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Abstract: A new distribution, the Epsilon Skew Gamma (ESΓ ) distribution, which was first introduced by Abdulah [1], is used on a
near Gamma data. We first redefine the ESΓ distribution, its properties, and characteristics, and then we estimate its parameters using
the maximum likelihood and moment estimators. We finally use these estimatorsto fit the data with the ESΓ distribution.
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1 Introduction

The statistical analysis requires knowing of the probability model or distribution, so that in real life applications,we seek
to have distributions for analyzing skewed data and involving tail behavior. Many types of distributions are classifiedas
either skewed (positive or negative) or kurtotic (heavy or thin tailed) relative to a normal distribution. In this century, there
has been increasing interest in building and modeling skewed parametric families of distributions that allow variety in
the shape and tail behavior in order to measure the divergence and central tendency in case studies, particularly, when
modeling data that have high influence on the curve performance to the right or left side of the distribution. Many studies
have been proposed to introduce skew-symmetric distributions which can account for both skewness and kurtotic, see e.g.,
Jones and Faddy [18] who extended the skewness concept to the t-distribution. Azzalini [9] and Arellano [6] introduced
general family of skewed distributions and derived severalskew-symmetric distributions, like skew exponential power
(SEP), skew t, skew logistic, and skew-symmetrized gamma distributions. Gupta [17] derived pdfs for several skew-
symmetric distributions and studied some of its properties, in particular, skew normal, skew uniform, skew t, skew Cauchy,
skew Laplace, and skew logistics. All the researches mentioned above and many others, like Arnold and Beaver [7], Wahed
[21], and Ali [4] have adopted the principle of Azzalini [8] work in construction skewed-symmetric distributions by using
the following pdf

f (x) = 2φ(x)ψ(αx) −∞ < x< ∞ , (1)

whereφ(x) andψ(x) denote the pdf and cdf of the standard normal distribution, respectively, andα is any real number.
Some authors have constructed models with stronger degree of asymmetry by adding another skewness parameterε.
Mudholkar [20] presented the Epsilon Skew Normal (ESN) distribution witha skewness parameter|ε |< 1. The ESN and
Epsilon Skew Laplace (ESL) Elsalloukh [12] and Almousawi [5], are two special cases of the Epsilon Skew exponential
power (ESEP) distribution which was developed by Elsalloukh [11] and [13]. Some proposals have been focused on
some kind of skewed model which arising from symmetric reflected distributions, such as reflectedΓ Borghi [10],
double Weibull, and reflected beta prime distributions. Ali[3] used Azzalini’s equation (1) to construct skew-symmetric
distribution taking pdf as a Laplace kernel and cdf comes from either Laplace, reflectedΓ , double Weibull, reflected
Pareto, reflected beta prime, and reflected uniform distributions. Some statisticians added bimodality features to the
skewed distributions. Ǵomez [15] defined the uni-bimodal skew flexible normal (SFN) distribution by including an
additional parameterδ to (1) and highlighted, whenδ < 0, the distribution becomes a bimodal. Eugenea [14] studied the
properties of a special class from a general family, the logit beta random variable, which was called Beta-Normal (BN)
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with four parameters(α,β ,µ ,σ), whereα andβ two shape parameters. The distribution is bimodal when bothα andβ
are less than 0.214. Recently, reflected invertedΓ distribution was extended to Epsilon Skew Inverted Gamma ESIΓ ,
Abdulah [2] which can compile three attractive features, skewness, kurtosis, and bimodality. In this paper we introduce
the ESΓ distribution with four parameters. The importance of this distribution comes; it can produce several other
important distributions as special cases like, exponential, ESL, χ2, and reflectedΓ distributions. Additionally, the ESΓ is
efficient model for fitting not only skewed, peaked or flat-tailed data, but also skewed, peaked or flat with bimodal
features for data that comes from two different populations. The remaining part of the paper is structured as follows.
Section 2 includes definitions and basic properties of the ESΓ . In Sections 3 and 4, the estimation for the model
parameters are estimated using the MLE and MME methods, respectively. In Sections 5 and 6, the moment generating
and characteristic functions for ESΓ are derived, respectively. Section 7 shows how the model canbe applied in two
examples. We conclude by presenting the results of the skew symmetric class, ESΓ distribution, in Section 8.

