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In the present paper we consider a von Neumann algebra M with a faithful normal
semi-finite trace τ , and {αt1}t1≥0, . . . , {αtN }tN≥0, N strongly continuous semi-
groups of absolute contractions on Lp(M, τ) (p > 1). We prove that for every
x ∈ Lp(M, τ) and Besicovitch function b(t1, . . . tN ) the averages

1

T1T2 · · ·TN

∫ TN

0

· · ·
∫ T1

0

b(t1, . . . , tN )(αtN · · ·αt1)(x)dt1dt2 · · · dtN

converge b.a.u. in Lp(M) as max{T1, . . . , TN} → 0 and min{T1, . . . , TN} → ∞,
respectively.
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1 Introduction

Individual ergodic theorem with respect to almost everywhere convergence in von Neu-
mann algebras was studied by many authors [3, 4, 7, 14]. In [7] various maximal ergodic
theorems in non-commutative Lp-spaces were proved and as applications of such results
the corresponding individual and local ergodic theorems were obtained. Almost every-
where convergence of the Besicovitch weighted ergodic averages in von Neumann algebras
was firstly proved in [6]. Further, in [1] by means of the Banach principle the Besicovitch
weighted ergodic theorem was proved. In [10] bilateral almost uniform convergence of
weighted multi-parameter averages was proved with respect to bounded Besicovitch fami-
lies for positive contractions in non-commutative Lp-spaces. In [11], recently, a Besicov-
itch function weighted local ergodic theorem has been proved in the Lp-spaces.
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In this paper we prove weighted local and individual ergodic theorems for multi-
parameter strongly continuous semigroups of absolute contractions, with respect to
bounded Besicovitch families, in the non-commutative Lp-spaces. As a particular case,
we will obtain a result of [11]. To prove the main result we use the maximal ergodic in-
equality given in [4] and the Banach principle for semigroups proved in [14].

2 Preliminaries and Notations

Let M be a semifinite von Neumann algebra acting on a Hilbert space H , let τ be a
faithful normal semifinite trace on M , and let P (M) be the complete lattice of all projec-
tions in M . A densely-defined closed operator x in H is said to be affiliated with M if
y′x ⊂ xy′ for every y′ ∈ M ′, where M ′ is the commutant of the algebra M . An operator
x, affiliated with M , is said to be τ -measurable if for each ε > 0 there exists e ∈ P (M)
with τ(e⊥) ≤ ε such that eH ⊂ Dx, where e⊥ = 1I − e, 1I is the unit of M , Dx is the
domain of x. Let L0(M) be the set of all τ−measurable operators affiliated with M . Let
‖ · ‖ stand for the uniform norm in M .

For a positive self-adjoint operator x =
∫∞
0

λdeλ affiliated with M, one can define

τ(x) = sup
n

τ

( ∫ n

0

λdeλ

)
=

∫ ∞

0

dτ(eλ).

If 0 < p ≤ ∞, then

Lp = Lp(M) =

{
{x ∈ L0(M) : ‖x‖p = τ(|x|p)1/p < ∞} for p 6= ∞,

(M, ‖ · ‖) for p = ∞.

Here, |x| is the absolute value of x, i.e. the square root of x∗x. By L+ (resp. Lsa)
we denote the set of positive (resp. self-adjoint) elements of L. We refer the reader to
[13] for more information about non-commutative integration and to [15, 16] for general
terminology of von Neumann algebras.

There are several different types of convergences in L0(M), each of them, in the com-
mutative case with finite measure, reduces to the almost everywhere convergence (see for
example [12]). In this paper we deal with the so called bilateral almost uniform (b.a.u.)
convergence in L0(M) for which xα → x means that for every ε > 0 there exists
e ∈ P (M) with τ(e⊥) ≤ ε such that ‖e(xα − x)e‖ → 0. It is clear that b.a.u. implies
convergence in measure.

