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Abstract: Biosimulation models of the heart action potential have become a very useful tool. It provides better understanding for the
complex biophysical phenomena related to electrical activity in the heart such as cardiac arrhythmias. At cellular level, the electrical
activity of cardiac tissues may be simulated by solving a system of ordinarydeferential equations (ODEs) describing the electrical
behavior of the cell membrane. Because the biophysical processes underlying this phenomenon are non-linear and change very rapidly,
the ODE system is a challenge to be solved numerically. Furthermore, the implementation of these models is a hard task for commercial
finite element software. In this paper a finite element formulation, model and code generation of monodomain equation has been
conducted. The developed code is coupled with the modified FitzHugh-Nagumo (FHN) cell electrophysiological model in order to
have isotropic excitation propagation starting from cell level to complete heart level. MTALAB programming language was used to
build the proposed standalone finite element code. A two dimensional specimen of heart tissues is simulated to show the behavior of
the excitation propagation and the repolarization phase for isotropic electrical activity. Simulation results of the cardiac action potential
have shown good agreements with the experimental measurements obtained from published literature.
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1 Introduction

Modeling of the electrical activation of the heart allows us
to test if our knowledge of small-scale phenomena, such
as the behavior of the cardiac membrane, suffices to
explain large-scale phenomena, such as the
electrocardiogram (ECG). Cardiac diseases are a major
cause of death in the world, and a lot of work has been
done to elucidate the causes and mechanisms of heart
problems [1].Computer models have become valuable
tools for the study and comprehension of the complex
phenomena of cardiac electrophysiology. The models
have played an important role in this field [2] and support
the tests of new drugs, the development of new medical
devices and non-invasive diagnostic techniques.
Electrical activity is responsible for the periodic
contraction and relaxation cycle of the cardiac that
propels blood throughout the body. Hence, electrical
activity is essential for the cardiac to perform its function.
Most serious cardiac problems are in fact related to
disturbances in the cardiacs electrical activity [3].
Electrophysiological models of the cardiac describe how
electricity flows through the cardiac, controlling its

contraction. The models in which we are interested
consist of systems of deferential equations. Models of the
electrophysiology of one cell are governed by systems of
ordinary deferential equations (ODEs), and models of the
electrophysiology of tissue are governed by one or more
partial deferential equations (PDEs) [3].Typically, a PDE
models coupled with an ODE model to simulate cardiac
tissue consisting of a network of cells. The ODEs model
the electrical activity in the cells, and the PDEs model the
propagation of the electrical activity across the network as
a whole.
The electrical activity of the cardiac as a whole is thus
characterized by a complex multiscale structure, ranging
from the microscopic activity of ion channels in the
cellular membrane to the macroscopic properties of the
anisotropic propagation of the excitation and recovery
fronts in the whole cardiac. The most complete model of
such a complex setting is the anisotropic bidomain model
[4], that consists of a system of two degenerate parabolic
reaction diffusion equations describing the intra and
extracellular potentials in the cardiac muscle, coupled
with a system of ordinary deferential equations describing

∗ Corresponding author e-mail:shuaibeng@yahoo.com

c© 2013 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/jehe/010104
shuaib_eng@yahoo.com 


26 S. M. Shuaiby et al : A finite Element Model for the Electrical Activity...

the ionic currents flowing through the cellular membrane,
that are associated to the nonlinear reaction term. This
model is computationally very expensive because of the
involvement of different space and time scales. A
simplified tissue model of the anisotropic monodomain
system, consisting of a parabolic reaction diffusion
equation describing the propagation of the
transmembrane potential coupled with an ionic model,
has been widely used in literature [5,6].
The aim of the present work is to model and simulate
action potential in human cardiac tissue as powerful tools
in the study of cardiac arrhythmias. The technique of
finite element method has been used to build a computer
program to solving the phenomena of excitation
propagation for isotropic electrical activity. The resultof
the proposed stand alone finite element code model
compared with [12,16] show good agreement with the
experimental measurements of the action potential of the
cardiac tissue. The relative root-mean square error is less
than 5%, which is generally considered acceptable.
The rest of the paper is organized as follows. Section 2
describes the ionic membrane models and the modified
FHN membrane models. Section 3 formulates the
bidomain model. Section 4 formulates the monodomain
model. Section 5 describes the conductivity tensors.
Section 6 describes the boundary conditions. In Section 7,
numerical simulation results of the monodomain model
are presented and analyzed. In Section 8 offers our
conclusion.

