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Abstract: A recurrent neural network–based forecasting system for telecommunications call volume is proposed in this work. In
particular, the forecaster is a Block–Diagonal Recurrent Neural Network with internal feedback. Model’s performance is evaluated by
use of real–world telecommunications data, where an extensive comparative analysis with a series of existing forecasters is conducted,
including both traditional models as well as neural and fuzzy approaches.
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1 Introduction

During the last twenty years the proliferation of mobile
phones, along with the explosive growth in
telecommunications services have turned this scientific
field to an important and developing industry. Like any
other business, carriers seek profit maximization and cost
reduction, by managing network traffic effectively, by
optimizing their infrastructure usage and by predicting
future trends. In order to achieve their objectives,
telecommunications managers and operation officers are
in continuous need of accurate forecasting models of the
call volume. In this perspective, this work aims at
addressing the problem of call volume forecasting for the
case of a large organization: a large Greek University is
investigated, where new telephone numbers are added
daily and a varying demand for outgoing trunks exists.
The University’s database stores the total number, as well
as the number of the national, the international and the
mobile calls per employee and per month. It has been
noticed that the call classification into different categories
reveals certain and different patterns between
destinations.

Initially, traditional forecasting methods - mostly
statistical - were applied to this particular problem. These
methods can be divided into three major categories: The
first method employed is the Nai ˙ve Forecast 1 [1], which
uses the most recent observation as a forecast for the next
time interval. A method that takes into account the

seasonal factors is the Linear Extrapolation with Seasonal
Adjustment (LESA, [2]): After seasonality has been
removed from the original data, linear extrapolation is
applied in order to forecast the future values of the series
by employing the trend–cycle component. Finally, the
projected trend–cycle component is adjusted, making use
of the identified seasonal factors. LESA–M assumes
multiplicative seasonality, while LESA–ADD is based on
additive seasonality.

The second classic group of time–series analysis
techniques includes the exponential smoothing methods,
where a particular observation of the time series is
expressed as a weighted sum of the previous observations.
The weights for the previous data values constitute a
geometric series and become smaller as the observations
move further into the past. In processes without trend
Simple Exponential Smoothing (SES) is applied, while
linear trend and seasonal data are accommodated by
Holt’s [3] and Winters’ [4] methods, respectively.
Additionally, multiplicative seasonal models (Winters’
MS) as well as additive seasonal models (Winters’ AS)
exist [5].

The last category concerns time series that exhibit
damped trend, which refers to a regression component for
the trend in the updating equation, expressed by means of
a dampening factor. In these cases, some modifications of
SES can be applied in order to deal with complex types of
trend. An exponential smoothing model with damped
trend and additive seasonality (DAMP AS) and its
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multiplicative seasonality counterpart (DAMP MS) also
exist, while a damped trend model on time series with no
seasonality (DAMP NoS) can be fitted [5]. Finally, the
Auto Regressive Integrated Moving Average method
(ARIMA) and Seasonal ARIMA (SARIMA), which
analyze stationary univariate time series data, have been
very popular [6]. It presumes weak stationarity, equally
spaced intervals or observations, and at least 30 to 50
observations. The well–established methods mentioned
above have been studied in [2]. Linear models are also
suggested by the ITU Recommendation E.507 for trend
forecasting in telecommunications data [7]. It has been
proved that Damped trend models and SARIMA are the
most effective, when applied to the problem in hand,
compared to the rest of the traditional methods.