Now take any set A ⊆ RN
+ , where N ≥ 1. Recall that the space Lp(M ; `∞(A)) is

defined as the set of all families x = {xt}t∈A in Lp(M) which admit a factorization of the
following form: there are a, b ∈ L2p(M) and y = {yt} ⊂ M such that xt = aytb ∀t ∈ A.
Then we define

‖x‖Lp(M ;`∞(A) = inf{‖a‖2p sup
t∈A

‖yt‖∞‖b‖2p},
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where the infimum runs over all factorizations as above. Then (Lp(M ; `∞(A)),
‖x‖Lp(M ;`∞(A))) is a Banach space [7]. There it was shown that a family of positive
elements x = {xt}t∈A belongs to Lp(M ; `∞(A)) iff there is a ∈ L+

p (M) such that xt ≤ a

for all t ∈ A, moreover, ‖x‖Lp(M ;`∞(A)) = inf{‖a‖p : a ∈ L+
p (M), xt ≤ a, ∀t ∈ A}.

The norm of x in Lp(M ; `∞(A)) will be often denoted by ‖supt xt‖p. In the sequel we
will be interested with the spaces Lp(M ; `∞(RN

+ )) and Lp(M ; `∞((0, 1]N )).
For t = (t1, . . . , tN ) ∈ RN

+ , we denote m(t) = min{t1, . . . , tN}, M(t) =
max{t1, . . . , tN}, Λ[m,n] = {t = (t1, . . . , tN ) ∈ RN

+ : m ≤ m(t),M(t) ≤ n}.
In order to prove ergodic theorem by the corresponding maximal ergodic theorems, it

is convenient to use a subspace Lp(M ; c0(RN
+ )) of Lp(M ; `∞(RN

+ )) which is defined as
the space of all families x = {xt}t∈RN

+
⊂ Lp(M) such that there are a, b ∈ L2p(M)

and {yt} ⊂ M satisfying xt = aytb and limm(t)→∞ ‖yt‖∞ = 0, and the subspace
Lp(M ; c0((0, 1]N )) of Lp(M ; `∞((0, 1]N )) which is defined as the space of all families
{xt}t∈(0,1]N ⊂ Lp(M) such that there are a, b ∈ L2p(M) and {yt} ⊂ M satisfying
xt = aytb and limM(t)→0 ‖yt‖∞ = 0. It is easy to check that Lp(M ; c0(RN

+ )) and
Lp(M ; c0((0, 1]N )) are closed subspaces of Lp(M ; `∞(RN

+ )) and Lp(M ; `∞((0, 1]N )),
respectively.

For the sake of completeness, we provide the proof of the next lemma, which is an
analog of Lemma 6.2 in [7].

Lemma 2.1. Let {xt} ∈ Lp(M ; c0((0, 1]N )) with 1 ≤ p < ∞, then {xt} converges b.a.u.
to 0 as M(t) → 0.

Proof. Let {xt} ∈ Lp(M ; c0((0, 1]N )). Then there are a, b ∈ L2p(M) and {yt} ∈ M

such that xt = aytb and ‖a‖2p < 1, ‖b‖2p < 1, limM(t)→0 ‖yt‖∞ = 0. We can assume
a, b ≥ 0. Let ea be a spectral projection of a such that τ(e⊥a ) < ε/2 and ‖eaa‖∞ ≤
(2/ε)1/2p. Similarly, we find a spectral projection eb of b. Set e = ea ∧ eb. Then τ(e⊥) ≤
τ(e⊥a ) + τ(e⊥b ) < ε and ‖exte‖∞ ≤ ‖ea‖∞ ‖yt‖∞ ‖ba‖∞ ≤ ‖yt‖∞ ‖eaa‖∞ ‖ebb‖∞ <

(2/ε)1/p ‖yt‖∞. Thus limM(t)→0 ‖exte‖∞ = 0 and so xt → 0 b.a.u. as M(t) → 0.

