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We summarize our algorithm for simulating Hamiltonian evolution and show that the
cost of the simulation, in terms of black-box calls to the Hamiltonian oracle, is nearly
linear in time and the space complexity for given sparseness is nearly constant.
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1 Introduction

Quantum computers are touted as revolutionary systems for tractably factorizing inte-
gers and solving discrete logarithms, but, in 1982, Feynman made the first proposal of a
quantum computer application. He suggested that a quantum computer could efficiently
simulate any local quantum system; moreover he claimed that such systems cannot in gen-
eral be efficiently simulated by a (classical) Turing computer [1]. Although Feynman’s in-
tuition is legendary, the implications of his conjecture are profound, as proving a quantum
computer is strictly superior to a classical computer would also prove that the complexity
classes P and PSPACE are not equal.

In 1985, Deutsch generalized the Turing machine to a quantum version [2]. This in-
troduction of a quantum computer opened the doors to studying the computation power
of quantum systems in much the same way that decades of computer science research
had explored the prowess and limits of classical mechanical computational devices. The
theoretical side lay dormant, however, until Lloyd’s analysis of Feynman’s conjecture in
1996 [3]. Lloyd’s approach to Feynman’s conjecture was to discretize the continuous-time
t evolution in terms of steps of size t/r for r the number of intervals into which the total
time is divided:
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Lloyd demonstrated the efficiency of the protocol by showing that the cost of iterations is
a polynomial function of r, m (the number of Hamiltonians that add together to yield the
full Hamiltonian), and n the number of qubits over which the full Hamiltonian operates.

Subsequently Abrams and Lloyd suggested a fast algorithm for simulating many-body
Fermi systems on a universal quantum computer [4]. Sørensen and Mølmer suggested
a purpose-built cold-atom quantum computer to study magnetism [5]. These two papers
drove further research into quantum computer research for the purpose of studying physical
systems that are regarded as intractable on classical computers.

In 2003, Aharonov and Ta-Shma introduced a rigorous computer science approach to
the field as they studied the problem of quantum state generation by Hamiltonian evolution
and related this problem to the complexity class of statistical zero knowledge (SZK) [6].
In the course of their study, they introduced an efficient technique to simulate evolution for
any sparse Hamiltonian as an oracle (black-box) problem, where “efficient” implies that the
total resources, measured as the total number of qubits ntotal and total number of gates N

is a polynomial function of n, t, and 1/ε with ε the tolerance for distance between the ideal
state and the computed state.

2 Our Scheme

The concept behind our scheme is depicted in Fig. 2.1. The initial state Ψ0 evolves
under Hamiltonian Ĥ for time t to a final state Ψt in Hilbert space H . In the quantum
computer, the initial state is represented by the approximation Ψ̃0 in the tensor product
space H⊗ntotal

2 , the approximated Hamiltonian by ˜̂
H , and the resultant state by Ψ̃t. The

goal is to obtain a Ψ̃t that is no further (in the sense of distance on Hilbert space) from the
ideal state Ψ0 by ε for any initial state and sparse Hamiltonian. In our case we assume that

Figure 2.1: Simulating Hamiltonian evolution in a physical space on a quantum computer.
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the Hamiltonian matrix Ĥ is sparse and efficiently computable: the number of non-zero
terms in the matrix is at most a polynomial function of n, whereas the dimension of Ĥ is
2n × 2n, i.e. exponential in n.

We use Suzuki’s method [7, 8] to decompose the unitary evolution operator into a se-
quence of unitary evolution operators, each generated by a one-sparse Hamiltonian Ĥj .
Beginning with the standard ‘Trotter formula’,
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Ĥjλ/2

) 1∏

j′=m

exp
(
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Suzuki’s iterants, enumerated by index k, are
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We ‘Wick-rotated’ λ to it and converted Suzuki’s ‘order estimate’ into a strictly
bounded expression; then we prove the inequality (rather than an order estimate) [9]
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Our theorem then states that
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The exponential dependence on k is not a problem; for given time of evolution, we just
optimize k to obtain
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mmaxj‖Ĥj}t/ε

)
(2.7)

so
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The number of steps thus has slightly superlinear dependence on time.
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3 Coloring Graphs

We employ a graph representation of the Hamiltonian with vertices representing either
row or column number and weighted edges the nonzero entries for each row or column;
the weight of the edge is the value of the Hamiltonian for that row and column (because of
Hermiticity, the graph can be undirected).

Using the graph representation, we develop a decomposition algorithm for the Hamil-
tonian into a union of degree-one graphs based on deterministic coin tossing [10,11]. Then
we devise circuits based on sequentially implementing unitary evolutions generated one-
sparse Hamiltonians (represented by degree-one graphs) and concatenate them as shown in
Fig. 3.1.

Figure 3.1: Decomposition of unitary evolution into a series of unitary gates each generated by one-
sparse Hamiltonians.

4 Number of Black-Box Calls

Ultimately the question for us is not how many U -steps are required for the evolution
but rather the number of black-box calls Nbb. The number of black-box calls represents the
full use of all resources in the quantum computer. Our result

Nbb ∈ O
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is an order estimate and not a strict inequality. Of course this result can be optimized for
given t and using k = koptimal.
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5 Conclusions

We have found found an algorithm for quantum computer simulation of state evolution
for a time-independent Hamiltonian. This algorithm is highly efficient: the number of
black-box calls scales as log∗ n for n the number of qubits for the physical system and
is nearly linear in time t. More recently we have been making progress with the time-
dependent case [12].
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