2 Models of cardiac cell memberane

2.1 Ionic memberane models

Ionic membrane models describe the mean behavior of
the ionic channels in a small membrane patch containing
a number of the latter large enough to observe their
statistical evolution through time [4]. The first membrane
model for ionic currents appearing in both the
monodomain and the bidomain model relies on the choice
of the membrane model for the cell conductivity. The
membrane model includes three components connected in
parallel as depicted in Fig. 1.

The total transmembrane current Im can be expressed
as:

Im =Cm
∂Vm

∂ t
+ Iion− Istim (1)

WhereVm is the transmembrane potential defined as the
difference between the intracellular and extracellular
potentialsφi andφe, Iion is the sum of all transmembrane
ionic currents,Istim is the externally stimulus current, and
Cm is the total membrane capacitance. In the case of an
isolated cell or isolated membrane patch no currents can
flow in the intracellular medium,Im = 0. The formulation
is in this case equivalent to the HodkingHuxley

Fig. 1: Equivalent current source model for the cardiac
membrane.

formulation for nerve cells [7] and the transmembrane
potential evolution can be written:

∂Vm

∂ t
=−

(

Iion− Istim

Cm

)

(2)

2.2 The modified fitzhugh-nagumo cell model

FitzHugh and Nagumo reduced the HodgkinHuxley
equation (four-dimensional) to a two-dimensional system
by extracting the excitability of dynamics in the original
HodgkinHuxley equation [8]. Here after, the simplest
ionic model is the FitzHugh-Nagumo (FHN), consisting
of one ionic current and one gating variable. Assuming
the potentialV to be zero at rest, the ionic current uses
only one recovery variable:

Iion = cu(u−α)(u−1)+w (3)

∂w
∂ t

= ε(u− γw) (4)

Here w is a recovery variable and is the normalized
transmembrane potential, defined by

u=
vm−vrest

vp−vrest
(5)

where vm is the transmembrane potential,vrest is the
resting potential, andvp is the plateau potential [9]. The
normalized threshold potentialα is defined in a similar
way

α =
vth−vrest

vp−vrest
(6)

where,vth is the threshold potential.
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3 Mathematical derivation of the bidomain
model

The most substantial mathematical description of the
bidomain model is found in the review paper [4], which
present a definition of the model from its origins in the
core conductor model. Heart tissue can be classified into
two groups: intracellular and extracellular as shown in Fig
2. To account for the effects of potential differences
across the cell membrane, the bidomain model treats
these two groups as two separate domains. Each point in
the heart is considered to be in both domains, which can
be thought of as superimposed on one another [10]. Each
point has an electrical potential field in each domain [3].

Fig. 2: The bidomain model

The bidomain model of cardiac tissue is based on
current flow, distribution of electrical potential, and the
conservation of charge and current [4]. The description of
each domain is based on a generalized version of Ohms
law defining the relationship between the electric fieldE,
derived from the potentialφ(V), the current densityJ and
the conductivity tensorD. A discrete interpretation of the
bidomain equations is given for a 1D cable in Fig. 3.

E = −∇φ
J = DE =−D∇φ (7)

Considering the intracellular and extracellular spaces
specifically, we have:

Ji = −Di∇φi

Je = −De∇φe (8)

where Ji and Je are the intracellular and extracellular
current densities,Di and De are the corresponding
conductivity tensors, respectively, andφi and φe are the

electrical potential in the intracellular and extracellular
spaces.

∇.Ji =−Im, ∇.Je = Im
∇(Ji +Je) = 0 (9)

whereIm is transmembrane current per unit volume [11],
which is composed of a capacitive component, and an
ionic componentIion.

Im = βm

(

Cm
∂Vm

∂ t
+ Iion+ Iapp

)

(10)

whereβm is the surface area- to-volume ratio of a cardiac
cell, Cm the specified cell membrane capacitance,Iapp is
the stimulus current andVm is the transmembrane voltage
which is given by:

Vm = φi −φe (11)

Combining Equations (9) (11), we obtain:

∇.Di (∇Vm+∇φe) = βm

(

Cm
∂Vm

∂ t
+ Iion+ Iapp

)

(12)

∇.((Di +De)∇φe) =−∇.(Di∇Vm) (13)

The parabolic (12) and elliptic (13) equations are the
governing equations of the biodomain model of cardiac
tissue.

