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Abstract: In this paper, we give a smoothing approximation to the lower order exact penalty functions for inequality-constrained
optimization problems. Error estimations are obtained among the optimal objective function values of the smoothed penalty problem,
of the nonsmooth penalty problem and of the original optimization problem. An algorithm based on the smoothed penalty function
is presented, which is shown to be globally convergent under some mild conditions. Numerical examples are given to illustrate the
effectiveness of the present smoothing method.

Keywords: smoothing approximation, lower order exact penalty function, inequality-constrained optimization problem, global solu-
tion.

1. Introduction

Consider the following optimization problem (P ):

minimize f(x)
subject to gi(x) ≤ 0, i = 1, · · ·,m, x ∈ <n,

wheref : <n → < andgi : <n → <, i = 1, · · ·,m are
continuously differentiable.

In Zangwill [1], an exact penalty function was defined
as follows:

ϕq(x) = f(x) + q

m∑

i=1

g+
i (x), (1)

whereg+
i (x) = max(0, gi(x)), i = 1, · · ·,m, which is

the l1 exact penalty function for problem (P ). Let I =
{1, · · ·,m}. After Zangwill’s development, extensive re-
search of exact penalty function methods has been carried
out in the literature ([2–6]).l1 exact penalty function has
many nice properties. However, (1) is not a smooth func-
tion and causes some numerical instability problems in its
implementation when the value of the penalty parameter
q becomes larger. In practice, we only need to obtain an
approximately optimal solution to problem (P ). Thus the

smoothing of thel1 exact penalty function attracts much
attention ([7–11]).

In recent years, the following lower order exact penalty
function

ϕq,v(x) = f(x) + q

m∑

i=1

g+
i (x)v, v ∈ (0, 1), (2)

has been introduced and investigated ([12,13]). It is shown
in [13] that the second-order sufficiency condition implies
local exact penalty property for the lower order penalty
function with any positive penalty parameter. The smooth-
ing of the1

2 -order penalty function, i.e.f(x)+q
∑m

i=1 g+
i (x)

1
2

has been investigated in[13,14]. The first-order differen-
tiable smoothing of the lower order penalty function (2)
has been discussed in [15]. In this paper, we aim to smooth
of (2).

The rest of this paper is organized as follows. In Sect.
2, a second-order differentiable smoothing approximation
to the lower order exact penalty function (2) is introduced,
and some fundamental properties of the smoothing func-
tion are discussed. In Sect. 3, we propose an algorithm to
compute an approximate global solution to (P ) based on
our smooth penalty function. Some numerical examples
are given in Sect. 4 to illustrate the effectiveness of the
present method.
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2. A second-order differentiable smoothing
lower order exact penalty function

We say the pair(x∗, λ∗) satisfies the second-order suffi-
ciency condition, if (see [16], p.169)

∇xL(x∗, λ∗) = 0,

gi(x∗) ≤ 0, i ∈ I,

λ∗i ≥ 0.i ∈ I,

λ∗i gi(x∗) = 0.i ∈ I,

yT∇2L(x∗, λ∗)y > 0, for all y ∈ V (x∗),

(3)

whereL(x, λ) = f(x) +
∑m

i=1 λigi(x), and

V (x∗) =
{

y ∈ <n| ∇
T gi(x∗)y = 0, i ∈ A(x∗)

∇T gi(x∗)y ≤ 0, i ∈ B(x∗)

}
,

A(x∗) = {i ∈ I|gi(x∗) = 0, λ∗i > 0},

B(x∗) = {i ∈ I|gi(x∗) = 0, λ∗i = 0},
Assumption 1f(x) satisfies the coercive condition:

lim
‖x‖→∞

f(x) = +∞.

Under Assumption 1, we know that there exists a box
X such thatG(P ) ⊂ X, whereG(P ) is a set of global
solution to problem (P ). As far as the global solutions are
concerned, problem (P )is equivalent to the following op-
timization problem(P ′):

minimize f(x)
subject to gi(x) ≤ 0, i = 1, · · ·,m, x ∈ X,

i.e.G(P ) = G(P ′),whereG(P ′) is the set of global so-
lutions of problem (P ′). For anyv ∈ (0, 1), consider the
following lower order penalty problem(LOP )v:

minimize ϕq,v(x) = f(x) + q

m∑

i=1

(g+
i (x))v

subject to x ∈ X.