2 Definition and Basic Properties of the ESΓ Distribution

Proposition 1. Elsalloukh [11] If Z ∼ ESEP(θ ,β ,k,ε) is a random variable, then the random variable X=
(

(Z−θ)
εiβ

)k

is a standardized ESΓ , that is X∼ ESΓ (0,1,1/k,εi). This is a transformation case, where i= 1,2, ε1 = 1/(1− ε) for
x≥ 0, andε2 = 1/(1+ ε) for x< 0.

You can refer to Abdulah [1], where the proof was shown. Therefore, the pdf of ESΓ distribution can be obtained with
the following definition.

Definition 1. Abdulah [1] A random variable X is said to have an ESΓ distribution with parametersθ ∈ R, β > 0,
k> 0, and|ε |< 1 that are location, scale, shape, and skewness parameters, respectively, if it has the pdf

f (x) =
1

2Γ (k)β k











(

(x−θ)
(1−ε)

)(k−1)
e
− (x−θ)

β (1−ε) if x ≥ θ
(

(θ−x)
(1+ε)

)(k−1)
e
− (θ−x)

β (1+ε) if x < θ .
(2)

Note that whenε = 0, X ∼ symmetric reflectedΓ (θ ,β ,k) distribution, whenε > 0, the distribution is skewed to the right
viz the right tail is longer than the left tail, and whenε < 0, the distribution is skewed to the left and the left tail is longer
than the right tail.

Proposition 2. Abdulah [1] If X ∼ ESΓ (θ ,β ,k,ε), then the cumulative distribution, F(x), function of X is

F(x) =

{

1− (1−ε)
2Γ (k)Γ (k,g(x)) f or x≥ θ

(1+ε)
2Γ (k)Γ (k,h(x)) f or x< θ .

Figure 1 shows ESΓ with different values forε, Figure 2 shows the cdf of ESΓ with ε = 0.3, and Figure 3 shows the
difference between ESΓ and reflectedΓ distributions. Note that whenk = 1, (2) becomes ESL as defined in Elsalloukh
[13], [12], and Almousawi [5].

3 Central Moments and First Four Moments for the ESΓ Distribution

This section is devoted to characterize the features of ESΓ distribution through the central moments and first four moments
by using the following proposition.

Proposition 3. Abdulah [1] If X ∼ ESΓ (θ ,β ,k,ε), then the central moments, mean, variance, and skewness and
kurtosis coefficients are, respectively

1.

E(X−θ)n =
β nΓ (n+k)

2Γ (k)

[

(−1)n(1+ ε)n+1+(1− ε)n+1] ,

2.
E(X) = θ −2kβε ,
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Fig. 1: ESΓ Density Functions for Different Values forε.
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Fig. 2: CDF For ESΓ Density Functions withε=0.3.

3.
Var(X) = β 2k

[

(k+1)(1+3ε2)−4kε2] ,

4.

λ1 =

{

1
Γ (k)

[

Γ (k+2)+(3Γ (k+2)−4k2Γ (k))ε2]
}−3/2

[−2kεΓ (k)+(1+3ε2)Γ (k+2)−4ε(1+ ε2)Γ (k+3)
Γ (k)

]

,

5.

λ2 =

{

1
Γ (k)

[

Γ (k+2)+(3Γ (k+2)−4k2Γ (k))ε2]
}−2

[−2kεΓ (k)+(1+3ε2)Γ (k+2)−4ε(1+ ε2)Γ (k+3)+2Γ (k+4)(1+10ε2+5ε4)

Γ (k)

]
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Fig. 3: ESΓ and ReflectedΓ Density Functions.

The proof for all these moments was shown in Abdulah [1].

