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Abstract: A new distribution, the Epsilon Skew Gamma (Edistribution, which was first introduced by Abdulati,[is used on a
near Gamma data. We first redefine the &8stribution, its properties, and characteristics, and then we estimate itagtara using
the maximum likelihood and moment estimators. We finally use these estinafdrghe data with the ES distribution.
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1 Introduction

The statistical analysis requires knowing of the probghbitiodel or distribution, so that in real life applicationg seek

to have distributions for analyzing skewed data and invg\teil behavior. Many types of distributions are classifsd
either skewed (positive or negative) or kurtotic (heavyhim tailed) relative to a normal distribution. In this centithere
has been increasing interest in building and modeling skquegametric families of distributions that allow variety i
the shape and tail behavior in order to measure the diveegend central tendency in case studies, particularly, when
modeling data that have high influence on the curve perfoceémthe right or left side of the distribution. Many studies
have been proposed to introduce skew-symmetric distdbstivhich can account for both skewness and kurtotic, see e.g
Jones and FaddyL8] who extended the skewness concept to the t-distributia@zalni [9] and Arellano p] introduced
general family of skewed distributions and derived sevskalw-symmetric distributions, like skew exponential powe
(SEP), skew t, skew logistic, and skew-symmetrized gamrstillitions. Guptal7] derived pdfs for several skew-
symmetric distributions and studied some of its properiregarticular, skew normal, skew uniform, skew t, skew Gatic
skew Laplace, and skew logistics. All the researches meati@above and many others, like Arnold and Beavgiahed
[21], and Ali [4] have adopted the principle of Azzalir8][work in construction skewed-symmetric distributions sjng

the following pdf

() =2000p(ax)  —w<x<w, @)

where@(x) and /(x) denote the pdf and cdf of the standard normal distributiespectively, andr is any real number.
Some authors have constructed models with stronger dedragymmetry by adding another skewness paramgter
Mudholkar R0] presented the Epsilon Skew Normal (ESN) distribution wittkewness parametef < 1. The ESN and
Epsilon Skew Laplace (ESL) Elsalloukhd] and Almousawi b], are two special cases of the Epsilon Skew exponential
power (ESEP) distribution which was developed by Elsallo{kl] and [13]. Some proposals have been focused on
some kind of skewed model which arising from symmetric réfléadistributions, such as reflectéd Borghi [10],
double Weibull, and reflected beta prime distributions.[8]iused Azzalini’s equationl] to construct skew-symmetric
distribution taking pdf as a Laplace kernel and cdf comemfeather Laplace, reflectell, double Weibull, reflected
Pareto, reflected beta prime, and reflected uniform digtdbs. Some statisticians added bimodality features to the
skewed distributions. @mez [L5] defined the uni-bimodal skew flexible normal (SFN) disttibo by including an
additional parameted to (1) and highlighted, whed < 0, the distribution becomes a bimodal. Eugeried tudied the
properties of a special class from a general family, thet lbgia random variable, which was called Beta-Normal (BN)

* Corresponding author e-madkabdulah@ualr.edu

© 2013 NSP
Natural Sciences Publishing Cor.


http://dx.doi.org/10.12785/jsap/020302

196 NS 2 E. Abdulah, H. Elsalloukh: Analyzing Skewed Data with the Epsilon...

with four parameterga, 3, 1, o), wherea and two shape parameters. The distribution is bimodal when bcahd 3

are less than 0.214. Recently, reflected inveftedistribution was extended to Epsilon Skew Inverted GammH ES
Abdulah ] which can compile three attractive features, skewnessog&is, and bimodality. In this paper we introduce
the ES distribution with four parameters. The importance of thistrdbution comes; it can produce several other
important distributions as special cases like, exponke®BL, x2, and reflected” distributions. Additionally, the ES is
efficient model for fitting not only skewed, peaked or flatadidata, but also skewed, peaked or flat with bimodal
features for data that comes from two different populatidriee remaining part of the paper is structured as follows.
Section 2 includes definitions and basic properties of th€ .H8 Sections 3 and 4, the estimation for the model
parameters are estimated using the MLE and MME methodsec#gely. In Sections 5 and 6, the moment generating
and characteristic functions for ESare derived, respectively. Section 7 shows how the modebeaapplied in two
examples. We conclude by presenting the results of the skeungtric class, ES distribution, in Section 8.