Computational Intelligence methods were first applied
in [8,9,10], where fuzzy and neurofuzzy systems were
employed. In [8] a static fuzzy model is presented
(OLS–FFM, Orthogonal Least Squares–based Fuzzy
Forecasting Model), where an automated model–building
process, based on the Orthogonal Least Squares
algorithm, performs input selection, determines the
number of fuzzy rules, which are of
Takagi–Sugeno–Kang type [11], forms the consequent
parts of the fuzzy rules and tunes the consequent
parameters. Recurrent neurofuzzy forecasters are
developed in [9] and [10]. In [9] the Locally Recurrent
Neurofuzzy Forecasting System (LR–NFFS) is presented:
the consequent part of each rule consist of a three–layer
recurrent neural network, with internal feedback at the
neurons of the hidden and output layers, and a single
input common to the premise and consequent parts. In
[10] the Recurrent Neurofuzzy Forecaster (ReNNFOR) is
introduced, which is a respective recurrent system of
reduced complexity, with unit feedback at the hidden
layer’s neurons. All three models exhibited significantly
ameliorated prediction capabilities with respect to the
traditional statistical methods, with the recurrent
forecasters requiring only the value of the most recent
observation, since they are capable of identifying the
temporal relations via the internal feedback connection.

A sparse recurrent neural network, where the
feedback connections are restricted to between pairs of
state variables is suggested in [12], referred to as the
Block–diagonal recurrent neural network (BDRNN). It is
a two–layer network, a feedback layer comprising the
block–diagonal links, and an output layer where the state
variables are combined to formulate the network’s output.
The BDRNN architecture offers a significant feature: it
constitutes a suitable choice for modelling nonlinear
processes, where the overall dynamics can be
decomposed into a set of lower–order dynamics. Under
these conditions, the blocks of BDRNN can be used to
model these sub–dynamics by adapting properly the
respective block weights. In this perspective, a forecasting
system, based on BDRNN, is proposed in this work. Its
performance is compared with familiar forecasting
approaches, like a series of seasonally adjusted linear

extrapolation methods, Exponential Smoothing Methods,
the SARIMA method, along with the aforementioned
fuzzy and neural forecasters.

The rest of the paper is organized as follows: in
Section 2, a brief presentation of the BDRNN is given and
the modelling method is described. Section 3 hosts the
experimental results and a comparative analysis, while the
concluding remarks are given in Section 4.

2 The forecaster’s structure and the
modelling method

2.1 BDRNN

The block–diagonal recurrent neural network is a
two–layer network. The hidden layer consists of pairs of
neurons (blocks); there are feedback connections between
the neurons of each pair, introducing dynamics to the
network, while the output layer is static. Therefore, the
BDRNN can be considered as a special form of
locally–recurrent–globally–feedforward network [13,14].
The implementation of the proposed algorithm is
straightforward, with no preconditions required. The
configuration of BDRNN is presented in Fig.1, where a
single–input–single–output (SISO) BDRNN is shown,
since a SISO network will be used in the sequel. For the
sake of simplicity, a BDRNN with four blocks of neurons
is shown.

Fig. 1: Configuration of the Block–Diagonal Recurrent Neural
Network.

The operation of a SISO BDRNN with N neurons at
the hidden layer is described by the following set of state
equations:

x(k) = fa (W · x(k−1)+B ·u(k)) (1a)

y(k) = fb (C · x(k)) (1b)
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where
– fa is a N-element vector including the neuron
activation functions of the hidden layer, andfb is the
activation function of the output layer. The activation
functions are both chosen to be the sigmoid function

f (z) =
1− e−2·z

1+ e−2·z .

–u(k) is the input of the network at timek.
–x(k) = [xi(k)] is a N-element vector, comprising the
outputs of the hidden layer. In particular,xi(k) is the
output of the i-th hidden neuron at timek.

–y(k) is the output of the network at timek.
–B = [bi] andC = [ci] are N-element input and output
weight vectors, respectively.