Fig. 3: A discrete equivalence of the bidomain formulation for a
1D continuous cable.

In Fig. 3., the membrane components correspond to
Fig. 1, but theIstim current source has been discarded to
simplify the presentation.
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4 Mathematical derivation of the
monodomain model

The monodomain model is a simplification of the
bidomain model that is easier to analyze and less
computationally demanding [3]. A discrete interpretation
of the monodmain equations is given for a 1D cable in
Fig. 4. In this analysis, we assume that the anisotropy of
the intracellular and extracellular spaces is the same, i.e.
that the conductivity in the extracellular space is
proportional to the intracellular conductivity.

Fig. 4: A discrete equivalence of the monodomain formulation
for a 1D continuous cable, similar to the bidomain equivalence
of Fig. 3.

De = λDi (14)

where, λ is a scalar, representing the ratio between the
conductivity of the intracellular and extracellular spaces.
The choice of the value ofλ can determine physiological
accuracy, but it is important to select a suitable value that
gives the satisfactory results [3]. The computational cost
of using the monodomain model is about one-half to
one-tenth the cost of using the bidomain model [12,6],
depending on the complexity of the cell model used.

Substituting equation (14) into equation (13) gives:

∇.((Di +λDi)∇φe) =−∇.(Di∇Vm) (15)

∇.(Di∇φe) =−
1

1+λ
∇.(Di∇Vm) (16)

Substituting equation (16) into equation (12) gives:

∇.
1

1+λ
Di∇Vm = βm

(

Cm
∂Vm

∂ t
+ Iion+ Iapp

)

(17)

If we introduce an effective conductivityD = λ
1+λ Di ,[13]

we obtain the monodomain model of cardiac tissue as:

∇.D∇Vm = βm

(

Cm
∂Vm

∂ t
+ Iion+ Iapp

)

(18)

∂Vm

∂ t
=−

1
Cm

(Iion+ Iapp)+

(

1
Cmβm

)

∇.D∇Vm (19)

5 Connectivity tensor

The conductivity tensorD in equation (19) is defined
largely by the structure of the heart. Cardiac cells are
grouped into muscle fibers, and the muscle fibers are
grouped into sheets of fibers [4]. See Fig. 5. The structure
of the heart influences the flow of electricity. Conductivity
is usually greater along the fibers rather than across them,
[3].

Fig. 5: The cross section of muscle fiber in the left ventricle
(LV), illustrating (a) the change in the direction of muscle fiber
throughout the heart wall and (b) the grouping of fibers and
sheets.

At each point in the extracellular and intracellular
domain a local conductivity tensor, denotedDn f o, the
conductivity tensor for the case where there is no fiber
orientation can be represented by a symmetric matrix and
defined in the basis formed as.

Dn f o =





Dx 0 0
0 Dy 0
0 0 Dz



 (20)

whereDx,Dy andDz the scalar value of the conductivity
tensor in theX , YandZ direction respectively. The global
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conductivity tensorD includes fiber orientation and can be
determined using a transformation that involves bothDn f o
and a rotation matrixR

D = RDn f oR
t (21)

whereRt is the transpose of rotation matrixR. If each sheet
is perpendicular to only one of the global as seen in Fig. 6
(e.g. thex axis in an (x,y,z) coordinate system), then the
local basis for each sheet is given by :

Rγ =





1 0 0
0 cosγ sinγ
0 sinγ cosγ



 (22)

Fig. 6: Schematic representation of idealized fiber rotation about
x axis through an angleγ(x) to a local basis ( `y, z̀). Here x-
axis represents the heart global longitudinal axis which passes
through the apex as shown in Fig.5.

6 Boundrey conditions

In order to specify the boundary conditions, let the closed
surfaceSH be a boundary separating bidomain regionH
and surrounding volume conductorB, and let the closed
surfaceSB bounds regionB andn denotes the unit outward
normal toSH andSBφ◦ is the extra cardiac potential,D◦ is
the isotropic scalar conductivity outside ofH andn is the
outward surface normal of the cardiac [12].