We have the following global exact penalization property:

Lemma 1.(Corollary 2.3 in [13]) Suppose that the setG(P )
is a finite set, and Assumption 1 holds, furthermore, for
any x∗ ∈ G(P ), there exists aλ ∈ <m

+ such that the
pair (x∗, λ∗) satisfies the second-order sufficiency condi-
tion (2.1). Then, for any givenv ∈ (0, 1), there existsq∗ >
0, such that whenq > q∗, G(P ) = G((LOP )v), where
G((LOP )v) is the set of global solutions of problem(LOP )v.

Let pv(u) = (max(0, u))v, that is,

pv(u) =
{

0, if u < 0,

uv, if u ≥ 0.
(4)

then

ϕq,v(x) = f(x) + q

m∑

i=1

pv(gi(x)). (5)

For anyε > 0, let

pε,v(u) =





0, if u < 0,
1
ε2

v2

(v+1)(v+2)u
(v+2), if 0 ≤ u < ε,

uv + 1
v+1εuv−1 − 4

v+2εv, if ε ≤ u.

(6)

It is easy to see that is twice continuously differentiable on
<.

Assume thatf and gi, i ∈ I are twice continuously
differentiable. Let

ϕq,ε,v(x) = f(x) + q

m∑

i=1

pε,v(gi(x)). (7)

Thenϕq,ε,v(x) is twice continuously differentiable on<n.
Consider the following smoothed optimization problem (SP ):

(SP ) min
x∈X

ϕq,ε,v(x).

Proposition 1.For anyx ∈ X andε > 0, we have that

0 ≤ ϕq,v(x)− ϕq,ε,v(x) ≤ 3v + 2
(v + 1)(v + 2)

mqεv. (8)

Proof.Note that

pv(gi(x))− pε,v(gi(x)) =



0, gi(x) < 0,

(0 ≤)[gi(x)]v − 1
ε2

v2

(v+1)(v+2)gi(x)(v+2)

(≤ 3v
(v+1)(v+2)ε

v), 0 ≤ gi(x) < ε,

(0 ≤)− 1
v+1εgi(x)v−1 + 4

v+2εv

= 3v
(v+1)(v+2)ε

v, ε ≤ gi(x),

so for anyi ∈ I, we have

0 ≤ ϕq,v(x)− ϕq,ε,v(x)

= q

m∑

i=1

(pv(gi(x))− pε,v(gi(x)))

≤ 3v + 2
(v + 1)(v + 2)

mqεv.

Proposition 2.Let x∗q,v ∈ X be a global solution of prob-
lem(LOP )v andx̄q,ε,v ∈ X be a global solution of prob-
lem(SP ) for someq > 0, v ∈ (0, 1) andε > 0. Then we
have that

0 ≤ ϕq,v(x∗q,v)− ϕq,ε,v(x̄q,ε,v) ≤ 3v + 2
(v + 1)(v + 2)

mqεv.

(9)
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Proof.By Proposition 1, we have that

0 ≤ ϕq,v(x∗q,v)− ϕq,ε,v(x∗q,v) ≤ ϕq,v(x∗q,v)− ϕq,ε,v(x̄q,ε,v)

≤ ϕq,v(x̄q,ε,v)− ϕq,ε,v(x̄q,ε,v)

≤ 3v + 2
(v + 1)(v + 2)

mqεv.

Corollary 1.Let x∗ ∈ X be a global solution of problem
(P ) andx̄q,ε,v ∈ X be a global solution of problem(SP )
for givenv andε. Then there existsq∗ > 0 such that for
anyq > q∗, it holds that

0 ≤ f(x∗)− ϕq,ε,v(x̄q,ε,v) ≤ 3v + 2
(v + 1)(v + 2)

mqεv.

(10)
whereq∗is defined in lemma 1.