–W = [wi, j] is the N × N block diagonal feedback
matrix. In particular,

wi, j =











6= 0 if i = j
6= 0 if i 6= j andi = j−1 andi is odd
6= 0 if i 6= j andi = j+1 andi is even
0 otherwise

The feedback matrix, W , is block diagonal:

W = diag
[

W (1), ...,W (N�2 )
]

; each diagonal element,

corresponding to a block of recurrent neurons, has a block
submatrix in the form

W (i) =

[

w2i,2i w2i,2i+1
w2i+1,2i w2i+1,2i+1

]

, i = 1,2, ...,
N
2

(2)

The above equation describes the general case of
BDRNN, called the BDRNN with free–form submatrices.
A special case of BDRNN consists of scaled orthogonal
submatrices taking the following form

W (i)=

[

w2i,2i w2i,2i+1
−w2i,2i+1 w2i,2i

]

=

[

w(1)
i w(2)

i

−w(2)
i w(1)

i

]

, i= 1,2, ...,
N
2

(3)
From (2) and (3) becomes evident that the Free–Form

BDRNN consists of feedback submatrices with four
distinct elements, thus providing a greater degree of
freedom compared to the Scaled Orthogonal BDRNN,
which has two weights at each feedback submatrix.
Nevertheless, as discussed in [12], the latter network
exhibits superior modelling capabilities than the
Free–Form BDRNN.

In view of the above, the state equations (1) for the
case of the Scaled Orthogonal BDRNN are written in the
following form:

x2i−1(k) = fa

(

b2i−1 ·u(k)+w(1)
i · x2i−1(k−1)+

w(2)
i · x2i(k−1)

)

i = 1,2, ...,
N
2

(4a)

x2i(k) = fa

(

b2i ·u(k)−w(2)
i · x2i−1(k−1)+

w(1)
i · x2i(k−1)

)

i = 1,2, ...,
N
2

(4b)

y(k) = fb

(

N

∑
j=1

c j · x j(k)

)

(4c)

2.2 The modelling method

In literature there exist two learning schemes especially
designed for this kind of neural network [12,15].
However, they are both designed for ensuring network
stability: in [12] a simple gradient descent algorithm is
used, with the addition of a feedfoward neural network
which aims at keeps stable learning, operating in parallel.
A similar task is performed more efficiently in [15]
without the need for an additional network, by
transforming the whole learning process to a constrained
optimization problem. In this work the stability issue is
not investigated, since the learning process has an
adaptation scheme for the magnitude of the weight
changes, thus confining the weight space.

The learning algorithm is based onResilient
Backpropagation (RPROP, [16]). RPROP algorithm was
originally developed for static neural networks and
constitutes one of the best performing first order learning
methods for neural networks, since it exhibits improved
performance characteristics by remedying the drawbacks
inherent to gradient descent learning [17]. A variation of
RPROP for recurrent models is given in [18], where a
similar behavior has been reported. In the case of
BDRNN, the algorithm is modified in order to take into
consideration the special features of the BDRNN,
requiring calculation of the error gradients for the
feedback weights.

Let us consider a training data set ofk f input–output
pairs. The Mean Squared Error is selected as the error
measure, whereyd(k) is the actual observation:

E =
1
k f

·

k f

∑
k=1

(y(k)− yd(k))
2 (5)

∂+E(t)
∂θl

and
∂+E(t −1)

∂θl
are the ordered derivatives [19]

of E with respect to a network’s weightθl

(θl ∈
{

bi,ci,w
(1)
i ,w(2)

i

}

) at the present,t, and the

preceding, t − 1, epochs, respectively. The learning
method is described as follows:

(a) For all weightsθl , initialize the step sizes∆ (1)
l = ∆0

Repeat
(b) For all weightsθl , compute the error gradient:∂+E(t)

∂θl
(c) For all weightsθl , update step sizes:

(c.1) If ∂+E(t)
∂θl

×
∂+E(t−1)

∂θl
> 0 then

∆ (t)
l = min

{

η+ ·∆ (t−1)
l ,∆max

}

(6a)
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(c.2) Else if ∂+E(t)
∂θl

×
∂+E(t−1)

∂θl
< 0 then

∆ (t)
l = max

{

η− ·∆ (t−1)
l ,∆min

}

(6b)

(c.3) Else
∆ (t)

l = ∆ (t−1)
l (6c)

(d) Update weightsθl :

θl(t +1) = θl(t)+∆θl(t) = θl(t)− sign

(

∂+E(t)
∂θl

)

·∆ (t)
l

(7)
Until convergence

where the step sizes are bounded by∆min, ∆max in order
to avoid overflow/underflow problems of floating point
variables. The increase and attenuation factors are usually
set n+ ∈ [1.1,1.6] and n− ∈ [0.4,0.95], respectively. All
four parameters are determined using the trial and error
approach.

