Journal of Analysis \& Number Theory An International Journal
@ 2013 NSP
Natural Sciences Publishing Cor.

On the diophantine equation $a x^{2}+b=c y^{n}$

Fadwa S. Abu Muriefah and Amal AL-Rashed

Princess Nora Bint Abdulrahman University, KSA
Email: fsabumuriefah@pnu.edu.sa,_amal_dfr@hotmail.com
Received: 8 Feb. 2012; Revised 15 May. 2012; Accepted 23 Jul. 2012

Abstract

In this paper, we study the diophantine equation $a x^{2}+b=c y^{n}$ where a, b, c, n, x, y are positive integers and we prove some results concerning this equation when $b=7,11$. In Theorem 3, we are able to correct the result of Demirpolat and Cenberci appeared in [9].

Keywords: Diophantine equation, perfect square, quadratic field.

Introduction

Many special cases of the diophantine equation

$$
\begin{equation*}
a x^{2}+b=c y^{n} \tag{1}
\end{equation*}
$$

where a, b, c, n are positive integers and $n \geq 3$, have been considered over the years. If we put $a=1, b=7, c=1$ and $y=2$ in (1) we obtain the equation

$$
\begin{equation*}
x^{2}+7=2^{n} \tag{2}
\end{equation*}
$$

which was studied by an Indian mathematician S. Ramanujan [1], and he conjectured that the equation (2) has only the following five solutions:

$$
(n, x)=(3,1),(4,3),(5,5),(7,11),(15,181) .
$$

This conjecture was first proved by Nagell [2]. In 2003 Siksek and Cremona [4] solved equation (2) for $n=p$ where p is odd prime and they proved that this equation has no solution for $11 \leq p \leq 18^{8}$.
Bugeaud and Shorey [3] were proved that equation (1) has no solution when $a=1, b=7$ and $c=4$.
In 2008, Abu Muriefah [5] studied the general case $p x^{2}+q^{2 m}=y^{n}$ where p, q are primes under some conditions, and recently she proved with Luca and Togbé [6] that the equation $x^{2}+5^{a} .13^{b}=y^{n}$ where $a, b \geq 0$, has the following solution:

$$
(x, y, a, b, n)=(70,17,0,1,3),(142,29,2,2,3),(4,3,1,1,4)
$$

Now we study the equation (1) for $a=p, b=7^{2 m+1}, c=1$ and we prove the following theorem:

Theorem 1

If $p \neq 7, x$ is an even integer and $(h, p)=1$ where h is the class number of the field $\square(\sqrt{-7 p})$, then the diophantine equation

$$
\begin{equation*}
p x^{2}+7^{2 m+1}=y^{p} \tag{3}
\end{equation*}
$$

has no solution in integers x and y.
Proof
I. $(x, y)=1$,

If x is even then y is odd, we factorize equation (3) to obtain

$$
\begin{equation*}
\sqrt{p} x+7^{m} \sqrt{-7}=(\sqrt{p} a+b \sqrt{-7})^{p} \tag{4}
\end{equation*}
$$

where a, b are integers and $y=p a^{2}+7 b^{2}$.
On equating the imaginary parts in (4) we get

$$
\begin{equation*}
7^{m}=b \sum_{r=0}^{\frac{p-1}{2}}\binom{p}{2 r+1}\left(p a^{2}\right)^{\frac{p-(2 r+1)}{2}}\left(-7 b^{2}\right)^{r} \tag{5}
\end{equation*}
$$

Since y is odd, therefore b is odd, hence a is even and $(a, 7)=1$.
If $b= \pm 7^{k}, 0 \leq k<m$ then (5) is impossible modulo 7 , so $b= \pm 7^{m}$.
Let

$$
\begin{equation*}
\alpha=a \sqrt{p}+b \sqrt{-7}, \bar{\alpha}=a \sqrt{p}-b \sqrt{-7} \tag{6}
\end{equation*}
$$

hence from (4) we get

$$
\begin{equation*}
\alpha^{p}=x \sqrt{p}+7^{m} \sqrt{-7}, \quad \bar{\alpha}^{p}=x \sqrt{p}-7^{m} \sqrt{-7} \tag{7}
\end{equation*}
$$