2 Definition and Basic Properties of the EF Distribution

k
Proposition 1. Elsalloukh [L1] If Z ~ ESEP(0, 3,k €) is a random variable, then the random variable:X( (Zgi’ﬁe))

is a standardized HS, that is X~ ES™ (0,1,1/k,&). This is a transformation case, where-i1,2, & = 1/(1—¢) for
x>0,ande; =1/(1+¢) forx<O.

You can refer to Abdulahl]], where the proof was shown. Therefore, the pdf of EBstribution can be obtained with
the following definition.

Definition 1. Abdulah [1] A random variable X is said to have an ESlistribution with parameter® € R, > 0,
k > 0, and|¢| < 1 that are location, scale, shape, and skewness parametsgectively, if it has the pdf

k-1) _ (8
o n (Efeg)( )e Bil-¢) ifx>0 @)
) — B
2r (k) B~ (e ;)(k Ve i ifx<8.

Note that wherg = 0, X ~ symmetric reflected (6, 8,k) distribution, where > 0, the distribution is skewed to the right
viz the right tail is longer than the left tail, and when< O, the distribution is skewed to the left and the left taildager
than the right tail.

Proposition 2. Abdulah [1] If X ~ ES (0, 3,k, €), then the cumulative distribution,(K), function of X is

F(X) = { ! 1i£)<$§"(k ,9(x)) forx> 0
2 (k) I (k,h(x)) forx< 6.

N

Figure 1 shows ES with different values fore, Figure 2 shows the cdf of ESwith € = 0.3, and Figure 3 shows the
difference between HSand reflected™ distributions. Note that whek= 1, (2) becomes ESL as defined in Elsalloukh
[13], [12], and Almousawi §].

3 Central Moments and First Four Moments for the ES™ Distribution

This section is devoted to characterize the features of @Stribution through the central moments and first four motse
by using the following proposition.

Proposition 3. Abdulah 1] If X ~ ES (6,f3,k,€), then the central moments, mean, variance, and skewness and
kurtosis coefficients are, respectively

1.
E(X-0)"= Bgr(r(f)k)[<—1)”(1+£)”“+(1—a>””},
2.
E(X) = 6 — 2kBe,
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Fig. 1: ES™ Density Functions for Different Values far
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Fig. 2: CDF For EF" Density Functions witlz=0.3.

Var(X) = B2k [(k+1)(1+ 3¢?) — 4ke?]

~3/2

A= {r(lk) [ (k+2) + (31 (k+2) — 4T <k>>62}}

—2kel (K) + (14 3€?)I" (k+2) — 4e(1+€2)r (k+3)
| i |

Ay = 1/’k2 3r(k+2 4k21'k2_2
o= { g [T kv 2+ (M (+2) - 4 ()7
(

[—stl' K)+ (14 3€2) (k+2) —4e(1+ €2 (k+3) + 2 (k+4)(1+ 102+ 534)}
(k)
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Fig. 3: ES™ and Reflected” Density Functions.

The proof for all these moments was shown in Abduldh [

4 Maximum Likelihood Estimation for the EST™ Parameters

In order to estimate and study the behavior of the parameté¢ns ES™ distribution, we consider the likelihood equations
which lead to the maximum likelihood estimators assumimgltication parameté? = 0; this means we standardize the
distribution by assuming = 0 and treat the other paramet@k, ande as unknown.

