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2 Laboratoire de mathématiques (LDM). Sidi-Bel-Abbès University, Algeria

Received: 12 May 2013, Revised: 23 Jan 2014, Accepted: 9 Feb 2014
Published online: 1 Mar 2014

Abstract: Many authors have studied estimation of the reinsurance premium when sequences are i.i.d. for different distributions,
particularly for heavy tailed ones. The goal of this paper isto extend this estimation for dependent sequences with heavy tailed
marginals. Our work is limited to some mixing sequences using the distortion risk measure due to Wang. In this study it is shown that
estimator of the reinsurance premium with high retention isasymptotically normal and without bias.

Keywords: Extremal index , Wang’s premium principle, Extreme value statistics.2000 Mathematics Subject Classification: 60G52,
62G32, 91B30.

1 Introduction

Let χ denote the set of nonnegative random variables on the probability space (Ω ,A ,P). In this study, we use the
following distortion risk measure :

Rg : χ −→ R+

X −→ Rg(X) =

∫ ∞

0
g(SX(x))dx,

whereSX(x) = 1−FX(x) is the survival function ofX andg is a concave increasing function verifyingg(0) = 0,g(1) = 1.
One remarks that this distortion measure is sub-additive. It was introduced by Denneberg [9] and Wang [29]. It verifies
also axioms of coherent risk measure proposed by Artzner et al [1]. In the field of insurance the risk measureRg is called
the risk premium. Ifg is the identity from[0,1] to [0,1], thenRg = E(X) wich is called net premium. Generally the safety
loading is defined asRg(X)−E(X). Building a functionh : [0,1]→ [0,1] verifying h(x) = g(x)−x, one obtains the safety

loading which is writtenRh(X) =
∫ ∞

0
h(SX(x))dx. This quantity isn’t a distortion risk measure.

Reinsurance is a financial transaction by which risk is transferred from an insurance company to a reinsurance
company (reinsurer) in exchange of a payment (reinsurance premium). Suppose that an insurance riskX is split into two
parts as

X = [X− (X−R)+]+ (X−R)+,

where(X−R)+ = max(X−R,0), andR is a high retention level. Insurer retains the riskX− (X−R)+, and transfers the
risk (X−R)+ to the reinsurer with the reinsurance premium

Rg,R(X) =

∫ ∞

R
g(SX(x)dx≤ Rg(X)
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If g(x) = x1/ρ ,ρ ≥ 1 (called the distortion parameter), we obtain the proportional hazards transform (PHT) premium
(Wang [29])

Πρ ,R(X) =

∫ ∞

R
(SX(x))

1/ρdx (1)

Now, consider i.i.d. random variablesX1, . . . ,Xn with common distribution functionF of an insured riskX > 0. We
assume thatSX(x) has regular variation function near infinity with index−α, that is:

lim
v→∞

S(vx)
S(v)

= x−α , for anyx> 0 and 1< α < 2. (2)

(see, e.g., de Haan and Ferreria, [12]). Such cdf’s constitute a major subclass of the family of heavy-tailed distributions.
It includes distributions such those Pareto’s, Burr’s, Student’s,α-stable(0< α < 2), and log-gamma, which are known
to be appropriate models of fitting large insurance claims, large fluctuations of prices, log-returns, and so on (see Beirlant
et al. [2]; Reiss and Thomas, [26] for more details). A high quantilexp situated in the border or even beyond the range of
the available data is denoted

xpX := QX(1− p), p= pn → 0, as n→ ∞, npn → λ ≥ 0,

whereQ(s) = inf{x∈ R : F(x)≥ s},0< s< 1 is the quantile function associated to the dfF. Note that the condition (2)
is equivalent to

lim
t→∞

U(tx)
U(t)

= x1/α , f or any x> 0, (3)

whereU(t) = Q(1−1/t), t ≥ 1.
To get asymptotic normality of estimators of parameters of extreme events, it is usual to assume the following extra

second regular variation condition, that involves a secondorder parameterη < 0:

lim
t→∞

(A(t))−1
(

U(tx)
U(t)

− x1/α
)
= x1/α xη −1

η
, f or any x> 0, (4)

whereA is a suitably chosen function of constant sign near infinity.More restrictively, we consider thatF belonged to the
wide class of Hall [13], that is

1−FX(x) = cx−α(1+dxηα +o(xηα)), x→ ∞ (5)

for some constantsc> 0 andd 6= 0, thusA(t) is equivalent todηα−1cη tη ast → ∞. The most popular estimator ofα, is
the Hill estimator [14], with the form

α̂ =

(
1
k

k

∑
i=1

logXn−i,n− logXn−k+1,n

)−1

,

whereXi,n denotes, the i-th ascending order statistics 1≤ i ≤ n, associated to the random sample(X1,X2, . . . ,Xn).
Hall and Welsh [13] proved that the asymptotic mean squared error of the Hill estimator is minimal for

kopt =

[
− (1−η)2

2c2ηd2η3 n−2η
]1/(1−2η)

(6)

One remarks thatkopt = O(nξ ) whereξ =
1

1− 1
2η

.