Proof.By Lemma 1, we know thatx∗ is a global solution
of problem(LOP )v. Then it follows from Proposition 2
that

0 ≤ ϕq,v(x∗q,v)− ϕq,ε,v(x̄q,ε,v) ≤ 3v + 2
(v + 1)(v + 2)

mqεv.

Note that

f(x∗)− ϕq,ε,v(x̄q,ε,v) = (f(x∗))

+q

m∑

i=1

pv(gi(x∗))− ϕq,ε,v(x̄q,ε,v)

= ϕq,v(x∗q,v)− ϕq,ε,v(x̄q,ε,v),

since
∑m

i=1 pv(gi(x∗)) = 0, we complete the proof.

Definition 1.For ε > 0, a point x ∈ X is said to beε-
feasible solution to problem(P ′), if

gi(x) ≤ ε for any i ∈ I. (11)

Theorem 2.Let x∗q,v ∈ X be a global solution of problem
(LOP )v and x̄q,ε,v ∈ X be a global solution to problem
(SP ). Furthermore, letx∗q,v be a feasible solution to prob-
lem (P ′) and x̄q,ε,v be anε-feasible solution to problem
(P ′), then we have that

0 ≤ f(x∗q,v)− f(x̄q,ε,v) <
3

v + 2
mqεv. (12)

Proof.It is clear that
∑m

i=1 pv(gi(x̄q,v)) = 0 and

m∑

i=1

pq,v(gi(x̄q,ε,v)) ≤
m∑

i=1

v2

(v + 1)(v + 2)
εv

=
v2

(v + 1)(v + 2)
mεv

<
1

(v + 1)(v + 2)
mεv.

By proposition 2, we have that

0 ≤ ϕq,v(x∗q,v)− ϕq,ε,v(x̄q,ε,v)

= (f(x∗q,v) + q

m∑

i=1

pv(gi(x∗q,v)))− (f(x̄q,ε,v)

+q

m∑

i=1

pv(gi(x̄q,ε,v)))

≤ 3v + 2
(v + 1)(v + 2)

mqεv.

which implies

q
∑m

i=1 pε,v(gi(x̄q,ε,v)) ≤ f(x∗q,v)− fx̄q,ε,v)

≤ ∑m
i=1 pε,v(gi(x̄q,ε,v)) + 3v+2

(v+1)(v+2)mqεv.

Then it follows that

0 ≤ f(x∗q,v)− fx̄q,ε,v)

<
1

(v + 1)(v + 2)
mqεv +

3v + 2
(v + 1)(v + 2)

mqεv

<
3

v + 2
mqεv.

Remark.It is easy to see that whenq is sufficiently large,
x∗q,v is a global solution to problem(P ′), that is,x∗q,v is
feasible to problem(P ′). It is also easy to see that for given
ε > 0, when is sufficiently large,̄xq,ε,v is an ε-feasible
solution to problem(P ′). Therefore, it follows from (10)
that whenq is sufficiently large,

0 ≤ f∗ − f(x̄q,ε,v) <
3

v + 2
mqεv.

wheref∗ is the optimal value of problem(P ′).

3. Algorithm

We propose the following algorithm to solve problem(P ′).
Step 1.Given x0, ε0 > 0, q0 > 0, 0 < η < 1 and

N > 1, let k = 0 and go to Step 2.
Step 2.Usexk as the starting point to solve problem

(SPk) min
x∈X

ϕqk,εk,v(x).

Let x∗k be the optimal solution obtained.
Step 3.If If is ε-feasible to problem(P ′), then stop and

the algorithm has generated an approximate global solu-
tionx∗k of problem(P ′). Otherwise, letqk+1 = Nqk, εk+1 =
ηεk, xk = x∗kand then go to step 2.