From (6) and (7) we obtain

$$
U_{p}=\frac{\alpha^{p}-\bar{\alpha}^{p}}{\alpha-\bar{\alpha}}=\frac{2 \cdot 7^{m} \sqrt{-7}}{2 b \sqrt{-7}}=\frac{7^{m}}{b}= \pm 1 .
$$

Since $\left(\alpha \bar{\alpha},(\alpha+\bar{\alpha})^{2}\right)=1$ and $\frac{\alpha}{\bar{\alpha}}$ is not a root of unity, therefore $U_{p}(\alpha, \bar{\alpha})$ is a Lehmer pair has no primitive divisor. When $p \in[5,29]$, there are only finitely many possibilities for the pair $(\alpha, \bar{\alpha})$ and all such instances appear in Table 2 in [7]. A quick inspection of that table reveals that there exists no Lehmer number which has no primitive divisors whose roots α and $\bar{\alpha}$ are in $\square[i]$.
II. $(x, y) \neq 1$,

$$
\text { Let } x=7^{u} X, y=7^{v} Y \text { such that } u, v>0 \text { and }(7, X)=(7, Y)=1 .
$$

Equation (3) becomes

$$
\begin{equation*}
p\left(7^{u} X\right)^{2}+7^{2 m+1}=7^{p v} Y^{p} \tag{8}
\end{equation*}
$$

There are three cases:
(1) If $2 u=\min (2 u, p v, 2 m+1)$ then equation (8) becomes

$$
p X^{2}+7^{2(m-u)+1}=7^{p v-2 u} Y^{p}
$$

This equation is impossible modulo 7 unless $p v-2 u=0$, so

$$
p X^{2}+7^{2(m-u)+1}=Y^{p}
$$

which has no solution from the first part of this proof, since $(X, Y)=1$.
(2) If $2 m+1=\min (2 u, p v, 2 m+1)$ then equation (8) becomes

$$
p 7^{2 u-2 m-1} X^{2}+1=7^{p v-2 m-1} Y^{p}
$$

This equation is impossible modulo 7 unless $v-2 m-1=0$, so

$$
\begin{equation*}
7 p\left(7^{u-m-1} X\right)^{2}+1=Y^{p} \tag{9}
\end{equation*}
$$

By [8] equation (9) has no solution.
(3) If $p v=\min (2 u, p v, 2 m+1)$ then we get

$$
\begin{equation*}
p 7^{2 u-p v} X^{2}+7^{2 m+1-p v}=Y^{p} \tag{10}
\end{equation*}
$$

This equation is possible only if $2 u-p v=0$ or $2 m+1-p \nu=0$, and these two cases have been discussed before. \diamond
Now, we give a nice result in rational.

Theorem 2

Let p be an odd prime such that $p-7$ has no perfect square.
I-The diophantine equation

$$
\begin{equation*}
x^{2}+7=p y^{p-1} \tag{11}
\end{equation*}
$$

has no solution in rational x and y such that $y=\frac{Y}{t}$ where Y is an odd integer.
II- The diophantine equation

$$
\begin{equation*}
x^{2}+7=\mathrm{py}^{(p-1)} / 2, p \equiv 1(\bmod 4) \tag{12}
\end{equation*}
$$

has no solution in rational x and y such that $y=\frac{Y}{t}$ where Y is an odd integer.
Proof
Assume that $x=X / Q, y=Y / T$ is a solution of (11) or (12) for some integers X, Y, Q, T with $Q \geq 1, T \geq 1$ and

$$
\begin{equation*}
(X, Q)=(Y, T)=1 \tag{13}
\end{equation*}
$$

Put

$$
n=\left\{\begin{array}{l}
0, \text { if } p \equiv 3(\bmod 4) \\
1, \text { if } p \equiv 1(\bmod 4)
\end{array}\right.
$$

Then equation (11) and (12) can be written in the form

$$
\begin{equation*}
X^{2} T^{\frac{p-1}{2^{n}}}+7 Q^{2} T^{\frac{p-1}{2^{n}}}=p Q^{2} Y^{\frac{p-1}{2^{n}}} . \tag{14}
\end{equation*}
$$

