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Abstract: We introduce a new class of augmented Lagrangian function, which includes the well-known essential quadratic augmented
Lagrangian as special cases. Based on this new function, we propose a multiplier algorithm, whose main feature is that the multiplier
sequence does not require to be bounded. Global convergence to optimal solutions and KKT points are established, respectively.
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1. Introduction.

This paper is concerned with the following nonlinear pro-
gramming problem

(P) min f(x)
s.t. gi(x) ≤ 0, i = 1, · · · ,m, wheref andgi : Rn →
for i = 1, · · · ,m are all continuously differentiable func-
tions. Denoted byX the feasible region and byX∗ the
solution set. Theclassical Lagrangian functionis

L(x) = f(x) +
m∑

i=1

λigi(x),

whereλi ∈ for i = 1, · · · ,m.
A main drawback involved in the above Lagrangian

function is that for nonconvex programming problems a
nonzero duality gap maybe arisen, which leads to the fail-
ure of using dual methods to find the solution of the primal
problem. To overcome this difficulty, Henstence [7] and
Powell [11] proposed independently the firstaugmented
Lagrangian functionby adding a second-order penalty term
to the classical Lagrangian function. It was extended sig-
nificantly by Rockafellar [12] and established its augmented
Lagrangian dual theory, including the zero duality gap prop-
erty and the existence of global/local saddle points. Since
then, various augmented Lagrangian functions were pro-
posed by many authors according to different requirement

on theory analysis or algorithm designs; for example expo-
nential augmented Lagrangian [15], modified barrier func-
tions [10], nonlinear Lagrangian [17] etc. At the same time,
the convergence properties of augmented Lagrangian meth-
ods have been developed; see [2,5,6,8,13] for the details.

However, an essential assumption imposed in the above
algorithms is the boundedness of the Lagrangian multi-
plier sequence. This undoubtedly limits the applications
of augmented Lagrangian methods in practice. More re-
cently, this question attracts much attention of many schol-
ars, and the important step in this direction includes [1,
3,4,9]. Nevertheless, it should be noted that the prefor-
mation of these algorithms are all restricted the iterative
sequence{xk} to be convergent in advanced. Hence, our
main aim in this paper is to establish the convergence prop-
erty of augmented Lagrangian methods without requiring
the boundedness of Lagrangian multipliers, and moreover
to study the case even when the iterative sequence is di-
vergent. More specially, we first introduce a new class of
augmented Lagrangian functions, which including the es-
sential quadratic augmented as special cases. The corre-
sponding multiplier algorithms based on this class of aug-
mented Lagrangian is proposed. The global convergence
property is established without requiring the boundedness
of Lagrangian multiplier sequence; for example, every ac-
cumulation points of iterative sequence{xk} is a global
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optimal solution. Even if{xk} is divergent, we further de-
velop the necessary and sufficient conditions for the con-
vergence off(xk) to the optimal value. Finally, under the
Mangasarian-Fromovitz constraint qualification, we show
that{xk} converges to a KKT point of primal problem.

The paper is organized as follows. In section 2, we in-
troduce a new class of augmented Lagrangian function and
propose the multiplier algorithm. Section 3 is devoted to
the convergence property of our algorithms. Numerical re-
ports are given in Section 4.

2. Multiplier Algorithm

In this section, we first introduce a newgeneralized essen-
tially quadratic augmented Lagrangian functionfor (P),
defined as,

L(x, λ, c) := f(x)+
1
2c

m∑

i=1

{max2{0, φ(cgi(x))+λi}−λ2
i }(1)

where(x, λ, c) ∈ Rn × Rm × R++ and++ denotes the
all positive real scalars, i.e.,++ = {a ∈ |a > 0}. The
functionφ : R → R involved in (1) satisfies the following
properties:

(A1)continuously differentiable and strictly increasing on
R with φ(0) = 0 andφ(α) ≥ α for α ≥ 0.