4. Numerical examples

In this section, we give several numerical examples to show
the effective of the presented algorithm. The numerical re-
sults have been recorded in the tables following each ex-
ample.
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Example 1. (The Rosen-Suzki problem in [4,14])

minimize f(x)

= x2
1 + x2

2 + 2x2
3 + x2

4 − 5x1 − 5x2 − 21x3 + 7x4

subject to

g1(x) = 2x2
1 + x2

2

+x2
3 + 2x1 + x2 + x4 − 5 ≤ 0
g2(x) = x2

1 + x2
2 + x2

3

+x2
4 + x1 − x2 + x3 − x4 − 8 ≤ 0

g3(x) = x2
1 + 2x2

2

+x2
3 + 2x2

4 − x1 − x4 − 10 ≤ 0

The corresponding problem(SP ) is as follows:

(SP ) min
x∈X

ϕq,ε,v(x) = f(x) + q

3∑

i=1

pε,v(gi(x)),

whereX can be taken as[−100, 100]4,and we takev = 1
2 ,

so
pε,v(gi(x))

=





0, if gi(x) < 0,
1

15ε2 [gi(x)]
5
2 , if 0 ≤ gi(x) < ε,

[gi(x)]
1
2 + 2

3ε[gi(x)]−
1
2 − 8

5ε
1
2 , if ε ≤ gi(x),

In this example, we takeε = 10−6, N = 2, andη = 0.5
in step 1.

Numerical results for Example1
xk

1 (0 0 0 0)T

2 (1.7936 1.8747 4.6440 − 2.7916)T

3 (1.1632 1.2944 3.8558 − 2.0281)T

4 (0.1888 0.7348 2.1767 − 1.2519)T

13 (0.1694 0.8355 2.0087 − 0.9648)T

x∗k ρk ηk

1 1 1 (1.7936 1.8747 4.6440 − 2.7916)T

2 2 0.5 (1.1632 1.2944 3.8558 − 2.0281)T

3 4 0.25 (0.1888 0.7348 2.1767 − 1.2519)T

4 8 0.125 (0.1723 0.8374 2.0184 − 0.9740)T

13 4096 0.512 (0.1694 0.8355 2.0087 − 0.9648)T

f(x∗k) g1(x
∗
k) g2(x

∗
k) g3(x

∗
k)

1 -77.7486 29.1855 35.4458 38.3968
2 -70.5806 0.8414 19.7616 18.6624
3 -47.4728 0.2097 1.7635 0.0511
4 -44.4257 0.0426 0.0808 -1.7948
13 -44.2338 -1.7134e-004 -1.28666e-004 -1.8832

It is clear from this table that the obtained approximate
global solution isx∗ = (0.1694, 0.8355, 2.0087,−0.9648),

with objective valuef∗ = −44.2338. In [14], the obtained
approximate global solution is (0.169234,0.835656,2.008690,-
0.964901) with corresponding objective function value -
44.233582.

Example 2.( [10])

minimize f(x) = 10x2 + 2x3 + x4 + 3x5 + 4x6

subject to

g1(x) = x1 + x2 − 10 = 0,
g2(x) = −x1 + x3 + x4 + x5 = 0,
g3(x) = −x2 − x3 + x5 + x6 = 0,

g4(x) = 10x1 − 2x3 + 3x4 − 2x5 − 16 ≤ 0,
g5(x) = x1 + 4x3 + x5 − 10 ≤ 0,

0 ≤ x1 ≤ 12,
0 ≤ x2 ≤ 18,
0 ≤ x3 ≤ 5,
0 ≤ x4 ≤ 12,
0 ≤ x5 ≤ 1,
0 ≤ x6 ≤ 16.

We takev = 1
3 , the corresponding smoothed penalty func-

tion problem(SP ) can be constructed as

pε,v(gi(x))

=





0, if gi(x) < 0,
1

28ε2 [gi(x)]
7
3 , if 0 ≤ gi(x) < ε,

[gi(x)]
1
3 + 3

4ε[gi(x)]−
2
3 − 12

7 ε
1
3 , if ε ≤ gi(x),

Letx0 = (0, 0, · · · , 0), ε = 10−6, ε0 = 0.1, ρ0 = 1000, η =
0.01, N = 2 . We use the algorithm to solve the example.
After the third iteration we can get the approximate global
solution (1.806,8.194,0.498,0.308,1.000,7.692) with cor-
responding objective function valuef∗ = 117.010 , which
is much better than that obtained in [10].
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