Considering equation (14) modulo Q^{2}, and from (13) we get

$$
\begin{equation*}
T^{\frac{p-1}{2^{n}}} \equiv 0\left(\bmod Q^{2}\right) \tag{15}
\end{equation*}
$$

In the same way, we get

$$
\begin{equation*}
p Q^{2} \equiv 0\left(\bmod T^{\frac{p-1}{2^{n}}}\right) \tag{16}
\end{equation*}
$$

Since $(p-1) / 2^{n}$ is even, it follows from (15) and (16) that $T^{\frac{p-1}{2^{n}}}=Q^{2}$, hence from (14) we get

$$
\begin{equation*}
X^{2}+7 T^{\frac{p-1}{2^{n}}}=p Y^{\frac{p-1}{2^{n}}} . \tag{17}
\end{equation*}
$$

So it follows that

$$
(X, p)=(T, p)=(X, T)=(Y, T)=(X, Y)=(X, 7)=1
$$

Rewrite equation (17) as

$$
\begin{equation*}
\left(X+T^{\frac{p-1}{2^{n+1}}} i \sqrt{7}\right)\left(X-T^{\frac{p-1}{2^{n+1}}} i \sqrt{7}\right)=p Y^{\frac{p-1}{2^{n+1}}} . \tag{18}
\end{equation*}
$$

It is easy to see that the two algebraic integers appearing in the left-hand side of equation (18) are coprime in the ring of algebraic integers $\square(i \sqrt{7})$. Since the ring $\square(i \sqrt{7})$ is a unique factorization domain it follows that there exist four integers A, B, s, v with $A \equiv B(\bmod 2), s \equiv \mathcal{v}(\bmod 2) \quad$ and two units ± 1 such that

$$
\begin{equation*}
X+T^{\frac{p-1}{2^{n+1}}} i \sqrt{7}= \pm \frac{A+B i \sqrt{7}}{2}\left(\frac{s+v i \sqrt{7}}{2}\right)^{\frac{p-1}{2^{n}}} \tag{19}
\end{equation*}
$$

where $p=\frac{A^{2}+7 B^{2}}{4}$.
Multiplying both parts of (19) by $2^{\frac{p-1}{2^{n}}+1} B^{\frac{p-1}{2^{n}}}$ we get

$$
2^{\frac{p-1}{2^{n}}+1}\left(X B^{\frac{p-1}{2^{n}}}+T^{\frac{p-1}{2^{n+1}}} B^{\frac{p-1}{2^{n}}} i \sqrt{7}\right)= \pm(A+B i \sqrt{7})(s B+A v-(A-B i \sqrt{7}) v)^{\frac{p-1}{2^{n}}}, \text { for }
$$

some U, K, R in \mathbf{Z}. Comparing imaginary parts and taking into account that $p \mid A^{2}+7 B^{2}$ we get

$$
2^{\frac{p-1}{2^{n}+1}} T^{\frac{p-1}{2^{n+1}}} B^{\frac{p-1}{2^{n}}} \equiv B U^{\frac{p-1}{2^{n}}}(\bmod p)
$$

Raising both sides of the last congruence to the power 2^{n+1}, by Fermat's little theorem we get

$$
2^{2^{n+1}} \equiv B^{2^{n+1}}(\bmod p), \quad n \in\{0,1\}
$$

For $n=1$, we get

$$
\left(B^{2}-4\right)\left(B^{2}+4\right) \equiv 0(\bmod p)
$$

- If $B^{2}-4 \equiv 0(\bmod p)$, then $B^{2}=4+k p \geq 0$ for some integer k, and we get $4 p=A^{2}+28+7 k p$, which implies that $k=0$, so $B^{2}=4$. Hence

$$
p=\frac{A^{2}+7 B^{2}}{4}=\left(\frac{A}{2}\right)^{2}+7
$$

this implies that $p-7$ is a perfect square and we get a contradiction.

- If $B^{2}+4 \equiv 0(\bmod p)$, then $B^{2}=-4+k_{1} p \geq 0$ for some integer k_{1}, and we get $4 p=A^{2}-28+7 p k_{1}$, which implies that $4 p+28-7 p k_{1} \geq 0$, that is $k_{1}=0,1$.