If, in particular,φ(α) = α for all α ∈, thenL reduces
to the essential quadratic augmented Lagrangian function
introduced by Rockafellar; see [12] for more information.
Compared with [9,14,16], an important point made above
is thatφ is not required to be convex. Hence the augmented
Lagrangians we introduce here is more general.

Given(x, λ, c), theLagrangian relaxation problemas-
sociated with the augmented LagrangianL is defined as
(Lλ,c) min L(x, λ, c)
s.t. x ∈ Rn. Its solution set is denoted byS∗(λ, c).

Recall that a vectorx is said to be a KKT point of (P)
if there existλi ∈+ for all i = 1, · · · ,m such that the
following system hold

∇f(x) +
m∑

i=1

λi∇gi(x) = 0, (2)

λigi(x) = 0, for all i = 1, · · ·m, (3)

where the second condition is referred to as the well-known
complementarity condition.For notational simplification,
the collect set of multipliers satisfying (2) and (3) is de-
noted byΛ(x).

Throughout this paper we always assume thatf is bounded
from below, i.e.,

f∗ := inf
x∈Rn

f(x) > −∞.

This assumption is rather mild in optimization problem,
because otherwise the objective functionf can be replaced
by ef(x). The multiplier algorithm based on the gener-
alized essential quadric augmented LagrangianL is pro-
posed below. One of its main feature is that the Lagrangian

multipliers associated are not restricted to be bounded, which
make the algorithm applicable for many problems in prac-
tice. Let us denote

ξ = lim
s→−∞

φ(s), where ξ ∈ [−∞, 0). (4)

According to the monotonicity ofφ by property(A1), we
know thatξ < 0. The case ofξ = −∞ corresponds to that
φ is unbounded from below.

(Multiplier algorithm based on L):

Step 0.Select an initial pointx0 ∈ Rn, λ0
i ∈ [0,−ξ/2) for

i = 1, · · · ,m, andc0 > 0. Setk := 0,
Step 1.Compute

λk+1
i = max{0, φ(ckgi(xk)) + λk

i }φ′(ckgi(xk)) (5)

ck+1 ≥ (k + 1) max{1,

m∑

i=1

(λk+1
i )2}, (6)

Step 2.Findxk+1 ∈ S∗(λk+1, ck+1),
Step 3.If xk+1 ∈ X andλk+1 ∈ Λ(xk+1), then STOP; other-

wise, letk := k + 1 and go back to Step 1.

The following lemma gives the relationship between
the penalty parameterck and the multipliersλk.

Lemma 1.Let (λk, ck) be given as in Algorithm 2. Then
the following terms

λk

ck
,

(λk)2

ck
,

are all approaches to zero ask →∞.

Proof.This is clear from (6).

3. Convergence Analysis

For establishing the convergence property of Algorithm 2,
we first consider the perturbation analysis of (P). Given
α ≥ 0, define the perturbation of feasible region as

X(α) = {x ∈ Rn|gi(x) ≤ α, i = 1, · · · ,m},
and the perturbation of level set as

L(α) = {x ∈ Rn|f(x) ≤ v(0) + α}.
It is clear thatX(0) coincides with the feasible set of (P).
The corresponding perturbation function is given as:

v(α) = inf{f(x)|x ∈ X(α)}.
The following result shows that the perturbation value

function is upper semi-continuous at zero.

Lemma 2.The perturbation functionv is upper semi-continuous
at zero from right.

Proof.It only needs to show that

lim sup
α→0+

v(α) ≤ v(0),

which is followed by the factv(α) ≤ v(0), sinceX(0) ⊆
X(α) for all α ≥ 0.
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Lemma 3.For anyλ ∈m andc > 0, one has

S∗(λ, c) ⊆ {x ∈ Rn|L(x, λ, c) ≤ v(0)}.
Proof.For anyx̄ ∈ S∗(λ, c), we have

L(x̄, λ, c) = inf{L(x, λ, c)|x ∈ Rn}
≤ inf{L(x, λ, c)|x ∈ X(0)}
≤ inf{f(x)|x ∈ X(0)}
= v(0),

where the second inequality uses the factφ(cgi(x)) ≤ 0
for all x ∈ X(0), sinceφ is nondecreasing by the property
(A1).