φ◦ = φe,n.D◦∇φ◦ = n.(Di∇Vm+Di∇φe)On SH (23)

n.D◦∇φ◦ = 0 On SH (24)

Since the sources inH are related to the presence of
intracellular medium, which is absent inB, we may
assume that the vectorDi∇Vm in Eq. (23) is tangent to the
surfaceSH . This becomes the Numan (no flux) boundary
conditions [13] which are:

n.(Di∇Vm) = 0 On SH (25)

n.De∇φe = 0 On SH (26)

7 Numerical method and simulation results

The weighted residual method is a technique that can be
used to obtain approximate solutions to linear and
nonlinear differential equations. If we use this method the
finite element equations can be derived directly from the
governing differential equations of the problem [14]. The
finite element equations is derived using the Galerkin
approach.
A Galerkin finite element method is developed to solve
the action potential of a cardiac tissue using the
monodomain model coupled with the modified
FitzHugh-Nagumo (FHN) model on a general domain
with equal isotropy and no fiber orientation. Although the
implementation supports both two- dimensional (2-D)
and three dimensional (3-D) problems, for the simplicity,
only 2-D solutions are discussed in this paper.

7.1 Finite element equations

In this sub-section we describe a finite element method
(FEM) of the monodomain model which coupled with the
modified FitzHugh-Nagumo (FHN) cell model. The
monodomain model equation is:

∂Vm

∂ t
+

1
Cm

(Iion− Iapp) =

(

1
Cmβm

)

∇.D∇Vm (27)

The RHS of the equation (27) is called reaction part and
the LHS is called diffusion part. In the case of a single
cell model, the diffusion part is non- existent. To solve
equation (27), we first expand it as follows:

∂Vm

∂ t
+

1
Cm

(Iion− Iapp) =

(

1
Cmβm

)

∇.

[

Dx 0
0 Dy

]

[

∂Vm
∂x

∂Vm
∂y

]

(28)

∂Vm
∂ t + 1

Cm
(Iion− Iapp) =

(

1
Cmβm

)[

Dx

(

∂ 2Vm
∂x2

)

+Dy

(

∂ 2Vm
∂ 2

y

)]

(29)
Here, we are applying the Euler method for time derivative
and the application of Galerkin method to the diffusion
term only over the entire domainΩ of equation (29) as
shown in equation (30)
∫

Ω
W

∂Vm

∂ t
dΩ =−

∫

Ω
W

1
Cm

(Iion+ Iapp)dΩ

+
∫

Ω
W

(

1
Cmβm

)

[

Dx

(

∂ 2Vn
m

∂x2

)

+Dy

(

∂ 2Vn
m

∂ 2
y

)]

dΩ (30)

where,W is the weighting function. The approximation
field variable ˜vm can be expressed as follows:

Ṽm = ⌊Ni⌋{Vm}i = ⌊N1N2.....Nn⌋{Vm}i ,W = N (31)

where,{Vm}, the vector of element nodal,i is the grid
node index and N is the interpolation function.
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Substituting equation (31) into equation (30) gives:

∫

Ω ⌊Ni⌋
T ∂Ṽm

∂ t dΩ =−
∫

Ω ⌊Ni⌋
T 1

Cm
(Iion+ Iapp)dΩ

+
∫

Ω ⌊Ni⌋
T
(

1
Cmβm

)[

Dx

(

∂ 2Ṽm
∂x2

)

+Dy

(

∂ 2Ṽm
∂ 2

y

)]

dΩ
(32)

Using the method of integration by parts, the diffusion
term of x-direction in equation (32) is:

∫

Ω
⌊Ni⌋

T Dx

Cmβm

∂ 2Ṽm

∂x2 dΩ =

−
∫

Ω
⌊Ni,x⌋

T Dx

Cmβm

∂Ṽm

∂x
dΩ +

∮

S
⌊Ni⌋

T Dx

Cmβm

∂Ṽm

∂x
dS (33)

Substituting equation (31) into equation (33) gives:

