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This work examines the Benard convection of an infinite horizontal layer occupied by
a porous medium permeated by an incompressible, thermally and electrically conduct-
ing viscous fluid heated from below when subjected to both uniform vertical magnetic
field and Coriolis forces. A model proposed by P. H. Roberts (1981) in the context of
neutron stars is used. We show that the nonlinearity in this model has no effect on the
development of instabilities through the mechanism of stationary convection which is
the preferred process in terrestrial applications. However, in non-terrestrial applications
the non-linearity influences the onset of overstable convection and overstability is the
preferred mechanism. Some numerical results are presented for the overstability case
when both boundaries are free and rigid.
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1 Introduction

Thermal instability theory has attracted considerable interest and has been recognized
as a problem of fundamental importance in many fields of fluid dynamics. The earliest
experiments to demonstrate the onset of thermal instability in fluids are attributed to Be-
nard (1900, 1901). Rayleigh (1916) provided a theoretical basis for Benard’s experimental
results.

Thermal instability theory has been enlarged by the interest in hydrodynamic flows of
electrically conducting fluids in the presence of magnetic field. The presence of such fields
in an electrically conducting fluid usually has the effect of inhibiting the development of
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instabilities. Benard convection of a magnetohydrodynamic fluid has been examined by
Thompson (1951), Chandrasekhar (1952) and others. The instability of a layer of fluid
heated from below in the presence of Coriolis forces has been studied by Chandrasekhar
(1953,1955) for stationary and overstability cases. He showed that the presence of these
forces usually has the effect of inhibiting the onset of thermal convection. The simultane-
ous effect of both magnetic field and Coriolis forces on the thermal instability of a layer
of fluid heated from below has been studied theoretically by Chandrasekhar (1954,1956)
and experimentally by Nakagawa (1957). The analysis of this problem showed that under
the influence of rotation and magnetic field, fluid motion can show unexpected pattern of
behaviour.

A non-linear relation between the magnetic field H and the magnetic induction B has
been suggested by Roberts (1981) and Muzikar & Pethick (1981) in the context of neu-
tron stars. This non-linear relation has been used by Abdullah & Lindsy (1990, 1991) to
discuss the Benard convection in the presence of vertical and non-vertical magnetic field.
They showed that this relationship has no effect on the development of instabilities through
the mechanism of stationary convection which is the preferred process in terrestial appli-
cations. However, in non-terrestial applications the non-linearity influences the onset of
overstable convection and overstability is the preferred mechanism. This work has been
extended by Abdullah (1992, 1994) to include the effect of Coriolis forces in the presence
of vertical and non-vertical magnetic field. The strength of the non-linearity is measured
by a non-dimensional parameter. Appropriate values of this parameter have been obtained
by Abdullah (1990) using real data.

Rayleigh instability of a layer of fluid subject to a vertical temperature gradient in a
porous medium has been discussed by Horton & Rogers (1945) and Lapwood (1948) using
Darcy’s law. They obtained the criterion for the formation of convection currents in the
presence of porous medium. This criterion is compared with the equivalent conditions
developed by Rayleigh (1916) for the formation of convection currents in a simpler fluid.

Brinkman (1947, 1947) suggested a modification of Darcy’s law by assuming that the
viscosity term in the Navier-stokes equation should be included in the equation of motion.
Yamamoto & Iwamura (1976) and Rudraiah et al. (1980) showed that the Brinkman model
is valid up to magnitude of κ1/d2 ∼= 10−4 or 10−3 where κ1 is the permeability of porous
medium.

A numerical study of buoyancy-driven two-dimensional convection in a fluid saturated
horizontal porous layer confined between two impermeable walls and heated isothermally
from below has been studied by Georgiadis & Catton (1986). Kladias & Prasad (1990)
studied numerically thermoconductive instabilities in horizontal porous layers heated from
below using the Brinkman-Forchheimer-Darcy model. They showed that there are four flow
regimes in the case of free convection: conduction, stable convection, periodic oscillatory
and randomly oscillatory convection. Jan & Abdullah (2000) used Brinkman model to
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investigate the convective instability of a horizontal porous layer permeated by a conducting
magnetic field.