Lemma 4.Let(λk, ck) be given as in Algorithm 2. For any
ε > 0, one has

{x ∈ Rn|L(x, λk, ck) ≤ v(0) + ε} ⊆ X(ε).

wheneverk is sufficiently large.

Proof.We prove this result by contradiction. Suppose that
we can find anε0 > 0 and an infinite subsequenceK ⊆
{1, 2, · · ·} such that

zk ∈ {x ∈ Rn|L(x, λk, ck) ≤ v(0) + ε}, ∀k ∈ K, (7)

but

zk /∈ X(ε0), ∀k ∈ K.

It follows from (7) that

v(0) + ε ≥ L(zk, λk, ck). (8)

Sincezk /∈ X(ε0), then there exists an indexi0 and an
infinite subsequenceK0 ⊆ K such thatgi0(z

k) > ε0. It
follows from (8) that

v(0) + ε

≥ f∗ +
1

2ck

m∑

i=1

{max2{0, φ(ckgi(zk)) + λk
i } − (λk

i )2}

= f∗ +
1

2ck

{
max2{0, φ(ckgi0(z

k)) + λk
i0} − (λk

i0)
2
}

+
1

2ck

∑

i 6=i0

{
max2{0, φ(ckgi(zk)) + λk

i } − (λk
i )2

}

≥ f∗ +
1

2ck

{
max2{0, ckgi0(z

k)) + λk
i0} − (λk

i0)
2
}

+
1

2ck

∑

i 6=i0

{
max2{0, φ(ckgi(zk)) + λk

i } − (λk
i )2

}

≥ f∗ +
ck

2
g2

i0(z
k) + gi0(z

k)λk
i0 −

1
2ck

∑

i 6=i0

(λk
i )2

≥ f∗ +
ck

2
ε20 + ε0λ

k
i0 −

1
2ck

m∑

i=1

(λk
i )2

≥ f∗ +
ck

2
ε20 −

1
2ck

m∑

i=1

(λk
i )2,

where the second inequality comes from the factφ(a) ≥ a
for all a ≥ 0 by property(A1), and the last inequality
follows from the nonnegativity ofλk

i by (5) (noting that
φ′(α) ≥ 0 for all α ∈ sinceφ is nondecreasing). Taking
limits in the above inequality yieldsv(0) = +∞, which is
a contradiction. The proof is complete.

Lemma 5.Let(λk, ck) be given as in Algorithm 2. For any
ε > 0, one has

{x ∈ Rn|L(x, λk, ck) ≤ v(0) +
ε

2
} ⊆ L(ε).

wheneverk is sufficiently large.

Proof.For arbitrarilyx̄ ∈ {x ∈ Rn|L(x, λk, ck) ≤ v(0) +
ε
2}, it follows from (1) that

f(x̄) ≤ v(0) +
ε

2
+

1
2ck

m∑

i=1

(λk
i )2. (9)

As k is large enough, Lemma 1 ensures that

1
ck

m∑

i=1

(λk
i )2 ≤ ε,

which together with (9) justifies the desired result.

With these preparation, the global convergence prop-
erty of Algorithm 2 can be given, which shows that if the
algorithm terminates in finite steps, then we obtain a KKT
point of (P); otherwise every limit point of{xk} would be
the optimal solution of (P).

Theorem 1.Let xk be the iterative sequence generated by
Algorithm 2. Then If{xk} is terminated in finite steps, then
we get a KKT point of (P); otherwise, every limit point of
xk belongs toX∗.

Proof.According to the termination criterion of Algorithm
2, the first part is clear. Let us consider the second part.
For anyε > 0, it follows from Lemmas 3-5 that whenk is
large enough we have

S∗(λk, ck) ⊆ {x ∈ Rn|L(x, λk, ck) ≤ v(0)}
⊆ {x ∈ Rn|L(x, λk, ck) ≤ v(0) +

ε

2
}

⊆ X(ε) ∩ L(ε).