Suppose thaX ~ EST (0, B,k, €) be a random variable with a pdf given i) then the likelihood function is Abdulali]

Xt )<k—1> EpIEL

(1 () et ko
L<V’(zr<k>ﬁk>

(k1) 3y
M ()" e B8 itxco

where y=(B,k€),

X ifx >0
X" = { 0 olw,
and
- _ { —x if x <0
71 0 o/w.
Then the log likelihood function is
C X' Y%
logL(y) = —nlog(2) — nlogrl (k) — nklog(B) + (k—1) .Zlog( 19 ) — Bli_e)
L X TitaX

Differentiating @) with respect tg3 leads to the MLE of3

B X (1+8)+5ax (1-8)
nk(1— £2)

)

and the MLEs ok ande are maximized numerically Abdulaii]f
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5 Method of Moments Estimation(MME) for the ESI™ Parameters

Traditionally, researchers have used different methodsstinate the parameters particularly, when the numbereof th
unknown distribution’s parameters are increased. Thimisttom the MM estimators can provide significant initial
values for finding the solutions of the likelihood equati@msl estimation by the MM can be reflecting a more precise
approximation of the MLE estimates by the Newton-Raphsomhote Since the ESS distribution consists of four
parameters, two main scenarios are followed

1.LetB andf be unknown and assume the parameétensde are known so that the MMEs f& andf3 are, respectively

§_x. 2vkes
V/(K+1)(1+ 3¢2) — 4ke?

and
S

VK[(k+1)(1+ 3€2) — 4ke?]

wherex ands® are the sample mean and variance, respectively AbddJah [
2.Letk andf be unknown and assunfeande are known, the moment estimators fdandk are, respectively
supposeé = 0, since it is known, we have

B=

_ ~ o~ ~ =X
x=—-2kBe = k= Zﬁs (4)

and

X 23X

2e  2nex(1+ 3¢?) ®)

B=

substitute §) in (4) we obtain the MME ok Abdulah [1].

6 Moment Generating and Characteristic Functions of the E$ Distribution
The mgf of a random variable X is defined by

ux(t) =E(€”), -h<t<h,h>0.
Proposition 4.  Abdulah [1] If X ~ ES (0, 3,k, €), then the mgf of X can take the form

(1+¢) . (1—¢)
1+tB(1+¢€))k  2(1—tB(L—¢g))k’
The proof was given by AbdulaH]. Note that where = 0, (6) becomes the mgf of the reflectéddistribution, while

whenk = 1 the mgf of ESL is retrieved. Also, it can be shown when the egsts therth derivative exists and theth
moment at = 0 can be obtained.

Proposition 5. Abdulah [1] If X ~ ES™ (0, 3,k €), then the characteristic function of X is

. (1+e) (1-¢)
V) = it ek T 20 tpa-e)

/Jx(t) = 2( (6)

7 Applications

This section is devoted to apply two data sets of exampleh®&E8 and some other distributions that are interesting to
us. In the first one, we try to fit the five models; regulay reflectedl”, ES™, regular Weibull, and exponentiated
exponential (EE) in testing a life for 23 ball bearings Lasddl9] and Gupta 16]. In the second example, we fit the
models; regulaf, reflected™, ES, and beta normal distribution for the 252 adults number$eflour beetle, species
Tribolium Castaneum Eugenedd]. In the analysis for both examples, we depend on the lodiliked scores,
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Table 1: Results of the Parameter MLEs and Corresponding Values @f, 18¢4C, andBIC for the Five Fitted Distributions of Ball
Bearings Data.

