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Abstract: Many authors have studied estimation of the reinsurancaipra when sequences are i.i.d. for different distributjons
particularly for heavy tailed ones. The goal of this papetoisextend this estimation for dependent sequences withyhaled
marginals. Our work is limited to some mixing sequencesgifiiie distortion risk measure due to Wang. In this study ihms that
estimator of the reinsurance premium with high retenticasigmptotically normal and without bias.
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1 Introduction

Let x denote the set of nonnegative random variables on the pititpapace (Q, <7, P). In this study, we use the
following distortion risk measure :

Hy: X — RT

X — (%) = [ " o(8c(x)dx

whereSx (x) = 1— Fx(x) is the survival function oK andg is a concave increasing function verifyigf0) = 0,g(1) = 1.
One remarks that this distortion measure is sub-addittiwgas introduced by Denneberg][and Wang R9]. It verifies
also axioms of coherent risk measure proposed by Artznéi &L n the field of insurance the risk measu#y is called
the risk premium. Iy is the identity from(0, 1] to [0, 1], thenZy = E(X) wich is called net premium. Generally the safety
loading is defined agy(X) — E(X). Building a functiorh: [0, 1] — [0, 1] verifying h(x) = g(x) — X, one obtains the safety

loading which is writterZzp(X) = / h(Sx (x))dx. This quantity isn’t a distortion risk measure.
0

Reinsurance is a financial transaction by which risk is fiemed from an insurance company to a reinsurance
company (reinsurer) in exchange of a payment (reinsuraresgipm). Suppose that an insurance iisls split into two
parts as

X=[X=(X=Rj4J+(X=R)y,

where(X — R)1 = maxX — R,0), andRis a high retention level. Insurer retains the 6k (X — R),, and transfers the
risk (X — R).+ to the reinsurer with the reinsurance premium

AorX) = [ 9(Sdx< 25(X)
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If g(x) = x¥P p > 1 (called the distortion parameter), we obtain the propaet hazards transform (PHT) premium
(Wang [29])

Mor(X) = [ (Sc(0)Px @

Now, consider i.i.d. random variablés, ..., X, with common distribution functiofr of an insured riskX > 0. We
assume thasx (x) has regular variation function near infinity with indexax, that is:

lim 2% x 9 foranyx>0and 1< a <2 2

(see, e.g., de Haan and FerrerieZ]). Such cdf’s constitute a major subclass of the family cd\hetailed distributions.

It includes distributions such those Pareto’s, Burr's,dgfut’s,a-stable(0 < a < 2), and log-gamma, which are known
to be appropriate models of fitting large insurance claiagd fluctuations of prices, log-returns, and so on (seddBeir

et al. [2]; Reiss and Thomas2f] for more details). A high quantile, situated in the border or even beyond the range of
the available data is denoted

Xpy := Qx(1—p), p=pn— 0, asn— oo, npy — A >0,

whereQ(s) = inf{x e R: F(x) > s},0 < s< 1is the quantile function associated to thé=dNote that the conditior2]
is equivalent to
- UtX) 1
tlmu—(t)_x , forany x> 0, 3)
whereU (t) = Q(1—1/t),t > 1.
To get asymptotic normality of estimators of parametersxtriegne events, it is usual to assume the following extra
second regular variation condition, that involves a secmndér parameten < O:

n_
Jim (A(t) (%((tt’;) - xl/"> - xl/“XTl, for any x> 0, @)
whereA s a suitably chosen function of constant sign near infilityre restrictively, we consider th&tbelonged to the
wide class of Hall L3], that is

1—Fx(x) =cx Y (1+dxT +0o(x19)), x — (5)

for some constanis> 0 andd # 0, thusA(t) is equivalent tana—1ct ast — «. The most popular estimator af, is
the Hill estimator L4], with the form

