0), t) ≥ µ′(αϕ(x, 0), t) and

ν′(ϕ(kx, 0), t) ≤ ν′(αϕ(x, 0), t),

and lim
n→∞

µ′(ϕ(knx, kny), k3nt) = 1 and

lim
n→∞

ν′(ϕ(knx, kny), k3nt) = 0 for all x, y in X

andt > 0. Let (Y, µ, ν) be an intuitionistic fuzzy Banach
space and letf : X → Y be aϕ-approximately cubic
mapping in the sense that

µ

(

kf(x+ ky) + f(kx− y)− k(k2+1)
2

[

f(x+ y)

+f(x− y)

]

−(k4 − 1)f(y), t

)

≥ µ′(ϕ(x, y), t), and

ν

(

kf(x+ ky) + f(kx− y)− k(k2+1)
2

[

f(x+ y)

+f(x− y)

]

−(k4 − 1)f(y), t

)

≤ ν′(ϕ(x, y), t)















































c© 2013 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.7, No. 5, 1677-1684 (2013) /www.naturalspublishing.com/Journals.asp 1681

for all t > 0 and allx, y ∈ X. Then there exists a unique
cubic mappingg : X → Y such that

µ(g(x)− f(x), t) ≥ µ′

(

ϕ(x, 0),
(k3 − α)t

2

)

and

ν(g(x)− f(x), t) ≤ ν′
(

ϕ(x, 0),
(k3 − α)t

2

)

for all x ∈ X and allt > 0.
Proof. The techniques are similar to that of Theorem

2.1. Hence we present a sketch of proof. Puty = 0 in (2.3),
we get

µ

(

f(kx)

k3
− f(x), t

)

≥ µ′(ϕ(x, 0), t) and

ν

(

f(kx)

k3
− f(x), t

)

≤ ν′(ϕ(x, 0), t),

for all x ∈ X, t > 0. Therefore

µ

(

f(kn+1x)

k3
− f(knx), t

)

≥ µ′

(

ϕ(x, 0),
t

αn

)

and

ν

(

f(kn+1x)

k3
− f(knx), t

)

≤ ν′
(

ϕ(x, 0),
t

αn

)

,

for all x ∈ X andt > 0. For eachx ∈ X,n ≥ 0,m ≥ 0
andt > 0, we can deduce

µ

(

f(kn+mx)
k3(n+m) − f(kmx)

k3m , t

)

≥ µ′

(

ϕ(x, 0), t
n+m−1∑

j=m

αj

k3(j+1)

)

and

ν

(

f(kn+mx)
k3(n+m) − f(kmx)

k3m , t

)

≤ ν′
(

ϕ(x, 0), t
n+m−1∑

j=m

αj

k3(j+1)

)























































(2.9)

for all x ∈ X, t > 0, m ≥ 0 andn ≥ 0. Thus,

(

f(knx)
k3n

)

is a Cauchy sequence in intuitionistic fuzzy Banach space.
Therefore, there is a functiong : X → Y defined by
g(x) = lim

n→∞

f(knx)
k3n . (2.9) withm = 0 implies

µ(g(x)− f(x), t) ≥ µ′

(

ϕ(x, 0),
(k3 − α)t

2

)

and

ν(g(x)− f(x), t) ≤ ν′
(

ϕ(x, 0),
(k3 − α)t

2

)

for all x ∈ X and allt > 0.
This completes the proof.

Example 2.3.Let X be a Hilbert space andZ be
a normed space. Denote by(µ, ν) and (µ′, ν′) the intu-
itionistic fuzzy norms given as in Example 1.1 onX and

Z, respectively. Letϕ : X × X → Z be defined by
ϕ(x, y) = ((k − 1)2‖kx − y‖2 + k4‖y‖2)z◦, wherez◦
is a fixed unit vector inZ. Define f : X → X by
f(x) = ‖x‖2x + ‖x‖2x◦ for some unit vectorx◦ ∈ X.
Then

µ

(

kf(x+ ky) + f(kx− y)−
k(k2 + 1)

2

[

f(x+ y)

+f(x− y)

]

−(k4 − 1)f(y), t

)

=
t

t+ ‖(k − 1)(kx− y)2 − k4y2‖

≥
t

t+ (k − 1)‖kx− y‖2 + k4‖y‖2

≥
t

t+ (k − 1)2‖kx− y‖2 + k4‖y‖2
= µ′(ϕ(x, y), t)

and

ν

(

kf(x+ky)+f(kx−y)−
k(k2 + 1)

2

[

f(x+y)+f(x−y)

]

−(k4 − 1)f(y), t

)

≤ ν′(ϕ(x, y), t).