The adaptation mechanism described above has the
advantage of correlating the step sizes not to the size of
the derivatives but to their signs. Hence, whenever a
parameter moves along a direction reducingE (the
derivatives at successive epochs have the same sign), its
step size is increasing independently of the size of the
derivative. In this way, the step sizes can sufficiently
increase when needed, even at the final stage of the
learning process when the sizes of the derivatives are
rather small. Additionally, when changes in the sign of
the derivative occur, the step size is diminishing to
prevent the error measure from oscillating. As mentioned
in [20], due to the temporal relations existing in a
dynamic system, the extraction of the ordered partial
derivatives is not straightforward and is accomplished via
a set of recursive equations. Calculation of the error
gradients is based on the use of Lagrange multipliers, as
shown below:

∂+E
∂b2i−1

=

k f

∑
k=1

{

λx,2i−1(k) ·u(k) · f ′a(k,2i−1)
}

(8a)

∂+E
∂b2i

=

k f

∑
k=1

{

λx,2i(k) ·u(k) · f ′a(k,2i)
}

(8b)

∂+E
∂c2i−1

=

k f

∑
k=1

{

λy(k) · x2i−1(k) · f ′b(k)
}

(9a)

∂+E
∂c2i

=

k f

∑
k=1

{

λy(k) · x2i(k) · f ′b(k)
}

(9b)

∂+E

∂w(1)
i

=

k f

∑
k=1

{

λx,2i−1(k) · x2i−1(k−1) · f ′a(k,2i−1)+

+λx,2i(k) · x2i(k−1) · f ′a(k,2i)
}

(10a)

∂+E

∂w(2)
i

=

k f

∑
k=1

{

λx,2i−1(k) · x2i(k−1) · f ′a(k,2i−1)−

−λx,2i(k) · x2i−1(k−1) · f ′a(k,2i)
}

(10b)

with the Lagrange multipliers derived as follows:

λy(k) =
2
k f

· (y(k)− yd(k)) (11)

λx,2i−1(k) = λy(k) · c2i−1 · f ′b(k)+

+λx,2i−1(k+1) ·w(1)
i · f ′a(k+1,2i−1)−

−λx,2i(k+1) ·w(2)
i · f ′a(k+1,2i) (12a)

λx,2i(k) = λy(k) · c2i f ′b(k)+

+λx,2i−1(k+1) ·w(2)
i · f ′a(k+1,2i−1)+

+λx,2i(k+1) ·w(1)
i · f ′a(k+1,2i) (12b)

where f ′a(k + 1, i) and f ′b(k) are the derivatives of
xi(k + 1) and y(k), with respect to their arguments.
Equations (12) are backward difference equations that can
be solved for k = k f − 1, ...,1 using the boundary
conditions:

λx,2i−1(k f ) = λy(k f ) · c2i−1 · f ′b(k f ) (13a)

λx,2i(k f ) = λy(k f ) · c2i · f ′b(k f ) (13b)

It should be noted that the learning method is
developed for the SISO Scaled Orthogonal BDRNN.
Nevertheless, the suggested method is general, also
applicable to multi–input–multiple–output BDRNN’s of
any form, provided that slight modifications are made,
based on the structural differences.

3 Experimental results

3.1 Data presentation accuracy measures

The call data come from the Call Detail Records (CDR)
of the Private Branch Exchange (PBX) of a large
University with more than 6.000 employees and 70.000
students, and an extended telecommunications
infrastructure with more than 5.500 telephones. The data
set covers a period of 10 years, January 1998 to
December 2007, and consists of the monthly calls to
national and mobile destinations. Calls to national
destinations comprise almost half the volume of the total
outgoing calls from the campus. On the other hand, calls
to mobile destinations are subject to higher tariffs and
they demonstrate an increasing trend during the last
fifteen years. According to the International
Telecommunication Union (ITU), mobile services
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attained a penetration rate of 119.12% for Greece in 2009
[21].