Let (Z,<, µ) be a measurable space with a probability measure µ. Let M̃ be the
von Neumann algebra of all essentially bounded ultraweakly measurable functions h :
(Z, µ) → M equipped with the trace τ̃(h) =

∫
Z

τ(h(z))dµ(z), and let L̃p = Lp(M̃, τ̃).

Lemma 2.2 ( [10]). a) Let {xt}t∈RN
+

∈ Lp(M̃ ; c0(RN
+ )). Then {xt(z)}t∈RN

+
∈

Lp(M ; c0(RN
+ )) for almost all z ∈ Z.

b) If for every p ∈ RN
+ {xt+p − xt}t∈RN

+
∈ Lp(M ; c0(RN

+ )) with 1 ≤ p < ∞, then
{xt} convergence b.a.u. as m(t) →∞ to some x from Lp(M).

Notice that Lemma 2.2. is true for the spaces Lp(M̃ ; c0((0, 1]N )) and
Lp(M ; c0((0, 1]N )). Recall that a positive linear map α : L1(M, τ) → L1(M, τ) is called
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an absolute contraction if α(x) ≤ 1I and τ(α(x)) ≤ τ(x) for every x ∈ M ∩ L1 with
0 ≤ x ≤ 1I. If α is a positive contraction in L1, then, as is shown in [17], ‖α(x)‖p ≤ ‖x‖p

holds for x = x∗ ∈ M ∩ Lp and all 1 ≤ p ≤ ∞. Besides, there exist unique continuous
extensions α : Lp → Lp for all 1 ≤ p < ∞ and a unique ultra-weakly continuous exten-
sion α : M → M (see [7,17]). This implies that, for every x ∈ Lp and any positive integer
k, one has

‖αk(x)‖p ≤ 2‖x‖p.

Let {αt}t≥0 be semigroup of absolute contraction on L1. This means that each αt is an
absolute contraction on L1, α0 = Id and αtαs = αt+s for all t, s ≥ 0. By the same symbol
αt we will denote its extension to Lp (1 ≤ p < ∞). In the sequel we assume that the
semigroup {at} is strongly continuous in Lp, for fixed p, i.e. limt→s ‖αtf − αsf‖p = 0
for all s ≥ 0 and f ∈ Lp.

Let us consider {αt1}t1≥0, . . . , {αtN }tN≥0 semigroups of absolute contraction of
Lp(M). We form their ergodic averages

βT1T2···TN (αt1 , αt2 , . . . , αtN ) =
1

T1T2 · · ·TN

T1,T2,··· ,TN∫

0

αtN αtN−1 · · ·αt1dt1dt2 · · · dtN .

The last one is always denoted by

βT(αt) =
1

Π(T)

∫ T

0

αtdt,

where T = (T1, T2, . . . , TN ), Π(T) = T1T2 · · ·TN , αt = αtN
αtN−1 · · ·αt1 , and dt =

dt1dt2 · · · dtN .

In [7] the following maximal inequality has been proved.

Theorem 2.1. Let {αt1}t1≥0, . . . , {αtN }tN≥0 be semigroups as above. Then for any 1 <

p < ∞ one has

∥∥∥∥ sup
m(T)>0

1
Π(T)

∫ T

0

αt(x)dt
∥∥∥∥

p

≤ CN
p ‖x‖p ∀x ∈ Lp(M).

Definition 2.1. Let (B, ‖ · ‖,≥) be an ordered real Banach space with the closed convex
cone B+, B = B+ − B+. A subset B0 ⊂ B+ is said to be minorantly dense in B+

if for every x ∈ B+ there is a sequence {xn} in B0 such that xn ≤ x for each n, and
‖x− xn‖ → 0 as n →∞.

For example, M+ ∩ L1(M) ∩ L2(M) is a minorantly dense subset of L1(M)sa.

