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Abstract: In this paper, we apply the Variational iteration method and homotopy perturbation method for solving 

linear and nonlinear partial integro-differential equation (PIDE). The efficiency and accuracy of the methods is vali-

dated by its application to several distinct test problems which have exact solutions. The results of applying these 

methods show the simplicity and efficiency of these methods. 
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1  Introduction 

Mathematical modeling of real-life problems usually results in functional equations, such as partial dif-

ferential equations, integral and integro-differential equation, and stochastic equations. Many mathematical 
formulations of physical phenomena contain integro-differential equations. Several techniques including 

finite difference, B-spline, homotopy perturbation, decomposition and variational iteration have been de-

veloped for solving partial integro-differential equation. 
He [1, 2] developed the variational iteration and homotopy perturbation methods for solving linear, nonlin-

ear partial integro-differential equation. It is worth mentioning that the origin of variational iteration meth-

od can be traced to Inokuti, Sekine and Mura [3], but the real potential of this technique was explored by 
He [4-10]. Moreover, He realized the physical significance of the variational iteration method, its compati-

bility with the physical problems and applied this promising technique to a wide class of linear and nonlin-

ear, ordinary, partial integro-differential equation [1, 2]. He develops the homotopy perturbation method 

by merging two techniques, the standard homotopy and the perturbation [2, 11-13]. The homotopy pertur-
bation method was formulated by taking the full advantage of the standard homotopy and perturbation 

methods.  

Our contribution in this paper is to solve linear and nonlinear partial integro-differential equations in 
one dimensional space with non-homogeneous Dirichlet boundary conditions by Variational iteration 

method and homotopy perturbation method. The proposed techniques are programmed using Matlab ver. 

7.8.0.347 (R2009a). 
The paper is organized as follows: In Section 2, we give Analysis of the Variational iteration method 

for partial integro-differential equations with varying boundary conditions. In Section 3, we use Analysis 

of the homotopy perturbation method for solving partial integro-differential equations. In Section 4, the 

proposed schemes are directly applied to solve several numerical examples which have the exact solutions. 
Conclusions are drawn in Section 5. 
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2  Analysis of the Variational iteration method 

To illustrate the basic concept of the Variational iteration method [7], we consider the following dif-
ferential equation: 

),()()( txguNuL                                                                          (2.1) 

where L  is a linear operator, N  is a nonlinear operator and ),( txg  is an inhomogeneous term. Then we 

can construct a correct function as follows: 

    dxgxuNxuLtxutxu nn

t

nn ),(),(~),()(),(),(
01                           (2.2) 

where   is a general Lagrange multiplier [3,8,10], which can be identified optimally via varitional theory. 

The second term on the right is called the correction and nu~  is considered as a restricted variation, i.e. 

.0~  nu  With the determination of ,  the approximations 0),,( ntxun  follow immediately. Conse-

quently, the exact solution may be obtained by using 

),(lim),( txutxu n
n

                                                                                     (2.3) 

 

2.1. Linear partial integro-differential equation 

We need to solve the following equation form: 

],,0[    ],1,0[        ),,(),(),(
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                        (2.1.1) 

with the boundary conditions are defined as follows: 

00),(,0),(  ttbutau                                                          (2.1.2) 

and the initial condition: 

)()0,( xgxu                                                                                                (2.1.3) 

We consider the equation (2.1.1) subject to the initial condition (2.1.3). According to the variational itera-

tion method, we can construct the following correct functional: 
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where nu~  is considered as a restricted variation, i.e. 0~  nu  and   is the general Lagrange multiplier. 

Making the above correct functional stationary and noticing that .0~  nu  
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  dxuxutxutxu n

t

tnnn ),()(),()(),(),( '

01                                (2.1.6) 

which yields the following stationary conditions 

0)(,0)(1  t                                                                        (2.1.7) 

Therefore, the general Lagrange multiplier can be readily identified as: 

1)(                                                                                            (2.1.8) 

Substituting this value of the Lagrange multiplier into functional (3.4) gives the iteration formula 
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2.2. Nonlinear partial integro-differential equation 

We need to solve nonlinear problem given by the following integro-differential equations: 

0),,()),(()(),(
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with the initial condition: 
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)()0,( xgxu                                                                                      (2.2.2) 

We consider the equation (2.2.1) subject to the initial condition (2.2.2). According to the variational itera-
tion method, we can construct the following correct functional: 
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where nu~  is considered as a restricted variation, i.e. 0~  nu  and   is the general Lagrange multiplier. 