For the high quantile estimation, we recall the classical semi-parametric Weissman-type estimator ofxpX (Weissman
[31])

x̂pX = Xn−k,n

(np
k

)−α̂
(7)

Since the parametersη ,c andd in (6) are unknown, thekopt cannot be used directly to determine the optimal number of
order statistics for a given data set. To solve this problem several procedures are available, see e.g. Cheng and Peng [4],
and Neves and Fraga Alves [22].
The reinsurance companies need to calculate the premiumΠρ ,R for covering such excess claims, which is usually very
large. In this case, the probabilities of extreme cases happening are relatively larger than are predicted under the classical
normal distribution assumption. Therefore, the large insurance losses can be modelled by heavy-tailed distributions, for
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that Necir and Boukhetala [19], Vandewalle and Beirlant [28] and Necir et al. [20], Rassoul [25] have proposed different
asymptotically normal estimators forΠρ ,R based on samples of claim amounts of reinsurance covers of heavy tailed i.i.d.
risks. However, in economics and other fields of applications real data sets are most often dependent. As the complexity
of situations that can be considered is enormous some kind ofdependence must be assumed. The classical limiting
theory for maxima can be applied, with small changes, provided long range dependence of extremes is sufficiently weak.
Some important dependent sequences have been studied and the limit distributions of their order statistics under some
conditions are then known. Stationary sequences are examples of those sequences and are realistic for many real
problems, it is interesting to analysing the properties of the estimator ofΠρ ,R under heavy tailed stationary sequences.
The rest of this paper is organized as follows. In Section 2, we introduce the extremal index which is the key parameter
for extending extreme value theory results from i.i.d. to stationary sequences. In Section 3, we construct a reinsurance
premium estimation for positive strictly stationary sequence with heavy-tailed marginals which is the main result. In
Section 4, we compute confidence bounds forΠρ ,R by some simulations. Section 5 is devoted to the proofs.

2 Extremal index

Many applications as in insurance and finance, telecommunication and other areas of technical risk, usually exhibit a
dependence structure. Leadbetteret al. [17] put a mixing conditionD(un) based on the probability of exceedances of
a high thresholdun, it limits the degree of long-term dependence of the sequence, providing asymptotic independence
between far apart extreme observations.

Definition 1(D(un) condition). A strictly stationary sequence{Xi}, whose marginal distribution F has upper support
point xF = sup{x : F(x)< 1}, is said to satisfy D(un) if, for any integers i1 < .. . < ip < j1 < .. . < jq with j1− ip > l,∣∣P

{
Xi1 ≤ un, . . . ,Xip ≤ un,Xj1 ≤ un, . . . ,Xjq ≤ un

}

− P
{

Xi1 ≤ un, . . . ,Xip ≤ un
}

P
{

Xj1 ≤ un, . . . ,Xjq ≤ un
}∣∣≤ δ (n, l),

whereδ (n, ln)→ 0 for some sequences ln = o(n) and un → xF as n→ ∞.

Theorem 1(Leadbetter et. al. [17]). Let X1, . . . ,Xn be a strictly stationary sequence with marginal distribution F , and
X̃1, . . . , X̃n an i.i.d. sequence of random variables with the same distribution F, define the following quantities Mn =
max(X1, . . . ,Xn) andM̃n = max(X̃1, . . . , X̃n). Under the D(un) condition, with un = anx+bn, if

P[a−1
n (M̃n−bn)≤ x]→ G(x), as n→ ∞, (8)

for normalizing sequences an > 0 and bn ∈ R, it follows that,

P[a−1
n (Mn−bn)≤ x]→ [G(x)]θ , as n→ ∞, (9)

where G(x) is a non-degenerate extreme value distribution, andθ ∈ (0,1] is the extremal index, this parameter
characterizes the short-range dependence of the maxima. Aninformal interpretation ofθ is given in Leadbetteret al.
[17], namelyθ ≈(mean cluster size)−1. Theoretical properties of the extremal index have been studied fairly extensively;
(O’Brien [23]), Hsing et al. [15], and references therein). The problem of estimatingθ has also received some attention
in the literature ( see Smith and Weissman [27], Weissman and Novak [30] and Ferro and Segers [11]).