If $k_{1}=0$, then $B^{2}=-4$ which is not true, and if $k_{1}=1$, then $B^{2}=-4+p$,
and we get $p=5$. Hence from equation (3) and (4) we obtain $x^{2}=3(\bmod 5)$, which is impossible.
By using the same method we can prove that equation (3) has no solution when $n=0$. So our equations (11) and (12) has no solutions. \bigcirc

In the following theorem we study the equation $x^{2}+11^{2 k+1}=y^{n}$ which was studied by the two mathematicians Demirpolat and Cenberci [9] but they failed to find all solutions of it.

Theorem 3

The diophantine equation

$$
\begin{equation*}
x^{2}+11^{2 k+1}=y^{n}, \quad n \geq 3, k \geq 0 \tag{20}
\end{equation*}
$$

has only three families of solutions and these solutions are

$$
(x, y, k, n)=\left(4.11^{3 M}, 3.11^{2 M}, 3 M, 3\right)
$$

$$
\left(58.11^{3 M}, 15.11^{2 M}, 3 M, 3\right),\left(9324.11^{3 M}, 443.11^{2 M}, 3 M, 3\right)
$$

Moreover when $n=3,(x, y)=1$ and $k \not \equiv 1(\bmod 3)$, the equation may have a solution given by $x=8 a^{3}-3 a$ where a is an integer satisfies $a=\sqrt{\frac{11^{2 k+1}+1}{3}}$.

Proof

If $k=0$, then the equation (20) has only two solutions given by

$$
(x, y, n)=(4,3,3),(58,15,3)[10] .
$$

So we shall suppose $k>0$.
I. Let $11 \nmid x$ then from [11] the equation has no solution when $n \geq 5$.
(1) $n=3$, we factorize equation (20) to obtain

$$
\begin{equation*}
x+11^{k} \sqrt{-11}=(a+b \sqrt{-11})^{3} \tag{21}
\end{equation*}
$$

where $y=a^{2}+11 b^{2}$ is odd, so a and b have the opposite parity.
Or

$$
\begin{equation*}
x+11^{k} \sqrt{-11}=\left(\frac{a+b \sqrt{-11}}{2}\right)^{3} \tag{22}
\end{equation*}
$$

where $y=\frac{a^{2}+11 b^{2}}{4}$ and $a \equiv b \equiv 1(\bmod 2)$.
On equating the imaginary parts in equation (21) we get

$$
\begin{equation*}
\pm 11^{k}=b\left(3 a^{2}-11 b^{2}\right) . \tag{23}
\end{equation*}
$$

From (23) we deduce that $b=11^{l}, 0 \leq l \leq k$, so (23) becomes

$$
\begin{equation*}
\pm 11^{k-l}=3 a^{2}-11^{2 l+1} . \tag{24}
\end{equation*}
$$

Equation (24) is impossible modulo 11 , unless $l=k$, that is

$$
\begin{equation*}
\pm 1=3 a^{2}-11^{2 k+1} . \tag{25}
\end{equation*}
$$

The negative sing is impossible, and for the positive sing equation (25) has no solution if $3 \mid 2 k+1,[11]$. So, the equation (20) may have solution when $n=3$ and $k \not \equiv 1(\bmod 3)$
and this solution if it exists is given by $x=8 a^{3}-3 a$ where a is an integer satisfies $a=\sqrt{\frac{11^{2 k+1}+1}{3}}$.
Now we equating the imaginary parts in (23) and we get

$$
\begin{equation*}
8.11^{k}=b\left(3 a^{2}-11 b^{2}\right) \tag{26}
\end{equation*}
$$

We have two cases:
i. If $b= \pm 11^{l}$ where $0 \leq l<k$, then the equation (26) is impossible modulo 11 .
ii. If $b= \pm 11^{k}$, then the equation (26) becomes $8=3 a^{2}-11^{2 k+1}$. This equation has one solution $(a, k)=(21,1)$ [12], which implies $x=9324$ and $y=443$.
(2) $n=4$, here we can write equation (20) as

$$
\left.\begin{array}{l}
y^{2}+x=11^{2 k+1} \\
y^{2}-x=1
\end{array}\right\}
$$

We get

$$
2 y^{2}=11^{2 k+1}+1,
$$

this equation is impossible modulo 11.
Summarizing the above, equation (20) has the following solution when $(11, x)=1$ we

$$
(x, y, k, n)=(4,3,03),(58,15,0,3),(9324,443,1,3)
$$

II. Let, $11 \mid x$ then $x=11^{s} X$ and $y=11^{t} Y$ such that $s, t>0$ and $(X, 11)=(Y, 11)=1$. Equation (20) becomes

$$
\begin{equation*}
11^{2 s} X^{2}+11^{2 k+1}=11^{n t} Y^{n} \tag{27}
\end{equation*}
$$