-1
(1
0= <E i;“O(\]ani,n - |ngnk+1a”> '

whereX; , denotes, the i-th ascending order statistieSil< n, associated to the random samf¥g, Xz,...,Xn).
Hall and Welsh 13] proved that the asymptotic mean squared error of the Hilinegor is minimal for

1/(1-2
(1—n)2 2’7:| /(1=2n)

o= | ey " ©

One remarks thatp = O(n¢) whereé = ———.
2
For the high quantile estimation, we recall the classicaliggarametric Weissman-type estimatorxgf (\Weissman
[31) ~
- npy -«
o =X ten () (7)
Since the parameterg ¢ andd in (6) are unknown, thé&,: cannot be used directly to determine the optimal number of
order statistics for a given data set. To solve this probleveal procedures are available, see e.g. Cheng and Beng |
and Neves and Fraga Alve3].
The reinsurance companies need to calculate the premfiigigfor covering such excess claims, which is usually very
large. In this case, the probabilities of extreme casesdrapg are relatively larger than are predicted under thesadal
normal distribution assumption. Therefore, the largeliasoe losses can be modelled by heavy-tailed distributfons
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that Necir and Boukhetald §], Vandewalle and Beirlan28] and Necir et al. 20], Rassoul 25] have proposed different
asymptotically normal estimators féf, r based on samples of claim amounts of reinsurance coverswoy liailed i.i.d.
risks. However, in economics and other fields of applicatigal data sets are most often dependent. As the complexity
of situations that can be considered is enormous some kirtkpéndence must be assumed. The classical limiting
theory for maxima can be applied, with small changes, pexvidng range dependence of extremes is sufficiently weak.
Some important dependent sequences have been studiedealimditidistributions of their order statistics under some
conditions are then known. Stationary sequences are erangblthose sequences and are realistic for many real
problems, it is interesting to analysing the propertieshef éstimator of 1, g under heavy tailed stationary sequences.
The rest of this paper is organized as follows. In Section@jmroduce the extremal index which is the key parameter
for extending extreme value theory results from i.i.d. t@tishary sequences. In Section 3, we construct a reinsairanc
premium estimation for positive strictly stationary segece with heavy-tailed marginals which is the main result. In
Section 4, we compute confidence bounds/fgrr by some simulations. Section 5 is devoted to the proofs.

2 Extremal index

Many applications as in insurance and finance, telecomratioitand other areas of technical risk, usually exhibit a
dependence structure. Leadbettéml [17] put a mixing conditionD(un) based on the probability of exceedances of
a high thresholdl, it limits the degree of long-term dependence of the sequgmoviding asymptotic independence

between far apart extreme observations.

Definition 1(D(un) condition). A strictly stationary sequencgX;}, whose marginal distribution F has upper support
point x = sup{x: F(x) < 1}, is said to satisfy Quy) if, for any integersi < ... <ip < j1 < ... < jqWwith ji —ip>1,
‘P{Xu S Un,...7xip S Un,le S Un,...7qu S Un}

- P{Xll S Un,'-'axip S Un} P{le S Un,'-'aqu S Un}‘ S 6(”7')7
whered(n,l,) — 0 for some sequences+ o(n) and th — Xg as n— .

Theorem l(Leadbetter et. al. L7]). Let X, ..., X, be a strictly stationary sequence with marginal distribatiF , and
X1,..., %, an i.i.d. sequence of random vanables with the same didiob F, define the following quant|t|esn|\A:
max(Xy, ..., Xn) andM, = max(xl, ,Xn) Under the Du,) condition, with @ = anX+ by, if

Pla, }(Mn — bn) < X] — G(x), as n— oo, (8)
for normalizing sequences a 0 and b, € R, it follows that,
Play (Mo —bn) <X — [G(x)]®, as n— e, (9)

where G(X) is a non-degenerate extreme value distribution, &nd (0,1] is the extremal index, this parameter
characterizes the short-range dependence of the maximafémal interpretation oB is given in Leadbetteet al.
[17], namely8 ~(mean cluster size}. Theoretical properties of the extremal index have beetiestifairly extensively;
(O'Brien [23]), Hsing et al. [L5], and references therein). The problem of estimafinwas also received some attention
in the literature ( see Smith and Weissmai][ Weissman and Noval3p] and Ferro and Seger&]]).