Let (X1, . . . ,Xn) be a positive strictly stationary sequence with extremal indexθ and heavy tailed marginals 1−F, and
let (X̃1, . . . , X̃n) be independent variables with the same heavy tailed marginals 1−F as the sequence{Xi}1≤i≤n. Using the
relationship (8) we find that the marginal quantiles of{X̃i}1≤i≤n are approximately by

QX̃(1− p)≈ G−1(1− p)n,

and thus

QX̃(1− p)θ ≈ G−1(1− p)nθ (10)

Using (9), we find the approximation of the marginal quantiles of{Xi}1≤i≤n as

QX(1− p)≈ G−1(1− p)nθ (11)

From (10) and (11), we have
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QX(1− p) = QX̃(1− p)θ .

By the use of the Taylor formula(1− p)θ ∼ 1−θ p, p→ 0, one obtains

QX(1− p) = QX̃(1−θ p).

Reading the convergence (3) as an approximation forp→ 0,θ ∈ (0,1], one obtains

QX̃(1−θ p)≈ θ−1/αQX̃(1− p) (12)

therefore

QX(1− p)≈ θ−1/αQX̃(1− p)

Using the Weissman estimator (7), therefore an estimator ofQX(1− p) is

X̃n−k,n

(
nθ̂ p

k

)−1/α̂

. (13)

The extremal indexθ needs to be adequately estimated not only by itself, but alsobecause its influence in the estimation
of other important parameters of rare events, such as, a highquantile in (13), various estimators ofθ are proposed in
the literature. The first estimator is based on the characterization of the extremal index given by O’Brien [23]. In this
characterization,θ is expressed as the limiting probability that an exceedanceis followed by a run of observations below
a high thresholdun:

θ = lim
n→∞

P(max{X2, . . . ,Xrn}< un | X1 > un),

wherern = o(n) is the length of runs of values of the process falling below the threshold given that an exceedance has
occurred. This characterization motivates the definition of the runs estimator for a fixed high thresholdu and a specified
runs lengthr:

θ̂ (un, rn) =
∑n−rn

i=1 1(Xi > un,Mi,i+rn ≤ un)

∑n
i=11(Xi > un)

,

where where1(.) is the indicator function andMi,i+rn = max{Xi . . . ,Xi+rn}. The runs estimator is asymptotically normal
and consistent. See Weissman and Novak [30] and references therein for additional information.

The second estimator is due to Ferro and Segers [11]. An interesting aspect of this estimator is that it does notrequire
an auxiliary parameter (run length in the case of the runs estimator). However, one still has to choose the threshold. Using
a point process approach, Ferro and Segers show that the inter-exceedance times (time differences between successive
values above a threshold) of the extreme values normalized by 1−F(un) converge in distribution to a random variableTθ
with a mass of 1− θ at t = 0 and an exponential distribution with rate equal toθ on t > 0. Using a moment estimator,
they first obtain:

θ̂1 =
2[∑N−1

i=1 Ti ]
2

(N−1)∑N−1
i=1 T2

i

,

whereTi are the inter-exceedance times andN is the number of exceedances of a fixed high thresholdu. A bias corrected
version gives,

θ̂2 =
2[∑N−1

i=1 (Ti −1)]2

(N−1)∑N−1
i=1 (Ti −1)(Ti −2)

.

To obtain the final form of the estimator, a further adjustment is made to ensure that the values of the estimator lie between
0 and 1:

θ̂ =

{
1∧ θ̂1 i f max{Ti : 1≤ i ≤ N−1} ≤ 2
1∧ θ̂2 i f max{Ti : 1≤ i ≤ N−1}> 2

(14)

Next, we discuss the max-autoregressive (ARMAX) process, used in the simulation study, for which the extremal index
is given in closed form.
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3 Defining the estimator and main results

To estimate the risk measureΠρ ,R(X), given in (1), whenX is a positive stationary process, andR= QX(1− k/n) . Let
k= kn be sequence of integer satisfying 1< k< n,k→ ∞,k/n→ 0. We present now our risk measureΠρ ,R(X) as

Πρ ,R(X) =−
∫ k/n

0
(θs)1/ρdQX̃(1−θs). (15)

We derive the estimator forQX(1− s) in (12), and after an integration, we obtain the following estimator for Πρ ,R(X)