The effect of the earth’s magnetic field on the stability of a layer of porous medium
is of interest in geophysics particularly in the study of the earth’s core where the earth’s
mantle, which consists of conducting fluid, behaves like a porous medium which can be-
come convectively unstable as a result of diffusion. Another application of the results of
flow through a porous medium in the presence of a magnetic field lies in the study of the
stability of a convective flow in the geothermal region.

This paper studies convective instability in a horizontal porous layer permeated by an
incompressible, thermally and electrically conducting fluid using Brinkman model in the
presence of a uniform vertical magnetic field and a uniform vertical rotation when the
relationship between the magnetic induction B and the magnetic field H is non-linear. It
is an extension work of Abdullah (2000). Analytical solutions were obtained when both
boundaries are free and numerical results were presented for the cases of free and rigid
boundaries. The numerical computations were performed using expansions of Chebyshev
polynomials.

2 Mathematical Formulation

Consider an infinite horizontal porous layer permeated by incompressible, thermally
and electrically conducting viscous fluid of density ρ under the influence of both magnetic
field and Coriolis forces when the relation between the magnetic field H and the mag-
netic induction B is non-linear. Constitutive relationship between magnetic field, magnetic
induction and density has form (see Roberts (1981)).

Hi = ρ
∂ψ∗

∂Bi
, (2.1)

where ψ∗ = ψ(ρ,B) is the internal energy function. Since ψ∗ must be invariant then the
dependence of ψ∗on B is reduced to ψ∗ = ψ(ρ,B). Thus from (2.1) Hi = ρφBi where

φ =
1
B

∂ψ

∂B
(2.2)

is the susceptibility. Thus the equation of motion is

ρ
∂υi

∂t
= −P,i + ρν∇2υi + ρgi + (ρφBi),k Bk − µ′

k1
υi + 2ρ(υ × Ω)i,

where

P = P +
ρ

2

(
B2φ +

∫
B2φBdB

)
− 1

2
ρ0|Ω× r|2.

If we now make the Boussinesq approximation then the governing field equations become

vi,i = 0
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Dυi

Dt
= −

(
P

ρ0

)

i

+vO2υi−g(1− αθ)δi3+(φBi)k Bk− v

k1
vi+ 2eijkvjΩk, (2.3)

Dθ

Dt
= kO2θ,

∂Bi

∂t
= Bjvi,j − vjBi,j − ηeijkJk,j ,

together with the Maxwell equations

divB = Bi,i = 0,

curlH = eijkHk,j = Ji,

curlE = eijkEk,j = −∂Bi

∂t
, (2.4)

where gi is the acceleration of gravity, v is the kinematic viscosity, µ′ is the kinematic
viscosity, k1 is the permeability of porous medium, D/Dt is the convected derivative and
the terms (1/2)|Ω × r|2,i and 2(v × Ω) represent respectively the centrifugal force and the
Coriolis acceleration. We observe that equations (2.3) and (2.4) have a steady state solution
in which

v = 0,

θ = θ(x3) = T0 − βx3,

P = P (x3), (2.5)

B = (0, 0, B), B = constant

J = 0,

φ = φ(B),

where the temperatures on the planes x3 = 0, and x3 = d are respectively T0 and T0 − T̃

so that β = T̃ /d.

3 The Perturbation Equations

Suppose that the initial state described by equations (2.5) is slightly perturbed so that

v = 0 + ε∗v∗, θ = T0 − βx3 + ε∗θ∗, P = P + ε∗P ∗,

B = (0, 0, B) + ε∗b∗, J = 0 + ε∗J∗, φ = φ + ε∗b∗3φB ,

where ε∗ is the perturbation parameter and v∗, θ∗, P ∗, b∗, J∗ are respectively the linear per-
turbation of velocity, temperature, pressure, magnetic induction and current density about
their values described in (2.5). The linear perturbation of φ about its value can be obtained
in the following way:

B =
√

BiBi



Benard Convection in a Horizontal Porous Layer 63

=
√

[(0, 0, B) + ε∗b∗] . [(0, 0, B) + ε∗b∗]

'
√

B2 + 2ε∗(0, 0, B).b∗

' B +
ε∗(0, 0, B).b∗

B
.