Let (Xy,...,Xs) be a positive strictly stationary sequence with extremadei® and heavy tailed marginals-1F, and
let (X1, ...,X%n) be independent variables with the same heavy tailed mdsgiraF as the sequendgX }1<i<n. Using the
relationship 8) we find that the marginal quantiles 0K } 1<i<, are approximately by

Q(1—p)~G H1-p)",

and thus
Q(1-p)’~GH1-p)" (10)
Using @), we find the approximation of the marginal quantile{%f}1<j<n as
Qx(1-p)~G H(1-p"™ (11)
From (10) and (L1), we have
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Qx(1-p)=Qg(1-p)°.
By the use of the Taylor formulél — p)® ~ 1 — 6p, p— 0, one obtains

Qx(1—p)=Qx(1-6p).
Reading the convergenc® (@s an approximation fgp — 0, 6 € (0, 1], one obtains

Qx(1-6p)~ 6 Y9Qg(1-p) (12)
therefore

Qx(1—p)~ 6 Qqg(1-p)
Using the Weissman estimataf)( therefore an estimator @x (1 — p) is

5 ~1/a
%K%%ﬁ> . (13)

The extremal inde¥ needs to be adequately estimated not only by itself, buttssause its influence in the estimation
of other important parameters of rare events, such as, adughtile in (L3), various estimators of are proposed in
the literature. The first estimator is based on the charaateyn of the extremal index given by O’Brie2J. In this
characterizationd is expressed as the limiting probability that an exceedafmlowed by a run of observations below
a high threshold,:

0= rLi_r}TloP(max{Xz,...,Xrn} < Un | X1 > Un),

wherer, = o(n) is the length of runs of values of the process falling belog/ttireshold given that an exceedance has
occurred. This characterization motivates the definitibthe runs estimator for a fixed high thresheldnd a specified
runs lengthr:

A Zn:—lrn 10X > Un, M itr, < Un)
6(up,rn) = a . )
Yit1 1% > Un)
where wherél(.) is the indicator function anil; j;r, = max{X..., X1+, }. The runs estimator is asymptotically normal
and consistent. See Weissman and No&tk &nd references therein for additional information.

The second estimator is due to Ferro and Sedédlis An interesting aspect of this estimator is that it doesreqtiire
an auxiliary parameter (run length in the case of the rurisiasidr). However, one still has to choose the thresholdag)si
a point process approach, Ferro and Segers show that theekteedance times (time differences between successive
values above a threshold) of the extreme values normaliz&d-d= (u,) converge in distribution to a random variafilg
with a mass of - 8 att = 0 and an exponential distribution with rate equabtont > 0. Using a moment estimator,
they first obtain:

S 2N T
(N=1) N7

6, =
whereT,; are the inter-exceedance times &hd the number of exceedances of a fixed high threshoklbias corrected
version gives,

5 AT 1P
©N-DIE DT -2)

To obtain the final form of the estimator, a further adjustmi@made to ensure that the values of the estimator lie betwee
0 and 1:

~ By i 1<i<N-11 <
{1/\61|f max{T:1<i<N-1}<2 )

T 1A6if max{T 1<i<N-1}>2

Next, we discuss the max-autoregressive (ARMAX) processdun the simulation study, for which the extremal index
is given in closed form.
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3 Defining the estimator and main results

To estimate the risk measuf&, r(X), given in (L), whenX is a positive stationary process, aRd= Qx(1—k/n) . Let
k = kn be sequence of integer satisfying<dk < n,k — o, k/n — 0. We present now our risk measuig r(X) as