In [14] Banach principle has been proved for N semigroups.
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Theorem 2.2. Let X be an ordered real Banach space with the closed convex cone X+

X = X+ −X+, and for each t = (t1, . . . , tN ) ∈ RN
+ , N ∈ ℵ, ℵ -natural numbers.

Let αt : X → L0(M) be a continuous positive linear map. Assume that the following
conditions are satisfied:

(i) for each b ∈ X+ and δ > 0 there exists y ∈ M+ 0 6= y ≤ 1 and n ∈ ℵ such that

sup
m(t)>n

‖yαt(b)y‖∞ < ∞

and τ(1− y) ≤ δ,
(i) there exists X0, a minorantly dense subset of X+ such that for each b ∈ X0 the family

operators αt(b)−αs(b)(t, s ∈ RN
+ ) b.a.u. converge to 0 as m(t) →∞,m(s) →∞.

Then for each b ∈ X , αt(b) is b.a.u. convergent to some element of L0(M) as m(t) →∞.

Notice that Theorem 2.2. is true when we replace RN
+ by (0, 1]N .

3 Multiparameter Weighted Ergodic Theorem for Non-Commutative
Lp-Spaces

Recall the following ergodic theorem for N semigroups, which has been proved in [7,
Theorem 6.8].

Theorem 3.1. Let {αt1}t1≥0, . . . , {αtN }tN≥0 be N semigroups. Let 1 < p < ∞, x ∈
Lp(M), and

βT(αt(x)) =
1

Π(T)

∫ T

0

αt(x)dt.

Then

1) {βT+P(αt(x))− βT(αt(x))}T∈RN
+
∈ Lp(M ; c0(RN

+ )), for every P ∈ RN
+ .

2) {βT+P(αt(x))−βT(αt(x))}T∈(0,1]N ∈ Lp(M ; c0(0, 1]N ), for every P ∈ (0, 1]N .

Recall that a function P : (0, 1]N → C (P : RN
+ → C) is called trigonometric

polynomial in N variables if it is of the form

P (t) =
n∑

j=1

kje
2πi(pj ,t),

where (pj , t) =
∑N

i=1 ψ
(j)
i ti, t ∈ (0, 1]N (t ∈ RN

+ ), pj = (ψ(j)
i ) ∈ RN for some

(kj) ⊂ C. By S((0, 1]N ) we denote the set of all trigonometric polynomials defined on
(0, 1]N .
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Definition 3.1. We say that measurable function b : (0, 1]N → C is a 0-Besicovitch
function if (i) b ∈ L∞((0, 1]N ),
(ii) given any ε > 0 there is P ∈ S((0, 1]N ) such that

lim sup
M(T)→0

1
Π(T)

∫ T

0

|b(t)− P (t)|dt < ε.

Similarly in the last definition if we require m(T) → ∞ instead of M(T) → 0, then
the function b : RN

+ → C is called Besicovitch function.

Lemma 3.1. Let {αt1}t1≥0, . . . , {αtN
}tN≥0 be N semigroups on Lp(M). Then for every

trigonometric polynomial P (t) on (0, 1]N (respectively on RN
+ ) and every x ∈ Lp(M) the

averages

β̃T(x) =
1

Π(T)

∫ T

0

P (t)αt(x)dt

converge b.a.u. as M(T) → 0 (respect. as m(T) →∞).

Proof. Let B = {z ∈ C : |z| = 1} be the unit circle in C with normalized Lebesque
measure σ. Denote

B = B × · · · ×B︸ ︷︷ ︸
N

, µ = σ ⊗ · · · ⊗ σ︸ ︷︷ ︸
N

.