Π̂ρ ,R(X) =
ρ(k/n)1/ρ θ̂ 1/ρ−1/α̂

α̂ −ρ
X̃n−k,n, (16)

Theorem 2.Fix ρ ≥ 1, if X is a positive strictly stationary sequence with extremal indexθ , and assume that (4) holds
with t−1/ρQX̃(1−1/t)→ 0 as t→ ∞, and k= kn be such that k→ ∞, k/n→ 0, and

√
nA(k/n)→ 0 as n→ ∞, Then, for

0< 1/α < 1/ρ , we have

(k/n)−1/ρk1/2

X̃n−k,n
[Π̂ρ ,R(X)−Πρ ,R(X)]

D−→ N (0,σ2(ρ ,θ ,α)), as n→ ∞,

σ2(ρ ,θ ,α) = θ 2(1/ρ−1/α)ρα2−2ρ2α +ρ3+ρα4

α3(α −ρ)2 .

4 Constructing Confidence Interval for Πρ,R(X)

4.1 Optimal choice of the number of upper order statistics

Extreme value based estimators rely essentially on the numberk of upper order statistics involved in estimate computation.
Hill’s estimator has, in general, a substantial variance for small values ofk and a considerable bias for large values ofk.
Hence, one has to look for ak value, denoted bykopt, that balances between these two vices. The choice of this optimal
valuekopt represents the main hurdle in the process of estimating the tail index. To solve this problem several procedures
are available, see e.g. Hall and Welsh [13], Cheng and Peng [4], and Neves and Fraga Alves [22]. In our simulation study,
we use the method proposed by Hall and Welsh [13], they minimized the asymptotic mean squared error for the Hill
estimator such that:

kopt = argmin
k

E(α̂ −α)2 (17)

4.2 Simulation study

To obtain confidence intervals for our estimatorΠ̂ρ ,R(X), first we fix the the distortion parameterρ = 1, andρ = 1.01,
then we generate 100 replications of the time series(X0,X1, . . . ,Xn) for different sample sizes(1000,3000,5000), where
Xt is an ARMAX process satisfying

Xt = max(βXt−1,Zt ), 0< β < 1, t ≥ 1, (18)

whereβ = 0.3, and{Zt}t≥1 are independent and identically distributed, with tail distribution 1−FZ(x) = 1−exp(−(1−
β α)x−α), we use two tail indicesα = 1.2 andα = 1.8, note that we estimateθ = 1−β α by the Ferro and Segers estimator
in (14), and we use (17) for compute the values of the optimal fraction integerkopt. The simulation results are presented in
the following Tables, where lb and ub stand respectively forlower bound and upper bound of the confidence interval. The
overall true premiumΠ and estimated premium̂Π is then taken as the empirical mean of the values in the 100 repetitions.

Table 1: 95% confidence intervals for the premium, with tail indexα = 1.2, and distortion parameterρ = 1.

n Π Π̂ lb ub length
1000 3.337356 3.366814 2.319555 4.414072 2.094517
3000 3.158891 3.046677 2.447528 3.645826 1.198299
5000 3.005196 2.939038 2.470065 3.408010 0.937944
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Table 2: 95% confidence intervals for the premium, with tail indexα = 1.2, and distortion parameterρ = 1.01.

n Π Π̂ lb ub length
1000 3.672269 3.80352 2.841751 4.765289 1.923537
3000 3.379407 3.276043 2.632976 3.91911 1.286134
5000 3.343542 3.215753 2.684792 3.746715 1.061923

Table 3: 95% confidence intervals for the premium, with tail indexα = 1.8, and distortion parameterρ = 1.

n Π Π̂ lb ub length
1000 0.4350412 0.4165584 0.2946764 0.5384404 0.2437639
3000 0.4112903 0.3785951 0.3098901 0.4473002 0.1374101
5000 0.3603734 0.3361326 0.2819626 0.3903026 0.1083400

Table 4: 95% confidence intervals for the premium, with tail indexα = 1.8, and distortion parameterρ = 1.01.

n Π Π̂ lb ub length
1000 0.4698994 0.4344532 0.3079989 0.5609075 0.2529086
3000 0.4071919 0.3828242 0.3095364 0.4561119 0.1465756
5000 0.3563748 0.3393401 0.2796627 0.3990175 0.1193549

5 Proof

Denoting

H1 = ρ(k/n)1/ρ θ̂ 1/ρ−1/α̂X̃n−k,n

{
1

α̂ −ρ
− 1

α −ρ

}

H2 =
ρ(k/n)1/ρ θ̂ 1/ρ−1/α̂QX̃(1− k/n)

α −ρ

{
X̃n−k,n

QX̃(1− k/n)
−1

}
,

H3 =
ρ(k/n)1/ρ θ̂ 1/ρ−1/α̂QX̃(1− k/n)

α −ρ
−
∫ ∞

QX(1−k/n)
(SX(x))

1/ρdx.