Thus,

xk ∈ X(ε) ∩ L(ε). (10)

Note thatX(ε) andL(ε) are closed, due to the continuity
of f andgi for all i = 1, · · · ,m. Taking the limit in (10)
yieldsx∗ ∈ X(ε) ∩ L(ε), which further shows thatx∗ ∈
X(0) ∩ L(0), sinceε > 0 is arbitrary, i.e.,x∗ ∈ X∗. The
proof is complete.

The foregoing result is applicable to the case when
{xk} at least has an accumulation point. However, a nat-
ural question arises:how does the algorithm perform as
{xk} is divergent?The following theorem gives an answer.
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Theorem 2.Let{xk} be an iterative sequence generalized
by Algorithm 2. Then

lim
k→∞

f(xk) = v(0) (11)

if and only ifv(α) is lower semi-continuous atα = 0 from
right.

Proof.Sufficiency. According to the proof of Theorem 1
[cf. (10)], we know that

v(ε) ≤ f(xk) ≤ v(0) + ε, (12)

wheneverk is sufficiently large. Sincev(α) is lower semi-
continuous atα = 0, taking the lower limitation in (12)
yields

v(0) ≤ lim inf
ε→0+

v(ε) ≤ lim inf
k→∞

f(xk)

≤ lim sup
k→∞

f(xk) ≤ v(0) + ε.

Sinceε > 0 is arbitrary, the above estimate gives us

lim
k→∞

f(xk) = v(0).

Necessity. Suppose on the contrary thatv is not lower
semicontinuous at zero from right, then there must exist
δ0 > 0 andεj → 0+(as j →∞) such that

v(εj) ≤ v(0)− δ0, ∀j. (13)

Let k be fixed. Sinceεj → 0 we can choose an subse-
quencejk satisfyingεjk

ck ≤ 1/k. Hence

εjk
ck → 0 as k →∞,

which, together with the continuity ofφ, further implies
that

φ(εjk
ck) → 0 as k →∞. (14)

In addition, letzk ∈ X(εjk
) with f(zk) ≤ v(εjk

) + δ0
2 ,

which further impliesf(zk) ≤ v(0) − δ0
2 by (13). There-

fore,

f(xk)

= L(xk, λk, ck)− 1
2ck

m∑

i=1

{
max2{0, φ(ckgi(xk)) + λk

i }

−(λk
i )2

}

= inf
x∈Rn

L(x, λk, ck)− 1
2ck

m∑

i=1

{
max2{0, φ(ckgi(xk)) + λk

i }

−(λk
i )2

}

≤ inf
x∈Rn

L(x, λk, ck) +
1

2ck

m∑

i=1

(λk
i )2

≤ f(zk) +
1

2ck

m∑

i=1

{
max2{0, φ(ckgi(zk) + λk

i )} − (λk
i )2

}

+
1

2ck

m∑

i=1

(λk
i )2

≤ v(0)− δ0

2
+

1
2ck

m∑

i=1

(
φ(ckεjk

) + λk
i

)2
, (15)

where the last step is due to the factgi(zk) ≤ εjk
since

zk ∈ X(εjk
) andφ is nondecreasing by the property(A1).

Taking the limits in both sides of (15) and using Lemma 1
and (14), it follows from (11) that

v(0) = lim
k→∞

f(xk) ≤ v(0)− δ0

2
,

which leads to a contradiction. The proof is complete.

We conclude this paper by establishing the convergence
of the lagrangian multiplier sequence{λk} in the presence
of Mangasarian-Fromovitz constraint qualification. Let us
first recall that M.F. constraint qualification is said to be
satisfied atx∗, if there existsh0 ∈n such that

〈∇gi(x∗), h0〉 < 0, ∀i ∈ I(x∗),

whereI(x∗) = {i|gi(x∗) = 0, i = 1, · · · ,m}. Here we
further assume thatφ satisfies

(A2)φ′(s) ≤ 1 whenevers is sufficiently small, i.e., there
existss0 < 0 such thatφ′(s) ≤ 1 for all s ≤ s0.