Also

µ′(ϕ(kx, 0), t) =
t

t+ ‖ϕ(kx, 0)‖

=
t

t+ ‖(k − 1)2(k2x)2‖
= µ′(k2ϕ(x, 0), t)

and ν′(ϕ(kx, 0), t) = ν′(k2ϕ(x, 0), t). Thus,

lim
n→∞

µ′(ϕ(knx, kny), k3nt)

= lim
n→∞

k3nt

k3nt+ k2n[‖(k − 1)(kx− y)‖2 + ‖k2y‖2]
= 1

and
lim
n→∞

ν′(ϕ(knx, kny), k3nt)

= lim
n→∞

k5n[‖(k − 1)(kx− y)‖2 + ‖k2y‖2]

k3nt+ k2n[‖(k − 1)(kx− y)‖2 + ‖k2y‖2]
= 0.

Hence, conditions of Theorem 2.2 forα = k2 are fulfilled.
Therefore, there is a unique cubic mappingg : X → Y
such that

µ(g(x)− f(x), t) ≥ µ′(ϕ(x, 0), k2t) and

ν(g(x)− f(x), t) ≤ ν′(ϕ(x, 0), k2t).

This completes the proof.
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3. Intuitionistic fuzzy continuity

Recently, the intuitionistic fuzzy continuity is discussed
in [20]. In this section, we establish some interesting
results of continuous approximately cubic mappings.

Definition 3.1. Let f : R → X be a function,
where is endowed with the Euclidean topology andX is
an intuitionistic fuzzy normed space equipped with intu-
itionistic fuzzy norm(µ, ν). Then,f is calledintuitionis-
tic fuzzy continuous at a points◦ ∈ R if for all ǫ > 0 and
all 0 < α < 1 there existsδ > 0 such that for eachs with
0 < |s− s◦| < δ

µ(f(sx)−f(s◦x), ǫ) ≥ α and ν(f(sx)−f(s◦x), ǫ) ≤ 1−α.

Theorem 3.2. Let X be a normed space and
(Z, µ′, ν′) be an IFNS. Let(Y, µ, ν) be an intuitionis-
tic fuzzy Banach space andf : X → Y be a (p, q)-
approximately cubic mapping in the sense that for some
p, q and somez◦ ∈ Z

µ

(

kf(x+ky)+f(kx−y)−
k(k2 + 1)

2

[

f(x+y)+f(x−y)

]

−(k4 − 1)f(y), t

)

≥ µ′((‖x‖p + ‖y‖q)z◦, t),

ν

(

kf(x+ky)+f(kx−y)−
k(k2 + 1)

2

[

f(x+y)+f(x−y)

]

−(k4 − 1)f(y), t

)

≤ ν′((‖x‖p + ‖y‖q)z◦, t),

for all x, y ∈ X and allt > 0. If p, q < 3, then there exists
a unique cubic mappingg : X → Y such that

µ(g(x)− f(x), t) ≥ µ′

(

‖x‖pz◦,
(n3 − np)t

2

)

and

ν(g(x)− f(x), t) ≤ ν′
(

‖x‖pz◦,
(n3 − np)t

2

)

, (3.1)

for all x ∈ X and all t > 0. Furthermore, if for some
x ∈ X and alln ∈ N, the mappingh : R → Y defined by
h(s) = f(knsx) is intuitionistic fuzzy continuous. Then
the mappings 7→ g(sx) fromR toY is intuitionistic fuzzy
continuous.

Proof. If we defineϕ : X × X → Z by ϕ(x, y) =
(‖x‖p + ‖y‖q)z◦. Existence and uniqueness of the cubic
mappingg satisfying (3.1) are deduced from Theorem 2.2
(see Example 2.3). Note that for eachx ∈ X, t ∈ R and

n ∈ N, we have

µ

(

g(x)− f(knx)
k3n , t

)

= µ

(

g(knx)
k3n − f(knx)

k3n , t

)

= µ(g(knx)− f(knx), k3nt)

≥ µ′

(

knp‖x‖pz◦,
k3n(n3−np)t

2

)

= µ′

(

‖x‖pz◦,
k3n(n3−np)t

2knp

)

and

ν

(

g(x)− f(knx)
k3n , t

)

≤ ν′
(

‖x‖pz◦,
k3n(n3−np)t

2knp

)

.























