4 Maximum Likelihood Estimation for the ESΓ Parameters

In order to estimate and study the behavior of the parametersof the ESΓ distribution, we consider the likelihood equations
which lead to the maximum likelihood estimators assuming the location parameterθ = 0; this means we standardize the
distribution by assumingθ = 0 and treat the other parametersβ ,k, andε as unknown.
Suppose thatX ∼ ESΓ (0,β ,k,ε) be a random variable with a pdf given in (2), then the likelihood function is Abdulah [1]

L(γ) =
(

1
2Γ (k)β k

)n















∏n
i=1

(

x+i
(1−ε)

)(k−1)
e
−∑n

i=1x+i
β (1−ε) if x≥ 0

∏n
i=1

(

x−i
(1+ε)

)(k−1)
e
−∑n

i=1x−i
β (1+ε) if x< 0 ,

where γ = (β ,k,ε),

x+i =

{

xi if xi ≥ 0
0 o/w ,

and

x−i =

{

−xi if xi ≤ 0
0 o/w .

Then the log likelihood function is

logL(γ) =−nlog(2)−nlogΓ (k)−nklog(β )+(k−1)
n

∑
i=1

log(
x+i

(1− ε)
)− ∑n

i=1x+i
β (1− ε)

+(k−1)
n

∑
i=1

log(
x−i

(1+ ε)
)− ∑n

i=1x−i
β (1+ ε)

. (3)

Differentiating (3) with respect toβ leads to the MLE ofβ

β̂ =
∑n

i=1x+i (1+ ε̂)+∑n
i=1x−i (1− ε̂)

nk̂(1− ε̂2)
,

and the MLEs ofk andε are maximized numerically Abdulah [1].
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5 Method of Moments Estimation(MME) for the ESΓ Parameters

Traditionally, researchers have used different methods toestimate the parameters particularly, when the number of the
unknown distribution’s parameters are increased. This stems from the MM estimators can provide significant initial
values for finding the solutions of the likelihood equationsand estimation by the MM can be reflecting a more precise
approximation of the MLE estimates by the Newton-Raphson method. Since the ESΓ distribution consists of four
parameters, two main scenarios are followed

1.Letθ andβ be unknown and assume the parametersk andε are known so that the MMEs forθ andβ are, respectively

θ̃ = x̄+
2
√

kεs
√

(k+1)(1+3ε2)−4kε2

and
β̃ =

s
√

k[(k+1)(1+3ε2)−4kε2]
,

wherex̄ ands2 are the sample mean and variance, respectively Abdulah [1].
2.Letk andβ be unknown and assumeθ andε are known, the moment estimators forβ andk are, respectively

supposeθ = 0, since it is known, we have

x̄=−2k̃β̃ ε =⇒ k̃=
−x̄

2β̃ ε
(4)

and

β̃ =
x̄

2ε
− 2ε ∑n

i=1x2
i

2nε x̄(1+3ε2)
(5)

substitute (5) in (4) we obtain the MME ofk Abdulah [1].

6 Moment Generating and Characteristic Functions of the ESΓ Distribution

The mgf of a random variable X is defined by

µx(t) = E(etx) , -h< t < h,h> 0 .

Proposition 4. Abdulah [1] If X ∼ ESΓ (0,β ,k,ε), then the mgf of X can take the form

µx(t) =
(1+ ε)

2(1+ tβ (1+ ε))k +
(1− ε)

2(1− tβ (1− ε))k . (6)

The proof was given by Abdulah [1]. Note that whenε = 0, (6) becomes the mgf of the reflectedΓ distribution, while
whenk = 1 the mgf of ESL is retrieved. Also, it can be shown when the mgfexists therth derivative exists and therth
moment att = 0 can be obtained.

Proposition 5. Abdulah [1] If X ∼ ESΓ (0,β ,k,ε), then the characteristic function of X is

φx(t) =
(1+ ε)

2(1+ itβ (1+ ε))k +
(1− ε)

2(1− itβ (1− ε))k .

7 Applications

This section is devoted to apply two data sets of examples on the ESΓ and some other distributions that are interesting to
us. In the first one, we try to fit the five models; regularΓ , reflectedΓ , ESΓ , regular Weibull, and exponentiated
exponential (EE) in testing a life for 23 ball bearings Lawless [19] and Gupta [16]. In the second example, we fit the
models; regularΓ , reflectedΓ , ESΓ , and beta normal distribution for the 252 adults numbers of the flour beetle, species
Tribolium Castaneum Eugenea [14]. In the analysis for both examples, we depend on the log likelihood scores,
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Table 1: Results of the Parameter MLEs and Corresponding Values of logL, AIC, andBIC for the Five Fitted Distributions of Ball
Bearings Data.