∫

Ω
⌊Ni⌋

T Dx

Cmβm

∂ 2Ṽm

∂x2 dΩ =

−
∫

Ω ⌊Ni,x⌋
T⌊Ni⌋

Dx
Cmβm

∂Vm
∂x dΩ +

∮

S⌊Ni⌋
T⌊Ni⌋

Dx
Cmβm

∂Vm
∂x dS

(34)
whereS is the boundary surface ofΩ at which the flux

is zero. Substituting equation (25) into equation (34) gives:
∫

Ω
⌊Ni⌋

T Dx

Cmβm

∂ 2Ṽm

∂x2 dΩ =−
∫

Ω
⌊Ni,x⌋

T⌊Ni⌋
Dx

Cmβm

∂Vm

∂x
dΩ

(35)
Again, using the integration by parts method, the

diffusion term of y- direction in equation (32) can be
expressed by:

∫

Ω
⌊Ni⌋

T Dx

Cmβm

∂ 2Ṽm

∂y2 dΩ =

−
∫

Ω
⌊Ni,y⌋

T Dx

Cmβm

∂Ṽm

∂y
dΩ +

∮

S
⌊Ni⌋

T Dx

Cmβm

∂Ṽm

∂y
dS (36)

Substituting equation (31) into equation (36) gives:
∫

Ω
⌊Ni⌋

T Dy

Cmβm

∂ 2Ṽm

∂y2 dΩ =

−
∫

Ω ⌊Ni,y⌋
T⌊Ni⌋

Dx
Cmβm

∂Vm
∂y dΩ +

∮

S⌊Ni⌋
T⌊Ni⌋

Dy
Cmβm

∂Vm
∂y dS

(37)
whereS is the boundary surface ofΩ at which the flux

is zero. Substituting equation (25) into equation (37) gives:
∫

Ω
⌊Ni⌋

T Dy

Cmβm

∂ 2Ṽm

∂y2 dΩ =−
∫

Ω
⌊Ni,y⌋

T⌊Ni⌋
Dy

Cmβm

∂Vm

∂y
dΩ

(38)
After substitution equations (35) and (38) into equation

(32) and applying the Euler method for time derivative, the
resulting algebraic equation represented by matrix form is
obtained as follows:

(Vm)
n+1
i = (Vm)

n
i −
(

[M]−1[K](Vm)
n
i +Sn

i

)

∆ t (39)

where the superscriptn is time index,M is the FEM
lumped mass matrix andK is the FEM stiffens matrix.

7.2 Spliting of operators and the solution
procedure

When solving a system of ODEs or PDEs, it may be
inefficient to use one numerical method for every part of
the system [3]. For example, some components of the
system may be most efficiently solved with one numerical
method and other parts of the system most efficiently
solved with another numerical method. Rather than
solving such a system with one numerical method and
accepting the consequences of inefficiency, it is often
better to use a splitting method [10]. A splitting method
uses a divide-and-conquer strategy to solve the system by
breaking the system into parts that can be solved
efficiently with one particular method. For instance, in
splitting process and solution sequence of the current
simulation can be summarized as follows.

Step 1: for a time step∆ t/2 we solving the diffusion
equation

∂Vm
∂ t =

(

1
Cmβm

)[

Dx

(

∂ 2Vm
∂x2

)

+Dy

(

∂ 2Vm
∂ 2

y

)]

(40)

(Vm)
n+1
i = (Vm)

n+1/2
i −

(

[M]−1[K](Vm)
n+1/2
i

)

∆ t (41)

Step 2: for a time step∆ t we solving the reaction
equation

∂Vm

∂ t
=−

1
Cm

(Iion+ Iapp) (42)

(Vm)
n+3/2
i = (Vm)

n+1
i +Sn+1

i ∆ t (43)

Step 3: for a time step (3∆ t/2 ) we solving the
diffusion equation

∂Vm
∂ t =

(

1
Cmβm

)[

Dx

(

∂ 2Vm
∂x2

)

+Dy

(

∂ 2Vm
∂ 2

y

)]

(44)
HereVm in RHS is the result of step 2.

(Vm)
n+2
i = (Vm)

n+3/2
i −

(

[M]−1[K](Vm)
n+3/2
i

)

∆ t (45)

Step 4: repeat steps 1- 3 until the desired solution is
obtained.

7.3 Simulation results

7.3.1 Discretization of the tissue

In this section we present the results which obtained by
the MATLAB code to generate the uniform mesh for the
heart tissue as a triangular element and a rectangle
element. The first step in the finite element method is to
divide the structure or solution region into subdivisions or
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elements. Hence, the structure is to be modeled with
suitable finite elements. The number, type, size, and
arrangement of the elements are to be decided.