Making the above correct functional stationary and noticing that  .0~  nu  
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  dxuxutxutxu n

t

tnnn ),()(),()(),(),( '

01                               (2.2.5) 

which yields the following stationary conditions 

0)(,0)(1  t                                                                   (2.2.6) 

Therefore, the general Lagrange multiplier can be readily identified as: 

1)(                                                                              (2.2.7) 

Substituting this value of the Lagrange multiplier into functional (4.3) gives the iteration formula 
































 



 dxfdssxu
xx

skxutxutxu nn

t

nn ),(),()(),(),(),(
001                  (2.2.8) 

 

2.3. Modified variational iteration method (MVIM) 

To illustrate the basic concept of the variational homotopy perturbation method, we consider the fol-
lowing general differential equation 

)()()( xguNuL                                                                         (2.3.1) 

where L  is a linear operator, N  a nonlinear operator and )(xg  is the forcing term. According to variation-

al iteration method, we can construct a correct functional as follows 
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where   is a Lagrange multiplier, which can be identified optimally via variational iteration method. The 

subscripts n denote the nth approximation, nu~  is considered as a restricted variation. i.e. ;0~  nu  eq 

(2.3.2) is called as a correction functional. Now, we apply the homotopy perturbation method 
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which is the modified variational iteration method (MVIM) and is formulated by the coupling of variation-

al iteration method and He’s polynomials. The comparison of like power of p  gives solutions of various 
orders. 

 

3. Analysis of the homotopy perturbation method 

To clarify the basic ideas of the homotopy perturbation method [14-16], let us consider the following 

function: 

,,0)()(  rrfuA                                                                    (3.1) 

with boundary conditions 

,,0),(  r
dn

du
uB                                                               (3.2) 

where A  is a general differential operator, B  is a boundary operator, u  is a known analytical function, 

and   is the boundary of the domain .  
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The operator A  can be divided into two parts L  and ,N  where L  is linear, while N  is nonlinear. 

Therefore eq. (5.2.1) can be rewritten as follows 

.0)()()(  rfuNuL                                                              (3.3) 

By the homoyopy technique proposed by Liao [17], we can construct a homotopy 

Rpr  ]1,0[:),(  which satisfies 

,0)]()([)]()()[1(),( 0  rfApuLLppH                                      (3.4) 

or 

)]()([)()()(),( 00 rfNpupLuLLpH                                             (3.5) 

where r  and ]1,0[p  is an embedding parameter, 0u  is an initial approximation of (3.1), which satis-

fies the boundary conditions. By (3.4), it easily follows that 

,0)()()0,( 0  uLLH                                                                     (3.6) 

,0)()()1,(  rfAH                                                                 (3.7) 

and the changing process of p  from zero to unity is just that of ),( pH   from )()( 0uLL   to 

).()( rfA   In topology, this is called deformation, )()( 0uLL   and )()( rfA   are called homotopic. 

The embedding parameter p  is introduced much more naturally, unaffected by artificial factors. Fur-

thermore, it can be considered as a small parameter for .10  p  By applying the perturbation technique 

used in [18, 19], we assume that the solution of eq. (3.4) can be expressed as 

.2
2

10  pp                                                                   (3.8) 

Therefore, the approximate solution of eq. (3.1) can be readily obtained as follows: 
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The combination of the perturbation method and the homotopy method is called the HPM, which elim-

inates the drawbacks of the traditional perturbation methods while keeping all its advantage. The series 

(3.9) is convergent for most cases. However, the convergent rate depends on the nonlinear ).(A  Moreo-

ver, the following suggestions were made by [1-3]: 

The second derivative of )(N  with respect to   must be small because the parameter may be relatively 

large, i.e. .1p  
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 must be smaller than one so that the series converges. 

 

3.1. Linear partial integro-differential equation 

We consider the partial integro-differential equation (2.1.1-2.1.3). According to the homotopy perturba-

tion method, we can construct the homotopy R ]1,0[  which satisfies 

0),(),(),(
),(),(),(

)1(),(
02

2
0 




































  txfdssxstK

xt

tx
p

t

txu

t

tx
ppH

t
    (3.1.1) 

Substituting eq. (3.8) in to eq. (3.1.1), we get 
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and rearranging the resultant based on powers of p  terms, one has: 
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With the following conditions: 
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In order to obtain the unknown, we should solve eqs. (3.1.4) and (3.1.5), considering the initial conditions 

of eq. (3.1.7), and having the initial approximations of eq. (3.1.4). So we have: 

),(0 xg                                                                                 (3.1.8) 

and solving the above equations, we obtain from eq. (3.1.4) 
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so we can find 1 , from 1  in eq. (3.1.5), we can find 2 , etc. 

By continuing the calculation, we thus have the solution given by 
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3.2. Nonlinear partial integro-differential equation with a modified homotopy perturbation method 

We consider the nonlinear partial integro-differential equations (2.2.1, 2.2.2) Eq. (2.2.1) is an example 

of the general nonlinear equation: 
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which is defined on a Hilbert space H with g  a given nonlinear unbounded operator. To solve eqs (2.2.1) 

and (2.2.2), we construct the following homotopy with tuuL )(  and 

 





t

x dssxu
x

stKuN
0

)),(()()(                                             (3.2.2) 
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To deal with the nonlinear term, we will employ He’s polynomials which is given by  
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Substituting (3.2.4) into (3.2.3), and equating coefficients of like powers of ,p  we obtain  
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and so on, which forms the basic of a complete determination of the components .,,, 210   We let 

0),(0 txu  for  convenience. We therefore obtain the following equations for the components: 
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),()0,(,0)( 00 xgxt                                                                        (3.2.11) 
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and so on 
 

4  Numerical Example 

The accuracy of our proposed numerical method is measured by computing the difference between 

numerical and exact solution.  
 