Therefore

φ = φ

(
B +

ε∗(0, 0, B).b∗

B

)

' φ(B) + ε∗b∗3φB(B), b∗ = (b∗1, b
∗
2, b

∗
3).

We may verify that the linearized versions of equations (2.3) and (2.4) are

∂υ∗i
∂t

= −
(

P ∗

ρ0

)

,i

+ vO2v∗i −Bφbi,3 + B2φBb∗3,3δi3 − v

k1
v∗i + 2eijkv∗j Ωk,

v∗i,i = 0,

∂θ∗

∂t
= βv∗3 + kO2θ∗, (3.1)

b∗i,i = 0,

∂b∗i,i
∂t

= Bjv
∗
i,j − ηeijkJ∗k,j ,

J∗ = eijk(ρφb∗k + ρBφBb∗3δk3)j .

Now we introduce dimensionless variables x̂i, v̂i, t̂, ĵi, θ̂, P̂ and b̂i such that

x∗i = dx̂i, v∗i =
k

d
v̂i, t =

d2

v
t̂, J∗i =

kvρ0

Bd3
Ĵi

θ∗ =
k

d

√
|v|β
kαg

θ̂, P ∗ =
kvρ0

d2
P̂ b∗i =

kv

Bφd2
b̂i,

After this non-dimensionalization, equations (3.1) is simplified to

vi,i = 0,

∂υi

∂t
= −P,i + O2υi +

√
Rθ∗δi3 + bi,3 + εb3,3δi3 − 1

N
vi +

√
Teijkvjδk3,

Pr
∂θ

∂t
= −M

√
Rv3 + O2θ, (3.2)

bi,i = 0,

Pm
∂bi

∂t
= Qvi,j − eijkεb3,3δk3,

Ji = eijkbk,j + eijkb∗3δi3.
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where the (ˆ) superscript has been dropped and the non-dimensional R, N, Pr, Pm, ε, Q

and T are given by

R =
αg|β|

vk
, N =

k1

d2
, Pr =

v

k
, Pm =

vµ

η
,

ε =
B

φ
φB , Q =

B2d2

ρ0vη
, T =

4Ω2d4

v2
.

(3.3)

and

M = − β

|β|

{
+1
−1

when heating from above
when heating from below

Equations (3.1)5 and (3.1)6 can be combined to obtain

Pm
∂bi

∂t
= Qvi,3 + O2bi + εO2b3δi3 − εb3,i3. (3.4)

4 The Boundary Conditions

The fluid is confined between the planes x3 = 0 and x3 = 1 and on these planes we
need to specify mechanical, thermal and electromagnetic conditions. Suitable mechanical
conditions assume either a rigid or free boundary, suitable thermal conditions assume either
a perfectly conducting or an insulating boundary and suitable electromagnetic boundary
conditions assume either an electrically insulating or a perfectly conducting boundary.

4.1 Mechanical conditions

For a free surface, the conditions are

v3 = 0,
∂2v3

∂v2
3

= 0,
∂ζ3

∂x3
= 0, (4.1)

where ζ3 is the third component of the vorticity.
For a rigid surface, the conditions are

v3 = 0,
∂v3

∂v3
= 0, ζ3 = 0. (4.2)

4.2 Thermal conditions

At a perfectly conducting boundary, the temperatures of the boundary and impinging
fluid match whereas on a perfectly insulating boundary, no heat transfer can take place
between the fluid and the surroundings and thus the normal derivative of temperature is
zero. In mathematical terms, the possible thermal conditions are

θ = θext on a conducting boundary, (4.3)
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∂θ

∂x3
= 0 on an insulated boundary, (4.4)

where θext is the temperature of the region exterior to the fluid boundary.

4.3 Electromagnetic conditions

On a perfectly insulating electromagnetic boundary, no current can flow to the exterior
region and so J3 = 0 and the magnetic field is continous across the boundary with the
external magnetic field being derived from a scalar potential since curlH = 0 in the ex-
terior region. On a stationary perfectly conducting boundary b3 = 0 and there can be no
surface components of electric field. It is common practice to associate mechanically rigid
and electrically perfectly conducting stationary boundaries. Also the surface components
of the current density are zero and since divJ = 0 then

∂J3

∂x3
= 0.