Now consider L̃p = Lp(M̃) with M̃ = M ⊗ L∞(B, µ) and τ̃ = τ ⊗ µ. Let us fix s ∈ B
and define α̃

(s)
t : L̃p → L̃p by

(α̃(s)
t (f))(z) = αt(f(st ◦ z)), f ∈ L̃p , z ∈ B. (3.1)

Here s ◦ z = (s1z1, s2z2, . . . , sNzN ) with s = (s1, s2, . . . , sN ), z = (z1, z2, . . . , zN ) and
st = (st1

1 , st2
2 , . . . , stN

N ), where t = (t1, t2, . . . , tN ).
One can see that the mapping α̃

(s)
t is a multiple semigroup of absolute contractions.

Now according to Theorem 3.1 we have
{

1
Π(T + P)

∫ T+P

0

α̃
(s)
t (f)dt− 1

Π(T)

∫ T

0

α̃
(s)
t (f)dt

}

T∈(0,1]N
∈ Lp(M̃ ; c0((0, 1]N ))

for every P ∈ (0, 1]N and f ∈ L̃p. Hence, Lemma 2.2 implies that
{

1
Π(T + P)

∫ T+P

0

(α̃(s)
t (f))(z)dt− 1

Π(T)

∫ T

0

(α̃(s)
t (f))(z)dt

}

T∈(0,1]N
∈ Lp(M ; c0((0, 1]N ))

a.e. z ∈ B.
Now instead of f we take fx(z) = Π(z)x with fixed x ∈ Lp(M). Then according the

equality α̃
(s)
t (fx(z)) = Π(st)Π(z)αt(x), we get

Π(z)
{

1
Π(T+P)

T+P∫

0

Π(st)αt(x)dt− 1
Π(T)

T∫

0

Π(st)αt(x)dt
}

T∈(0,1]N
∈ Lp(M ; c0((0, 1]N ))



On Non-Commutative Weighted Ergodic Theorems 85

for almost all z ∈ B. Consequently, by Π(z) 6= 0, one concludes that

{
1

Π(T+P)

T+P∫

0

Π(st)αt(x)dt− 1
Π(T)

T∫

0

Π(st)αt(x)dt
}

T∈(0,1]N
∈ Lp(M ; c0((0, 1]N )).

Since every polynomial P (t) is linear combination of Π(st), we get the assertion for every
trigonometric polynomial in N variables.

Theorem 3.2. Let {αt1}t1≥0, . . . , {αtN
}tN≥0 be N strongly continuous semigroups of

absolute contractions on Lp(M). Then, for every x ∈ Lp(M)

(i) The averages

βT(x) =
1

Π(T)

∫ T

0

b(t)αt(x)dt

converge b.a.u. in Lp(M) as M(T) → 0, where b(t)- is bounded 0-Besicovitch
function on (0, 1]N ;

(ii) The averages

βT(x) =
1

Π(T)

∫ T

0

b(t)αt(x)dt

converge b.a.u. in Lp(M) as m(T) → ∞, where b(t)- is bounded Besicovitch
function on RN

+ .

Proof. (i) Let b(T) be a bounded 0-Besicovitch function on (0, 1]N . For ε > 0 there is a
trigonometric polynomial Pε(t) on (0, 1]N such that

lim sup
M(T)→0

1
Π(T)

∫ T

0

|b(t)− Pε(t)|dt < ε.

Then, for x ∈ M ∩ L1(M) one has
∥∥∥∥

1
Π(T)

∫ T

0

b(t)αt(x)dt− 1
Π(T)

∫ T

0

Pε(t)αt(x)dt
∥∥∥∥
∞
≤ 1

Π(T)

∫ T

0

|b(t)− Pε(t)|dt‖x‖∞

< ε‖x‖∞. (3.2)

We may suppose that |b(t)| ≤ 1 for almost all t ∈ (0, 1]N . Let x ∈ Lp(M)+ then Theorem
4.5 in [7] implies ∥∥∥∥sup

T
βT(x)

∥∥∥∥
Lp(M ;`∞((0,1]N ))

≤ CN
p ‖x‖p. (3.3)

Now consider

β̃
(r)
T (x) =

1
Π(T)

∫ T

0

<(b(t))αt(x)dt β̃
(i)
T (x) =

1
Π(T)

∫ T

0

=(b(t))αt(x)dt
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and
β̃R
T(x) = β̃r

T(x) + βT(x) β̃I
T(x) = β̃i

T(x) + βT(x).