Example 1:  
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if we assume that, 
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then the exact solution is given by 
txexxtxu  )1(),(                                                                   (4.3) 

and the initial condition is: 
xexxxu  )1()0,(                                                               (4.4) 

The numerical experiment is carried out for 01313.0t  and .1,,2.0,1.0 x  Table (1) exhibits the nu-

merical results. 

 
Example 2: 

   ),(,),(
2)(2

0
txfdssxu

x
etxu x

stt

t 



 

                                        (4.5) 

if we assume that, 

 )2cos2(sin)(2cos)(2sin
4

1
)cos(),( 2 xxetxtxtxtxf t  

              (4.6) 

then the exact solution is given by 

)sin(),( txtxu                                                                     (4.7) 

and the initial condition is: 

).sin()0,( xxu                                                                       (4.8) 

The numerical experiment is carried out for 02.0t  and .1,,2.0,1.0 x  Table (2) exhibits the numerical 

results. 

 

Example 3:  

   ),(,),(
2)(

0
txfdssxu

x
etxu x

stt

t 



 

                                      (4.9) 

if we assume that, 

 ttxtx eeeetxf 22)( 2),(                                                  (4.10) 

then the exact solution is given by 
txetxu ),(                                                                       (4.11) 
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and the initial condition is: 
xexu )0,(                                                                        (4.12) 

The numerical experiment is carried out for 001.0t  and .1,,2.0,1.0 x  Table (3) exhibits the numeri-

cal results. 

 
Table 1: The approximate and exact solutions at 001.0t  

x Approximate Solution Exact Solution Error 

0 7.994669E-006 0.000000E+000 7.994669E-006 
0.1 8.151268E-002 8.135397E-002 1.587113E-004 
0.2 1.311261E-001 1.308660E-001 2.600708E-004 
0.3 1.557268E-001 1.554163E-001 3.104484E-004 
0.4 1.610377E-001 1.607160E-001 3.216704E-004 
0.5 1.517845E-001 1.514811E-001 3.034354E-004 
0.6 1.318468E-001 1.315831E-001 2.636581E-004 
0.7 1.043874E-001 1.041787E-001 2.087592E-004 
0.8 7.196469E-002 7.182078E-002 1.439097E-004 
0.9 3.662793E-002 3.655470E-002 7.323711E-005 
1 0.000000E+000 0.000000E+000 0.000000E+000 

 

 
Table 2: The approximate and exact solutions at 01.0t  

x Approximate Solution Exact Solution Error 

0 7.946932E-004 0.000000E+000 7.946932E-004 
0.1 8.184030E-002 8.062507E-002 1.215226E-003 
0.2 1.321222E-001 1.296935E-001 2.428748E-003 
0.3 1.570661E-001 1.540239E-001 3.042275E-003 
0.4 1.624853E-001 1.592761E-001 3.209215E-003 
0.5 1.531734E-001 1.501239E-001 3.049516E-003 
0.6 1.330612E-001 1.304042E-001 2.656976E-003 
0.7 1.053501E-001 1.032453E-001 2.104851E-003 
0.8 7.262749E-002 7.117729E-002 1.450198E-003 
0.9 3.696442E-002 3.622718E-002 7.372391E-004 
1 0.000000E+000 0.000000E+000 0.000000E+000 

 
Table 3: The approximate and exact solutions at 0001.0t  

x Approximate Solution Exact Solution Error 

0 5.000500E-005 1.000000E-004 4.999500E-005 
0.1 9.977298E-002 9.993292E-002 1.599359E-004 
0.2 1.985979E-001 1.987673E-001 1.694357E-004 
0.3 2.954377E-001 2.956157E-001 1.780366E-004 
0.4 3.893252E-001 3.895104E-001 1.852478E-004 
0.5 4.793227E-001 4.795133E-001 1.905771E-004 
0.6 5.645315E-001 5.647250E-001 1.935520E-004 
0.7 6.441004E-001 6.442942E-001 1.937419E-004 
0.8 7.172350E-001 7.174258E-001 1.907777E-004 
0.9 7.832047E-001 7.833891E-001 1.843704E-004 
1 8.413507E-001 8.415250E-001 1.743267E-004 

 

5  Conclusion 
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Analytically, partial integro-differential equations are usually difficult to solve. In many cases, it is re-

quired to obtain the approximate solutions. In this work, we proposed the homotopy perturbation method 

and variational iteration method for solving linear and nonlinear partial integro-differential equation. 
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