(3.2)
Fix x ∈ X ands◦ ∈ R. Givenǫ > 0 and0 < α < 1. From
(3.2) it follows that

µ

(

g(sx)−
f(knsx)

k3n
, t

)

≥ µ′

(

‖x‖pz◦,
k3n(n3 − np)t

2|s|pknp

)

≥ µ′

(

‖x‖pz◦,
k3n(n3 − np)t

2(1 + |s◦|)pknp

)

,

ν

(

g(sx)−
f(knsx)

k3n
, t

)

≤ ν′
(

‖x‖pz◦,
k3n(n3 − np)t

2|s|pknp

)

≤ ν′
(

‖x‖pz◦,
k3n(n3 − np)t

2(1 + |s◦|)pknp

)

,

for all |s−s◦| < 1 ands ∈ R. Since lim
n→∞

k3n(n3−np)t
2(1+|s◦|)pknp =

∞, there existsn◦ ∈ N such that

µ

(

g(sx)−
f(kn◦sx)

k3n◦

,
ǫ

3

)

≥ α and

ν

(

g(sx)−
f(kn◦sx)

k3n◦

,
ǫ

3

)

≤ 1− α

for all |s − s◦| < 1 ands ∈ R. By the intuitionistic fuzzy
continuity of the mappingt → f(kn◦tx), there existsδ <
1 such that for eachs with 0 < |s− s◦| < δ, we have

µ

(

f(kn◦sx)

k3n◦

−
f(kn◦s◦x)

k3n◦

,
ǫ

3

)

≥ α and

ν

(

f(kn◦sx)

k3n◦

−
f(kn◦s◦x)

k3n◦

,
ǫ

3

)

≤ 1− α.

It follows that

µ(g(sx)− g(s◦x), ǫ) ≥ µ

(

g(sx)−
f(kn◦sx)

k3n◦

,
ǫ

3

)

∗µ

(

f(kn◦sx)
k3n◦

− f(kn◦s◦x)
k3n◦

, ǫ
3

)

∗µ

(

f(kn◦s◦x)
k3n◦

− g(s◦x),
ǫ
3

)

≥ α

and ν(g(sx) − g(s◦x), ǫ) ≤ 1 − α, for eachs with
0 < |s − s◦| < δ. Hence, the mappings 7→ g(sx) is
intuitionistic fuzzy continuous.

This completes the proof.
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In the following theorem we prove a result similar
to Theorem 3.2, for the casep, q > 3.

Theorem 3.3. Let X be a normed space and
(Z, µ′, ν′) be an IFNS. Let(Y, µ, ν) be an intuitionis-
tic fuzzy Banach space andf : X → Y be a (p, q)-
approximately cubic mapping in the sense that for some
p, q and somez◦ ∈ Z

µ

(

kf(x+ky)+f(kx−y)−
k(k2 + 1)

2

[

f(x+y)+f(x−y)

]

−(k4 − 1)f(y), t

)

≥ µ′((‖x‖p + ‖y‖q)z◦, t)

and

ν

(

kf(x+ky)+f(kx−y)−
k(k2 + 1)

2

[

f(x+y)+f(x−y)

]

−(k4 − 1)f(y), t

)

≤ ν′((‖x‖p + ‖y‖q)z◦, t),

for all x, y ∈ X and allt > 0. If p, q > 3, there exists a
unique cubic mappingg : X → Y such that

µ(g(x)− f(x), t) ≥ µ′

(

‖x‖pz◦,
(np − n3)t

2

)

and

ν(g(x)− f(x), t) ≤ ν′
(

‖x‖pz◦,
(np − n3)t

2

)

, (3.3)

for all x ∈ X and all t > 0. Furthermore, if for some
x ∈ X and alln ∈ N, the mappingh : R → Y defined by
h(s) = f(knsx) is intuitionistic fuzzy continuous. Then
the mappings 7→ g(sx) fromR toY is intuitionistic fuzzy
continuous.

Proof. If we defineϕ : X × X → Z by ϕ(x, y) =
(‖x‖p + ‖y‖q)z◦. Then

µ′(ϕ(
x

k
, 0), t) = µ′(‖x‖pz◦, k

pt) and

ν′(ϕ(
x

k
, 0), t) = ν′(‖x‖pz◦, k

pt),

for all x ∈ X andt > 0. Sincep > 3, we haveα = kp >
k3. By Theorem (2.1), there exists a unique cubic mapping
g which satisfies (3.3). Rest of the proof can be done on the
same lines as in Theorem 3.2.

This completes the proof.
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