-k/n
Mpr(X) = — / (69)/PdQy (1 69). (15)
Jo
We derive the estimator f@x (1 —s) in (12), and after an integration, we obtain the following estiondor 1, r(X)

. k/n\Y/Pgl/p-1/a
np,R(X) = P( / )A ank,na (16)
a—p
Theorem 2Fix p > 1, if X is a positive strictly stationary sequence with extatindex 8, and assume tha#j holds
with t1/PQgz(1—1/t) — 0 as t— o, and k= k, be such that k+ «, k/n — 0, and,/nA(k/n) — 0 as n— o, Then, for
0<1/a <1/p,we have

-1/pyl/2
M[HP,R(X) — Mor(X)] 2 .4 (0,0%(p,0,a)), asn— o,

—k,n

_ g2vp-1a)Pa? = 2p%a +p*+pat

Uz(paeaa) ag(a_p)z

4 Constructing Confidence Interval for 1, r(X)

4.1 Optimal choice of the number of upper order statistics

Extreme value based estimators rely essentially on the etk upper order statistics involved in estimate computation
Hill's estimator has, in general, a substantial varianeesfoall values ok and a considerable bias for large valuek.of
Hence, one has to look forkavalue, denoted b, that balances between these two vices. The choice of thisalp
valuekopt represents the main hurdle in the process of estimatingathi@dex. To solve this problem several procedures
are available, see e.g. Hall and Wel&B][ Cheng and Pengl], and Neves and Fraga Alve®7]. In our simulation study,
we use the method proposed by Hall and Wels8,[they minimized the asymptotic mean squared error for tilke H
estimator such that:

Kopt = argrrllinE(a—a)2 (17)

4.2 Simulation study

To obtain confidence intervals for our estimaﬁ;;,R(X), first we fix the the distortion parameter= 1, andp = 1.01,
then we generate 100 replications of the time seigsX, . .., Xn) for different sample size€100Q 3000 5000), where
X is an ARMAX process satisfying

Xe=maxfX_1,Z), 0<B <1 t>1, (18)

wheref3 = 0.3, and{Z }+>1 are independent and identically distributed, with taitrlsition 1— Fz(x) = 1 —exp(—(1—
BY)x~9), we use two tail indicee = 1.2 anda = 1.8, note that we estimat&= 1— 3% by the Ferro and Segers estimator
in (14), and we usel(7) for compute the values of the optimal fraction intelig. The simulation results are presented in
the following Tables, where Ib and ub stand respectivelydaer bound and upper bound of the confidence interval. The

overall true premiunil and estimated premiuvﬁ is then taken as the empirical mean of the values in the 1GQitiems.

Table 1: 95% confidence intervals for the premium, with tail index 1.2, and distortion parametgr= 1.

n n n b ub length
1000 | 3.337356 | 3.366814 | 2.319555 | 4.414072 | 2.094517
3000 | 3.158891 | 3.046677 | 2.447528 | 3.645826 | 1.198299
5000 | 3.005196 | 2.939038 | 2.470065 | 3.408010| 0.937944
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Table 2: 95% confidence intervals for the premium, with tail index= 1.2, and distortion parametgr= 1.01.

n r

rn

Ib

ub

length

1000 | 3.672269

3.80352

2.841751

4.765289

1.923537

3000 | 3.379407

3.276043

2.632976

3.91911

1.286134

5000 | 3.343542

3.215753

2.684792

3.746715

1.061923

Table 3: 95% confidence intervals for the premium, with tail index= 1.8, and distortion parametgr= 1.

n r

rn

Ib

ub

length

1000 | 0.4350412

0.4165584

0.2946764

0.5384404

0.2437639

3000 | 0.4112903

0.3785951

0.3098901

0.4473002

0.1374101

5000 | 0.3603734

0.3361326

0.2819626

0.3903026

0.1083400

Table 4: 95% confidence intervals for the premium, with tail index= 1.8, and distortion parametgr= 1.01.