5 The Eigenvalue Problem

We aim to investigate the non-linear stability of the convection solution (2.5) and, with
this aim in mined, we construct the related eigenvalue problem from equations (3.2). Many
of the tedious algebraic details are suppressed so that the essential direction of the argument
is clear.

As in many convection problems, vector components parallel to the direction of gravity
(i.e. the x3 direction ) play a central role and so it is convenient to introduce the variables
w, b, J, ζ and z by the definitions w = v3, b = b3, J = J3, ζ = ζ3, z = x3. When we take
the curl of equations (3.2)2 and (3.4) we obtain

∂ζi

∂t
= O2ζi +

√
Reijkθ,jδk3 + eijkbk,3j + εeijkb3,3jδk3 − 1

N
ζi +

√
Tvi,3,

Pm
∂Ji

∂t
= εPmeijk

∂b3,j

∂t
δk3 + Qζi,3 + Ji,jj .

(5.1)

Taking the curl of equation (5.1)1 once again, we obtain

∂∇2υi

∂t2
= ∇4υi −

√
R(

∂2θ

∂x3∂xi
− ∂2θ

∂x2
j

δi3) +∇2bi,3

+ ε∇2b3,3δi3 − εb3,33i − 1
N
∇2υi −

√
Tξi,3. (5.2)

The third components of equations (5.1), (5.2), (3.2)3 and (3.4) yield

∂ζ

∂t
= O2ζ +

∂J

∂z
− 1

N
ζ +

√
T

∂W

∂z
,

Pm
∂J

∂t
= Q

∂ζ

∂z
+ O2J,
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∂∇2w

∂t
= ∇ 4w +

√
R(

∂2θ

∂x2
1

+
∂2θ

∂x2
2

) +∇ 2

(
∂b

∂z

)

+ε
∂

∂z

(
∂2b

∂x2
1

+
∂2b

∂x2
2

)
− 1

N
∇ 2w −

√
T

∂ξ

∂z
(5.3)

Pr
∂Q

∂t
= −M

√
Rv3 + O2θ,

Pm
∂b

∂t
= Q

∂W

∂z
+ O2b + ε

(
∂2b

∂x2
1

+
∂2b

∂x2
2

)

Now we look for a solution of the form Φ = Φ(z) exp (i(nx + my) + σt) . Thus equations
(5.3) becomes

σξ = Lξ + DJ − 1
N

ξ +
√

TDw,

σPmJ = QDξ + LJ,

σLw = L2w − a2
√

Rθ + L(Db)− εa2(Db)− 1
N

Lw −
√

TDξ, (5.4)

σPmb = QDw −+b− εa2b

σPrθ = Lθ −M
√

Rw.

Eliminating J from equation (5.4)1 using equation (5.4)2, we find that

[(L− σPm)(L− σ − 1
N

)−QD2]ξ = −
√

T (L− Pmσ)Dw. (5.5)

We may eliminate b, θ and ξ from equation (5.4)3 by applying the operator

(L− σPm − εa2)(L− σPr)[(L− σPm)(L− σ − 1
N

)−QD2]

to equations (5.4)3 and we use equation (5.5) to obtain a twelfth order ordinary differential
equation to be satisfied by w.

σ5PmPrLw − σ4

{
Pm

[
Pm + 2Pr(1 + Pm)

]
L2w −

[
2PrP

2
m

N
+ 2PrPmεa2

]
Lw

}

+ σ3

{[
Pr(Pm + 1)2 + 2Pm(Pm + Pr + 1)

]
L3w

−
[
2Pm

N

(
Pm + Pr(2 + Pm)

)
+ εa2(Pm + Pr + 2PmPr)

]
L2w

− PmPr

(
2QD2 − Pm

N2
− 2εa2

N

)
Lw − a2RMP 2

mw + TPrP
2
mD2w

}

− σ2

{[
(Pm + 1)2 + 2(Pm + Pr + PmPr)