Distribution scale shape skewness logL AIC BIC
regularΓ 0.0556 4.0196 -113.0274 230.1 232.3
reflectedΓ 0.4715 1.6649 0 -31.8257 69.6 67.7
regular Weibull 0.0122 2.1050 -113.6887 231.3 233.6
EE 0.0314 5.2589 -112.9763 229.9 232.2
ESΓ 0.3251 2.5737 -0.249 -31.6234 69.2 67.3

information criteria such as Akaike information criterionAIC which is based on the number of parameters in the model,
Bayesian information criterionBIC, and on the density plots for selecting the best fitting model.

Example (1)
The data for this example are taken from Lawless [19] book, page 99. The data are to test the endurance of deep-groove
ball bearings and each observation represents the number ofmillion cycles before the failure times. Parameters estimation
for fitting the distributions,Γ , Weibull, and EE have been studied by Gupta et al. [16]. In this analysis, we check whether
these five models, mentioned above, are reasonably good fitting for describing ball bearings data. Using SAS software,
we estimate the parameters of the reflectedΓ and ESΓ distributions, calculate the values of the log likelihood scores
and their corresponding values of theAIC, andBIC. The models with smallest values of these criteria are picked it up as
a best fitting model. The results in Table 1 present the negative log likelihood values,AIC, andBIC. It is clear that the
ESΓ works reasonably as a best fit distributions for modeling thelife tests of ball bearings data, since it has the largest
likelihood values and lowestAIC andBIC values. Figure 4 shows the density plots of the fitted distributions reflectedΓ
and ESΓ with the histogram of the observations which displays the presentation of the ball bearings data. The plot depicts
that the ESΓ distribution is the closest distribution to the histogram than the reflectedΓ distribution.
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Fig. 4: Fitted Density Functions of the Distributions on the Histogram for Ball BearingsData.

Example(2)
This example deals with the empirical data sets for growing populations of adult numbers for flour beetle, species
Tribolium Castaneum. The data are listed in Eugenea [14] as thex value and observed frequency distributions for strains
2 of Tribolium Castaneum. These data were applied by Eugenea[14] on the Γ , Lagrange-Γ distributions, and
beta-normal distribution which is characterized as a bimodal distribution. In this example, we conduct a brief comparison
of the four models; regularΓ , reflectedΓ , ESΓ , and beta-normal distributions. Using SAS, we estimate theparameters,
log likelihood values,AIC, andBIC for each distribution and comparing the results which are summarized in Table 2 and
Figure 5. It is clear that the reflectedΓ distribution is a suitable as a better fit distribution to model the flour beetle data
among the alternative distributions, since it has the lowervalues of AIC, and BIC. Also, the comparison of the
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Table 2: Results of the Parameter MLEs and Corresponding Values of logL, AIC, and BIC for the Four Fitted Distributions of Flour
Beetle Data.

Distribution scale shape skewness µ̂ σ̂ logL AIC BIC
regularΓ 9.8983 8.2585 - - - -1190.782 2387.6 2398.2
ref Γ 0.4857 1.6625 0 - - -335.904 715.8 722.9
ESΓ 0.4338 1.8875 -0.1178 - - -355.680 717.4 727.9
beta normal shapea shapeb

- 0.160 0.160 61.29 7.42 -714.1 722.1 736.3

aforemention distributions is based on probability density plots with the histogram of the observations. The plot curves
in Figure 5 show that the reflectedΓ distribution are fitted to the sample data.
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Fig. 5: Fitted Density Functions of the Distributions on the Histogram for Flour Beetle.

8 Conclusion

In the present study, we have focused on ESΓ distribution in the context of skewed, kurtotic, and bimodel literatures. We
have derived the main properties, distribution function, and MLE and MME estimators. Furthermore, we have presented
the model under two real data sets. In the first case the ESΓ and a reflectedΓ distributions give better fit as compared
to the regularΓ , Weibull, and EE while from the second case we compare the fitsof symmetric and asymmetricΓ
distributions to the flour beetle data, where the parameterε =−0.1178 controls the left skewed and it was observed that
the reflected gamma distribution is better to model the flour beetle. The ESΓ distribution can accommodate enough for
modeling non-normal data.
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