n r

rn

Ib

ub

length

1000 | 0.4698994

0.4344532

0.3079989

0.5609075

0.2529086

3000 | 0.4071919

0.3828242

0.3095364

0.4561119

0.1465756

5000 | 0.3563748

0.3393401

0.2796627

0.3990175

0.1193549

5 Proof

Denoting

Hy = P(k/n)l/pél/pl/ay(nk,n{

Hy =

 p(k/m)/PBY/P-1/aQu (1 k/n)

1

a—-p a—p

1

|

xn—k7n

Hz =

a-p

 p(k/m)Y/PBY/P-1/aQu (1 k/n)

{

Then, we can verifies easily that

a-p

Qg(1—k/n)

Ay r(X) — My r(X) = Hy + Hy + Ha.

H; can be written also

_ paaBYP YA (k/n)YPXg kn

11

1

Sincea is a consistent estimator for (see Masor§)), and@ is a consistent estimator 6f(see Weissman and Novak

[30)), then for all largen

(a—p)(a-p)

a o

{

‘)

_1}7

" l/pg
/Qx(l—k/n)(SX(X)) *

pa201-Ya(k/MVPQo(1—k/n) (1 1
Hi = (1+o0p(1)) (@—pp? X {5—5}
and Upatp1/ _
p(k/n)YPOYP=H Qg (1—~k/n) Xa—kn
Hz = (1+0p(1)) - X {Q;((l—k/n)_l}
e (/)P Q1P 1aQy (1 Kk/n)
B p(k/n Qg1 —k/n) e /
Hy = (1-+0e(1)) a—p : /mek/n)(sx(x))l ax
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In view of Theorems 2.3 and 2.4 of Csorg6é and MassinPeng R4], and Necir et al. 20] has been shown that under
the second-order conditiod)(and for all large n

Vka (% - %) - \/EBH (1— ;) - \/E/:k/n ?n_(sidS—FOp(l),
vk <% - 1) - —al\/EBn (1— ;) +op(1),

)~<n—k,n
Qg (1—k/n)

where{Bn(s),0<s<1n=12,...} is the sequence of Brownian bridges. This implies that foeagen

pa@YP=1/a(k/m/PQy(1—k/n) / /n k
H=(1+or(D) kl/z(a—p)zx <\/;B" (1_6)

- \/E/:k/n |in_(sids+ 0p(1)>

pBOYP=1(k/n)Y/PQgy (1 —k/n) n k
Hz = (1+0p(1)) kl/za(a—px) (— B (1—ﬁ> +op(1)>.

and
=1+o0p(1),

We can writeH3 as

p(k/n)l/pel/pr((l— ok/n) /oo Y
Hz = (14 o0p(1 - 2 (X)) Pdx
3= (1+0p(D) o 1 )
Recall, from Karamata’s Theorem (see de Haan and FertEilg fhat
Lo (si)¥Pdx
Qz (1-6k/n) 1 P _asn— oo,

(Ok/n)PQg(1—6k/n)  a/p—1 a-p
since(Sx (x))Y/* is regular varying with indek% < —1andQx(1—k/n) — o asn — . Hence
Hz — 0, as h— co.
From Necir et al 20] and Necir et al 21], we have

k/n)~/PKL/2
( / ) (H1—|- H2)=An—|-0p(1),

Qy(1—k/n)
with
_ -1/a pa p 1 pa ! Bn(S)
Ay = 6YP1/ @ o <? - a+1) (n/K)Y/?Bp(1—k/n) — (o{_p)z(n/k)l/Z/H/n 1_Sds} :

- /n)YeKkY2 .
then the asymptotic variance k) (Mp r(X) — Mp r(X)) will be computed by

X

2 _ g2(1/p-1/a) pa?—2p%a+p3+pa*
a3(a _p)Z

2 T
0%(p. 6, ) = lim E(4n)

This completes the proof of Theorem 3.1.
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