Fig. 7: The uniform mesh for the heart tissue as a rectangle
element.

We consider two dimensional domains ( heart tissues).
Figure 7 represents the uniform mesh for the heart tissue
as a rectangle element and Fig. 8 represents the uniform
mesh for the heart tissue as a triangle element. In case for
the same dimensional of the tissue, we find the number of
element in triangle is double rectangle element.

Fig. 8: The uniform mesh for the heart tissue as a triangle
element.

7.3.2 Numerical simulations

In this sub-section we present the results of the numerical
simulations. Here, we consider two dimensional domains
( 10∗ 10mm heart tissues). We run coupled cell model
monodomain simulations, with the modified FHN. In the
numerical simulations we have been used the parameter
which shown in Table 1 for the modified
FitzHugh-Nagumo model. Figure 9 represents the
reference action potential and the simulation of action
potential for a monodomain cell with rectangle element.
Figure 10 represents the reference action potential and the
simulation of action potential for a monodomain cell with
triangle element. In Fig. 9 and 10, the tissue has a
negative resting potential, typicallyv = −90mV. The
signal propagation in the heart takes the form of a
depolarization, where the potential rises rapidly and
reaches a positive peak potential after a couple of
milliseconds. A plateau phase follows, where the
potential remains positive for a little more than 100 ms.
Finally, the cell depolarizes, returning to its negative
resting potential. The whole process is called the action
potential and typically lasts around 300 ms. We compute
the error between the reference action potential and our
simulation of action potential for a monodomain cell with
rectangle element and triangle element.

Results show that the uniform mesh for the heart tissue as
a triangular element is better in the result than we used
the uniform mesh for the heart tissue as a rectangular
element. This may be referred to that; the number of
element in triangle is double rectangle element for the
same dimensional of the cardiac tissue. The simulation
errors are depicted in Fig 11. We also computed the
relative root-mean square error (ERMS) between the
numerical solutionsVm and the referenceVre f

m which can
be computed by using the equation46 to give a more
intuitive sense of the error between the reference action
potential and our simulation of action potential for a
monodomain cell with rectangle element and triangle
element. We find theERMS when we use the uniform
mesh for the heart tissue as a triangular element is less
than the result we used the uniform mesh for the heart
tissue as a rectangular element, Table 2. In the two cases,
the relative root-mean square error is less than 5%, which
is generally considered acceptable.

ERMS=

√

√

√

√

√

∑n
i=1

(

Vi −Vre f
ii

)2

∑n
i Vre f2

i

(46)
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Table 1: Values of the parameters in the modified FitzHugh-
Nagumo model [3,15].

Parameter Description Value Unites
βm the surface area- to-volume ratio 200 mm−1

Cm cell capacitance per unite surface area0.01 µF mm−2

C Excitation rate constant 0.002 mA mm−2

E Recovery rate constant 0.002 ms−1

ε Recovery decay constant 0.5 Dimensionless
Vrest Resting potential -85 mV
Vth Threshold potential -75 mV
Vp Plateau potential 15 mV

Table 2: ERMSvalues for two types of element rectangle element
and triangle element.

Element type ERMS
Rectangle Element 0.02005
Triangle Element 0.01559

Fig. 9: The solid line represents the reference action potential
and the dotted line represents the simulation of action potential
for a monodomain cell with rectangle element.

8 Conclusions

In this paper, an approach is presented to simulate the
propagation of the excitation in the cardiac tissues, based
on non linear models of reaction-diffusion type,
considering the monodomain approach. The ionic
currents are expressed by the simple modified
electrophysiological cell model (FHN model), especially
designed for human tissues. Numerical simulations on a
two dimensional domain ( 10∗ 10mmheart tissues) were
simulated to show the behavior of the excitation spread
and the repolarization phase for isotropic electric activity.
The results show that the proposed developed code can
successfully be used to simulate heart excitation isotropic

Fig. 10: The solid line represents the reference action potential
and the dotted line represents the simulation of action potential
for a monodomain cell with triangle element.

Fig. 11: The error versus time

propagation in two-dimensional tissue and it suggests that
such method may provide a good basis for heart
simulation research in a more physiologically way. The
present developed code helps calculate the intra-cellular
and extra-cellular action potential of human cardiac
tissues in the heart physical domain which can be used to
predict the cardio electrocardiograph (ECG).
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