The data set is divided to two subsets: The training set,
which is used to perform parameter tuning, and the testing
set, which is used for the evaluation of the forecasts. The
training set is chosen to be 9 years long (108 observations)
and the validation set 1 year long (12 observations) . Due
to the variation of days belonging in different months, i.e.
February has 28 while January has 31 days, all data are
normalized according to (Xk is the actual value):

yd(k) = Xk ·
365.25/12

no ofdays inmonthk
(14)

Due to its recurrent nature, the forecaster is trained in
parallel mode. Since the testing set is not used in model
fitting, the testing set’s forecasts are genuine forecasts and
can be used to evaluate the forecasting ability of each
model. The forecasting accuracy can be evaluated by
means of three accuracy measures (k f is the size of the
data set andy(k) is the forecaster’s output). The smaller
value of each statistic indicates the better fit of the method
to the observed data.

–The Root Mean Squared Error (RMSE):

E =

√

√

√

√

1
k f

·

k f

∑
k=1

(y(k)− yd(k))
2 (15a)

–The Mean Absolute Percentage Error (MAPE):

MAPE =
100
k f

·

k f

∑
k=1

∣

∣

∣

∣

yd(k)− y(k)
yd(k)

∣

∣

∣

∣

(15b)

–The Theil’s U-statistic, which allows a relative
comparison of formal methods with input–output
approaches and also squares the errors involved, so
that large errors are given much more weight than
small errors. It is given by:

U =

√

k f −1

∑
k=1

(

y(k+1)−yd(k+1)
yd(k)

)2

√

k f −1

∑
k=1

(

yd(k+1)−yd(k)
yd(k)

)2
(15c)

The time series of national and mobile calls are hosted
in Fig. 2a and2b, respectively. It is evident that there
exists a distinct seasonal pattern, which is made prevalent
from the minimum that occurs in August. Moreover, the
number of calls to mobile destinations shows an
increasing trend which comports with reports on mobile
services penetration [21].

3.2 Comparative analysis

In order to investigate whether the recurrent neural
system is capable of discovering the temporal
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Fig. 2: Monthly number of outgoing calls to (a) national and (b)
mobile destinations.

dependencies of both time–series of outgoing calls, a
single–input–single–output structure has been selected.
The input is the number of the national/mobile calls of the
previous month (u(k) = yd(k−1)).

Several BDRNN’s with different structural
characteristics are examined and the selection of the final
model–parameter combination is based on the criteria of
(a) effective prediction of the call volume and (b)
forecasters of moderate complexity. The selected
structural characteristics and the learning parameters’
values of the final models are given in Table1.

In order to compare the proposed forecaster with
existing established forecasters that were applied to this
particular problem in the past, a comparative analysis
with fourteen other models is conducted, on the basis of
the accuracy measures mentioned in Subsection3.1.
Three of the models come from the field of computational
intelligence (the static fuzzy system described in [8] and
the recurrent neurofuzzy systems LR–NFFS and
ReNFFOR), while the other eleven are well–established
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Table 1: Structural characteristics and learning parameters
Type of calls No of blocks n+ n− ∆min ∆max ∆o Epochs

National 5 1.5 0.5 1E–4 0.5 0.01 1000
Mobile 5 1.1 0.5 1E–4 0.5 0.05 1000

Table 2: Comparative analysis (testing data set)
Type of calls National calls Mobile calls

Model RMSE MAPE Theils U RMSE MAPE Theils U

Proposed Forecaster 3293 10.461 0.261 5020 12.286 0.381
LR–NFFS 4367 12.118 0.301 5742 13.166 0.326
ReNFFOR 5102 14.890 0.380 7368 19.67 0.452
OLS–FM 4385 13.580 0.366