Clearly, this assumption holds automatically whenφ(α) =
α.

Theorem 3.Let {xk} be the iterative sequence generated
by Algorithm 2 andx∗ is one of its limit points. Then

(a).If M.F. constraint qualification is satisfied atx∗, then
λk is bounded and any of its limit points, sayλ∗, sat-
isfies(x∗, λ∗) is a KKT point of (P).

(b).If the linearly independent constraint qualification holds
at x∗, we further obtain that the multiplier sequence
{λk

i } for i = 1, · · · ,m are convergent.

Proof.We assume without loss of generality thatlim
k→∞

xk =

x∗. It follows from Theorem 1 thatx∗ ∈ X∗. If i /∈ I(x∗),
thengi(xk) < 0 ask large enough. This means the exis-
tence ofε0 > 0 such thatgi(xk) ≤ −ε0 wheneverk is
sufficiently large. Therefore,

lim
k→∞

ckgi(xk) = −∞.

Hence, taking into account of the properties(A1), (A2)
and Step 1 in Algorithm 2, we obtain

λk+1
i = max{0, φ(ckgi(xk)) + λk

i }φ′(ckgi(xk)) (16)

≤ max{0, λk
i } = λk

i ≤ · · · ≤ λ0
i ,

where the second equation comes from the nonnegativity
of λi according to the construction in Algorithm 2. This
justifies the boundedness{λk

i } for i /∈ I(x∗). Sinceλk
i ≤

λ0
i < − 3

4ξ (see Step 0 in Algorithm 2) andlim
k→∞

φ(ckgi(xk)) =

ξ by (4), then

lim
k→∞

φ(ckgi(xk)) + λk
i ≤ ξ/4 < 0.

Therefore, taking limit in (16) yields

lim
k→∞

λk
i = 0, ∀i /∈ I(x∗). (17)
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We now show thatλk
i for i ∈ I(x∗) are bounded as

well. If this is not true, then we can find an infinite subse-
quenceK ⊆ {1, 2, · · · , } such that

Tk :=
∑

i∈I(x∗)

λk
i → +∞, as k →∞. (18)

Sincexk−1 ∈ S∗(λk−1, ck−1) by Algorithm 2, accord-
ing to the well-known of optimality conditions for uncon-
strained optimization problem we must have

∇xL(xk−1, λk−1, ck−1) = 0,

which together with (5) means that

∇f(xk−1) +
m∑

i=1

λk
i∇gi(xk−1) = 0. (19)

Sinceλk
i

Tk
is bounded, we can assume without loss of gen-

erality that

λk
i

Tk
→ λ̃∗i , ∀i ∈ I(x∗).

Since
∑

i∈I(x∗)

λk
i

Tk
= 1,

taking limit with respect tok ∈ K in the above equation
gives us
∑

i∈I(x∗)

λ̃∗i = 1,

which implies that̃λ∗i for i ∈ I(x∗) are not all zero. Divid-
ing on both sides of (19) byTk, taking limit with respect
to k ∈ K, and using (18), we get
∑

i∈I(x∗)

λ̃∗i∇gi(x∗) = 0.

Thus

0 = 〈
∑

i∈I(x∗)

λ̃∗i∇gi(x∗), h0〉 =
∑

i∈I(x∗)

λ̃∗i 〈∇gi(x∗), h0〉 < 0,

where the last step is due to the fact that at least one of
λ̃∗i is not zero. This leads to a contradiction. Therefore, we
establish the boundedness ofλk. Let λ∗ be a limit point of
λk. It follows from (17) thatλ∗ = 0 for i /∈ I(x∗) and
from (19) that

∇f(x∗) +
∑

i∈I(x∗)

λ∗i∇gi(x∗) = 0,

i.e., λ∗ ∈ Λ(x∗). This establishes Part (a). Part (b) can
be proved in the same vein, just noting that in the pres-
ence of linearly independence constraint qualification the
Lagrangian multiplier is unique. This together with the
boundedness ofλk

i for i = 1, · · · , m ensure the conver-
gence to the unique accumulation point.