Then, we can verifies easily that
Π̂ρ ,R(X)−Πρ ,R(X) = H1+H2+H3.

H1 can be written also

H1 =
ρα̂αθ̂ 1/ρ−1/α̂(k/n)1/ρX̃n−k,n

(α̂ −ρ)(α −ρ)

{
1
α̂
− 1

α

}

Sinceα̂ is a consistent estimator forα (see Mason[18]), andθ̂ is a consistent estimator ofθ (see Weissman and Novak
[30]), then for all largen

H1 = (1+oP(1))
ρα2θ 1ρ−1/α(k/n)1/ρQX̃(1− k/n)

(α −ρ)2

{
1
α̂
− 1

α

}

and

H2 = (1+oP(1))
ρ(k/n)1/ρθ 1/ρ−1/αQX̃(1− k/n)

α −ρ

{
X̃n−k,n

QX̃(1− k/n)
−1

}

and

H3 = (1+oP(1))
ρ(k/n)1/ρθ 1/ρ−1/αQX̃(1− k/n)

α −ρ
−
∫ ∞

QX(1−k/n)
(SX(x))

1/ρdx
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In view of Theorems 2.3 and 2.4 of Csörgő and Mason [5], Peng [24], and Necir et al. [20] has been shown that under
the second-order condition (4) and for all large n

√
kα
(

1
α̂
− 1

α

)
=

√
n
k

Bn

(
1− k

n

)
−
√

n
k

∫ 1

1−k/n

Bn(s)
1− s

ds+oP(1),

√
k

(
X̃n−k,n−1

QX̃(1− k/n)
−1

)
=−α−1

√
n
k

Bn

(
1− k

n

)
+oP(1),

and
X̃n−k,n

QX̃(1− k/n)
= 1+oP(1),

where{Bn(s),0≤ s≤ 1,n= 1,2, . . .} is the sequence of Brownian bridges. This implies that for all largen

H1 = (1+oP(1))
ραθ 1/ρ−1/α(k/n)1/ρQX̃(1− k/n)

k1/2(α −ρ)2

(√
n
k

Bn

(
1− k

n

)

−
√

n
k

∫ 1

1−k/n

Bn(s)
1− s

ds+oP(1)

)

H2 = (1+oP(1))
ρθ 1/ρ−1/α(k/n)1/ρQX̃(1− k/n)

k1/2α(α −ρ)

(
−
√

n
k

Bn

(
1− k

n

)
+oP(1)

)
.

We can writeH3 as

H3 = (1+oP(1))
ρ(k/n)1/ρθ 1/ρQX̃(1−θk/n)

α −ρ
−
∫ ∞

QX̃(1−θk/n)
(SX̃(x))

1/ρdx

Recall, from Karamata’s Theorem (see de Haan and Ferreira [12]), that
∫ ∞

QX̃(1−θk/n)
(SX̃(x))

1/ρdx

(θk/n)1/ρQX̃(1−θk/n)
→ 1

α/ρ −1
=

ρ
α −ρ

, as n→ ∞,

since(SX(x))1/ρ is regular varying with index−α
ρ <−1 andQX(1− k/n)→ ∞ asn→ ∞. Hence

H3 → 0, as n→ ∞.

From Necir et al [20] and Necir et al [21], we have

(k/n)−1/ρk1/2

QX̃(1− k/n)
(H1+H2) = ∆n+oP(1),

with

∆n = θ 1/ρ−1/α
[

ρα
(α −ρ)2

(
ρ

α2 −
1
α
+1

)
(n/k)1/2Bn(1− k/n)− ρα

(α −ρ)2 (n/k)1/2
∫ 1

1−k/n

Bn(s)
1− s

ds

]
,

then the asymptotic variance of
(k/n)−1/ρk1/2

QX̃(1− k/n)
(Π̂ρ ,R(X)−Πρ ,R(X)) will be computed by

σ2(ρ ,θ ,α) = lim
n→∞

E(∆n)
2 = θ 2(1/ρ−1/α)ρα2−2ρ2α +ρ3+ρα4

α3(α −ρ)2 .

This completes the proof of Theorem 3.1.
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