We have two cases:
(1) If $2 s=n t$, then from (27) we get

$$
X^{2}+11^{2(k-s)+1}=Y^{n},
$$

this equation has solution when $n=3$ and either $k-s=0$ or $k-s=1$, since $2 s=3 t$ then $3 \mid s$. Let $s=3 M$ then $t=2 M$, hence either $k=3 M$ or $k=3 M+1$.
So equation (20) has three families of solution

$$
(x, y, k, n)=\left(4.11^{3 M}, 3.11^{2 M}, 3 M, 3\right),\left(58.11^{3 M}, 15.11^{2 M}, 3 M, 3\right),
$$

($\left.9324.11^{3 M}, 443.11^{2 M}, 3 M+1,3\right)$.
(2) If $2 k+1=n t$ then equation (27) become

$$
11\left(11^{s-k-1} X\right)^{2}+1=Y^{n}
$$

which has no solution [8]. \bigcirc

By using the same argument used in Theorem 2 we get the following:
Theorem4
If p an odd prime such that $p \not \equiv 5(\bmod 8)$ and $(h, p)=1$ where h is the class number of the field $(\sqrt{-11 p})$, then the diophantine equation

$$
p x^{2}+11^{2 k+1}=y^{p}, p>11,
$$

has no solution in integers x and $y . \diamond$

References

[1] S. Ramanujan, "Collected papers of Ramanujan", Cambridge univ. press, Cambridge, (1927).
[2] T. Nagell, "The diophantine equation $x^{2}+7=2^{n}$ ", Nordisk. Mat. Tidsker, 30, 62-64, Ark. Mat., 4(1960), 185-187.
[3] Y. Bugeaud and T. Shorey, "On the number of solutions of the generalized Ramanujan-Nagell equation", J. Reine Angew. Math., 539(2001), 55-74.
[4] S. Siksek and J. Cremona, "On the diophantine equation $x^{2}+7=y^{m "}$, Acta Arith. 109 (2003), 143-149.
[5] F. S. Abu Muriefah, " On the diophantine equation $p x^{2}+q^{2 k}=y^{p "}$, J. Number Theory, 90 (2008), 1-6.
[6] F. S. Abu Muriefah, F. Luca and A. A. Togbé, "On the diophantine equation $x^{2}+5^{a} .13^{b}=y^{n "}$, Glasg. Math. J., 50(2008), 175181.
[7] Y. Bilu, G. Hanrot and P. M. Voutier, "Existence of primitive divisor of Lucas and Lehmer numbers", J. Reine Angew. Math., 539 (2001), 75-122.
[8] W. Ljunggren, "Einige bemerkungen uber die darstellung ganzer zahlen durch binary kubische formen mite positive diskriminante", Acta Math., 75 (1942),1-21.
[9] E. Demirpolat and S. Cenberci, "On the diophantine equation $x^{2}+11^{2 k+1}=y^{n "}$, Internat. Math. Forum, 4(2009), 277-280.
[10] J. H. E. Cohn, "The diophantine equation $x^{2}+C=y^{n "}$, Acta Arith., 65 (1993), 367-381.
[11] S. A. Arif and F. S. Abu Muriefah," On the diophantine equation $x^{2}+q^{2 k+1}=y^{n} "$, J. Number Theory, 95 (2002), 95-100.
[12] O. Korhonen,"On the diophantine equation $C x^{2}+D=y^{n "}$, Acta Univ. Oulu. Ser. Asci. Rerum. Natur. Math., 25 (1981), 9-17.
[13] L. J. Mordell, "Diophantine equations", Academic press, London, (1969).