Distribution scale | shape | skewness logL AlC BIC

regular 0.0556 | 4.0196 -113.0274| 230.1 | 232.3
reflected” 0.4715| 1.6649 0 -31.8257 | 69.6 | 67.7
regular Weibull | 0.0122 | 2.1050 -113.6887| 231.3 | 233.6
EE 0.0314 | 5.2589 -112.9763| 229.9 | 232.2
ES” 0.3251| 2.5737| -0.249 -31.6234 | 69.2 | 67.3

information criteria such as Akaike information criteri&ihC which is based on the number of parameters in the model,
Bayesian information criterioBIC, and on the density plots for selecting the best fitting model

Example (1)

The data for this example are taken from Lawlesd pook, page 99. The data are to test the endurance of deepegro
ball bearings and each observation represents the numbellioh cycles before the failure times. Parameters ediivna

for fitting the distributions[”, Weibull, and EE have been studied by Gupta etld].[In this analysis, we check whether
these five models, mentioned above, are reasonably goaw fitti describing ball bearings data. Using SAS software,
we estimate the parameters of the refledtednd ES distributions, calculate the values of the log likelihoamies
and their corresponding values of tA&C, andBIC. The models with smallest values of these criteria are pidckep as

a best fitting model. The results in Table 1 present the neg#ig likelihood valuesAIC, andBIC. It is clear that the
ES™ works reasonably as a best fit distributions for modelinglifegests of ball bearings data, since it has the largest
likelihood values and lowegtIC andBIC values. Figure 4 shows the density plots of the fitted distidims reflected”

and ES with the histogram of the observations which displays tlesentation of the ball bearings data. The plot depicts
that the EE distribution is the closest distribution to the histogrdrar the reflected distribution.

[ IData Histogram
= ESGamma
12 = ==Ref-Gamma

Fitted pdfs

Fig. 4: Fitted Density Functions of the Distributions on the Histogram for Ball Beaibajs..

Example(2)

This example deals with the empirical data sets for growingutations of adult numbers for flour beetle, species
Tribolium Castaneum. The data are listed in Eugeddhds thex value and observed frequency distributions for strains
2 of Tribolium Castaneum. These data were applied by Eugé¢hdlaon the I, LagrangeF distributions, and
beta-normal distribution which is characterized as a biahddstribution. In this example, we conduct a brief compani

of the four models; reguldr, reflected™, ES™, and beta-normal distributions. Using SAS, we estimatetrameters,
log likelihood valuesAIC, andBIC for each distribution and comparing the results which amerearized in Table 2 and
Figure 5. It is clear that the reflectéddistribution is a suitable as a better fit distribution to rabithe flour beetle data
among the alternative distributions, since it has the loweaues of AIC, and BIC. Also, the comparison of the
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Table 2: Results of the Parameter MLEs and Corresponding Values af, 18¢C, and BIC for the Four Fitted Distributions of Flour
Beetle Data.

Distribution | scale | shape | skewness| [ 0 logL AIC BIC
regular 9.8983 | 8.2585 - - - -1190.782| 2387.6| 2398.2
reflr 0.4857 | 1.6625 0 - - -335.904 | 715.8 722.9
ES 0.4338 | 1.8875| -0.1178 - - -355.680 | 717.4 727.9
beta normal shapea | shapeb

- 0.160 0.160 | 61.29| 7.42| -714.1 7221 | 736.3

aforemention distributions is based on probability dgngiots with the histogram of the observations. The plot earv
in Figure 5 show that the reflectéddistribution are fitted to the sample data.
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Fig. 5: Fitted Density Functions of the Distributions on the Histogram for Flour Beetle.

8 Conclusion

In the present study, we have focused ori Efstribution in the context of skewed, kurtotic, and bimbdderatures. We
have derived the main properties, distribution functiord 8LE and MME estimators. Furthermore, we have presented
the model under two real data sets. In the first case the &%®l a reflected” distributions give better fit as compared
to the regular™, Weibull, and EE while from the second case we compare thefitymmetric and asymmetric
distributions to the flour beetle data, where the parangeter-0.1178 controls the left skewed and it was observed that
the reflected gamma distribution is better to model the flaatle. The ES distribution can accommodate enough for
modeling non-normal data.
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