4. Numerical Results

To give some insight into the behavior of our proposed al-
gorithm, we solve the following nonconvex programming
problems by lettingφ take the following different func-
tions:

1.φ1(α) = α,
2.φ2(α) = (1 + 1

3α)3 − 1,
3.φ3(α) = α

(
ln(1 + α2) + 1

)
,

4.φ4(α) = α + α3.

The test was done at a PC of Pentium 4 with 2.8GHz
CPU and 1.99GB memory. The computer codes were writ-
ten in Matlab 7.0. Numerical results are reported in the
following Table, wherek is the number of iterations,ck is
the penalty parameter,λk is multipliers, andf(xk) is the
objective value.

Example 1.[18] min 0.5(x1 + x2)2 + 50(x2 − x1)2 +
sin2(x1 + x2)
s.t. (x1−1)2 +(x2−1)2 +(sin(x1 +x2)−1)2−1.5 ≤ 0

Example 2.[18] min 0.5(x1+x2)2+50(x2−x1)2+x2
3+

|x3 − sin(x1 + x2)|
s.t. (x1 − 1)2 + (x2 − 1)2 + (x2 − 1)2 − 1.5 ≤ 0

Example 3.[19] min f(x) = −5(x1+x2)+7(x4−3x3)+
x2

1 + x2
2

+ 2x2
3 + x2

4

s.t.
∑4

i=1 x2
i + x1 − x2 + x3 − x4 − 8 ≤ 0

x2
1 + 2x2

2 + x2
3 + 2x2

4 − x1 − x4 − 10 ≤ 0
2x2

1 + x2
2 + x2

3 + 2x1 − x2 − x4 − 5 ≤ 0

Example 4.[19] min f(x) = (x1− 10)2 +5(x2− 12)2 +
x4

3 + 3(x4 − 11)2
+ 10x6

5 + 7x2
6 + x4

7 − 4x6x7 − 10x6 − 8x7

s.t. 2x2
1 + 3x4

2 + x3 + 4x2
4 + 5x5 − 127 ≤ 0

7x1 + 3x2 + 10x2
3 + x4 − x5 − 282 ≤ 0

23x1 + x2
2 + 6x2

6 − 8x7 − 196 ≤ 0
4x2

1 + x2
2 − 3x1x2 + 2x2

3 + 5x6 − 11x7 ≤ 0

Comparing with their numerical behaviors given in Ta-
bles 1-4, it is clear that Algorithm 2 is more preferable
whenφ is nonconvex thanφ(α) = α, since the iterative
stepk is fewer and penalty coefficientck is smaller.
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Table 1 Numerical Results of Example 4.1

φi(α) k ck f(xk)
φ1(α) 2 2.0000 0.3141

4 4.0000 0.3012
6 6.0000 0.3004

φ2(α) 2 2.0000 0.2739
3 3.0000 0.2992
4 4.0000 0.3004

φ3(α) 2 2.0000 0.2331
4 4.0000 0.2992
5 5.0000 0.3004

φ4(α) 2 2.0000 0.2845
3 3.0000 0.2998
4 4.0000 0.3004

Table 2 Numerical Results of Example 4.2

φi(α) k ck f(xk)
φ1(α) 2 2.0000 0.3052

4 4.0000 0.3007
6 6.0000 0.3004

φ2(α) 2 2.0000 0.2739
3 3.0000 0.2991
4 4.0000 0.3004

φ3(α) 2 2.0000 0.2629
3 3.0000 0.2974
5 5.0000 0.3004

φ4(α) 2 2.0000 0.2759
3 3.0000 0.2976
4 4.0000 0.3004
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