Then we have β̃R
T(x) ≤ 2βT(x) β̃I

T(x) ≤ 2βT(x) and, from (3.3) one gets
∥∥∥∥ sup

T
β̃

(R)
T (x)

∥∥∥∥
Lp(M ;`∞((0,1]N ))

≤ 2CN
p ‖x‖p,

∥∥∥∥ sup
T

β̃
(I)
T (x)

∥∥∥∥
Lp(M ;`∞((0,1]N ))

≤ 2CN
p ‖x‖p.

Consequently
∥∥∥∥ sup

T
βT(x)

∥∥∥∥
Lp(M ;`∞((0,1]N ))

≤ 4CN
p ‖x‖p for all x ∈ Lp(M)+. (3.4)

Any x ∈ Lp(M) can be represented as x =
∑3

k=0 ikxk, where xk ∈ Lp(M)+ k =
0, 1, 2, 3. Therefore, the inequality (3.4) implies that

∥∥∥∥ sup
T

βT(x)
∥∥∥∥

Lp(M ;`∞((0,1]N ))

≤ 16CN
p ‖x‖p for any x ∈ Lp(M). (3.5)

From (3.2) and [7, Proposition 2.5] we have
∥∥∥∥ sup
T∈Λ[2−n,2−k]

(
βT(x)−β̃T(x)

)∥∥∥∥
Lp(M ;`∞((0,1]N ))

≤
∥∥∥∥ sup
T∈Λ[2−n,2−k]

(
βT(x)−β̃T(x)

)∥∥∥∥
1−q/p

∞
∥∥∥∥ sup
T∈Λ[2−n,2−k]

(
βT(x)−β̃T(x)

)∥∥∥∥
q
p

q

≤ ε1−q/p‖x‖1−q/p

∥∥∥∥ sup
T∈Λ[2−n,2−k]

(
βT(x)−β̃T(x)

)∥∥∥∥
q/p

q

.

(3.6)
We define a sequence b(k) = (b(k)

T )T∈(0,1]N ∈ Lp(M ; c0((0, 1]N )) as follows:

b
(k)
T =

{
βT(x)− β̃T(x), if T ∈ Λ[2−k, 1],
0, if T /∈ Λ[2−k, 1].

From (3.6) one finds that b(k) → {βT(x) − β̃T(x)} in Lp(M ; `∞((0, 1]N )) as k → ∞.

Since Lp(M ; c0((0, 1]N )) is closed subspace in Lp(M ; `∞((0, 1]N )) we have

{βT(x)− β̃T(x)} ∈ Lp(M ; c0((0, 1]N )).

From Lemma 3.1, we obtain {β̃T+P(x)− β̃T(x)}T∈(0,1]N ∈ Lp(M ; c0((0, 1]N )) and the
equality

βT+P(x)− βT(x) = βT+P(x)− β̃T+P(x) + β̃T(x)− βT(x) + β̃T+P(x)− β̃T(x)

implies that {βT+P(x) − βT(x)}T∈(0,1]N ∈ Lp(M ; c0((0, 1]N )). Now from minorant
density of L1(M) ∩M in Lp(M), by using Theorem 2.2 and (3.5), we get {βT+P(x) −
βT(x)}T∈(0,1]N ∈ Lp(M ; c0((0, 1]N )) for any x ∈ Lp(M).

(ii) This statement can be similarly proved by using the same arguments as used in (i)
with application of the spaces Lp(M ; `∞(RN

+ )), Lp(M ; c0(RN
+ )).
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Remark. Note that the proved theorem extends the results of the papers [1] to semigroups
setting. Moreover, it generalizes a result of [11].
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