NF1 8914 23.846 1.000 12009 28.875 1.000
LESA–M 8570 24.391 0.722 9915 23.046 0.747

LESA–ADD 8418 24.798 0.713 10271 27.218 0.699
SES 6748 20.943 0.515 9671 24.698 0.569

Holts Linear 6753 27.552 0.506 11191 35.507 0.663
Winter’s MS 7120 18.415 0.578 9114 20.475 0.665
Winter’s AS 6903 17.741 0.553 8495 21.875 0.573
Damped NoS 6862 21.422 0.512 11962 31.756 0.715
Damped MS 7080 19.072 0.573 7419 15.958 0.524
Damped AS 7194 19.838 0.571 9020 23.584 0.599
SARIMA 6064 15.959 0.513 10102 20.793 0.775

statistical forecasting models. The results for each one of
these models are presented in Table2; bold numbers
indicate best fit. The performance of the competing rivals
is taken from the corresponding references.

The best fit models for each call data category are
depicted in the following plots. We choose to present the
forecasts produced by the proposed BDRNN model,
along with its closest fuzzy/neurofuzzy and its closest
classic competitors.

In Fig. 3 the reader may see a comparison for the best
fit models for the case of national calls. The plot reveals
that the proposed model follows the variation of the actual
time series closer than its competitors, a fact that is also
evident from its better performance statistics. In the same
plot the 95% upper (UCL) and lower (LCL) confidence
levels are depicted. These were estimated during the
SARIMA fitting process. It should also be stressed that all
three forecasts fit well within these confidence intervals
and would bear scrutiny with even tighter confidence.

According to Fildes et al., damped trend models are
considered “a benchmark forecasting method for all
others to beat” [22]. In this sense the proposed BDRNN
model exhibits exceptional performance. Visual
observation of Fig.4 reveals the differences between the
proposed forecaster and its best rivals for the case of
mobile calls. The BDRNN gives better forecast, in the
sense that it follows the pattern of the evolution of the
series more closely as it identifies all minima and
maxima. The 95% confidence intervals for the forecasts
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Fig. 3: Comparison of the forecasting ability of the proposed
BDRNN forecaster with the best representatives of the two rival
model families and the observed number of calls to national
destinations. 95% confidence interval is also depicted.

were estimated during the fitting process of the Damped
MS model.

4 Conclusions

In this paper a recurrent neural network has been
proposed and has been evaluated by having been applied
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Fig. 4: Comparison of the forecasting ability of the proposed
BDRNN forecaster with the best representatives of the two rival
model families and the observed number of calls to mobile
destinations. 95% confidence interval is also depicted.

on real world telecommunications data. The forecaster is
a two–layer network, whose hidden layer consists of pairs
of interconnected neurons with internal feedback. Its
modelling qualities have been investigated through a
comparative analysis with a series of well–established
forecasting models and recent fuzzy and neurofuzzy
forecasters.

Two different types of calls, according to their
destination, have been examined. These are calls to
national and calls to mobile destinations. They were
chosen because the former represents more than 50% of
the outgoing call volume and the later corresponds to
more than 1/3 of the telecommunications costs for the
organization under study.

According to the results, the proposed forecaster is a
promising computational intelligence’s approach to the
problem of telecommunications call volume forecasting,
since it is capable of capturing the time–series dynamics
through its internal feedback connections. Therefore it
does not require prior knowledge of the order of the
time–series or computationally expensive input selection
algorithms. Moreover, its structure is quite simpler than
those of fully recurrent networks or networks with output
feedback. From the analysis it is concluded that it can
cope with the problem better than its rivals, either the
traditional forecasting methods or the computational
intelligence ones.

Forecasting may act as a valuable tool for
telecommunications managers and is used for network
traffic management, infrastructure optimization and
planning, and the scenario planning process. Making use
of historical data, managers may predict future demand
by creating a reasonably accurate forecast of the call
volume. This may be used to make educated strategic
decisions on how to charge and bill telecommunications

services in their organization, either for profit
maximization or for unnecessary cost reduction.
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