]
L4w

− 1
N

[
4Pm(1 + Pr) + 2(Pr + P 2

m)− εa2
(
1 + 2(Pm + Pr) + PmPr

)]
L3w

+
[P 2

m

N2

(
1 +

2Pr

Pm

)
− 2QD2(Pm + Pr + PmPr) +

2εa2

N
(Pm + Pr + PmPr)

]
L2w
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+ PmPr

[(2Q

N
+ T (2 +

Pm

Pr
)
)
D2 − a2R

M

Pr
(2 + Pm) + εa2

(
Q(2Pr+Pm+PrPm)D2

−PrPm

N

)]
Lw +

[
a2 R

N
MP 2

m − εa2PmPr

(( Q

N
+ T

)
D2 − a2

Pr
RM

)]
w

}

+ σ

{
(2Pm + Pr + 2)L5w −

[ 2
N

(Pr + 2Pm + 1) + εa2(Pr + Pm + 2)
]
L4w

+
[(
− 2QD2(Pr + Pm + 1)− 1

N2
(2Pm + Pr)

)
+

2εa2

N
(1 + Pm + Pr)

]
L3w

+
[
− a2RM(1 + 2Pm) +

(2Q

N
(Pr + Pm) + T (Pr + 2Pm)

)
D2

+ εa2
(
QD2(1 + Pm + 2Pr)− 1

N2
(Pr + Pm)

)]
L2w

+
[(

2a2 R

N
PmM + Q2D4Pr

)
+ εa2

(
a2RM(1 + Pm)

−
( Q

N
(Pr + Pm)− T (Pr + Pm)

)
D2

]
Lw

+
[
a2RQMPmD2 − εa2

(
a2Pm

R

N
M + PrQ

2D4
)]

w

}
− L6w +

( 2
N

+ εa2
)
L5w

+
(
2QD2 − 1

N2
− 2εa2

N

)
L4w +

[
A2RM − (

2
Q

N
+ T

)
D2 + εa2

( 1
N
− 2QD2

)]
L3w

+
[
− a2 R

N
M −Q2D4 + εa2

(2Q

N
+ T

)
D2 − εa4RM

]
L2w

+
[
εa2

(
Q2D4 +

a2R

N
M

)− a2RQMD2
]
Lw + εa4RMQD2 = 0. (5.6)

Now we shall consider both boundaries to be free but later on we shall present results for
the corresponding rigid boundary value problems. For the free boundary value problems

w = D2, w = 0 on z = 0, 1.

Thus equation (5.6) has eigenfunctions w = A sin(lπz) where A is constant and l is an
integer. Consequently Lw = −λw where λ = l2π2 + a2 and σ satisfies the fifth order
equation

σ5PmPr + σ4

{
Pm

[
Pm + 2Pr(1 + Pm)

]
λ−

[
2PrP

2
m

N
+ 2PrPmεa2

]}

+ σ3

{[
Pr(Pm + 1)2 + 2Pm(Pm + Pr + 1)

]
λ2

+
[2Pm

N
(Pm + Pr(2 + Pm)) + εa2(Pm + Pr + 2PmPr)

]
λ

+ PmPr(2QD2l2π2 +
Pm

N2
+

2εa2

N
) + p2(a2RM + TPrP

2
ml2π2)λ−1

}

+ σ2

{[
(Pm + 1)2 + 2(Pm + Pr + PmPr)

]
λ3
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+
1
N

[
4Pm(1 + Pr) + 2(Pr + P 2

m) + εa2
(
1 + 2(Pm + Pr) + PmPr

)]
λ2

+
[P 2

m

N2

(
1 +

2Pr

Pm

)
+ 2Ql2π2(Pm + Pr + PmPr) +

2εa2

N
(Pm + Pr + PmPr)

]
λ

+ PmPr

[(2Q

N
+ T (2 +

Pm

Pr
)
)
l2π2 + a2R

M

Pr
(2 + Pm) + εa2Q(2Pr+Pm+PrPm)l2π2

− εa2PrPm

N

]
+

[
a2 R

N
MP 2

m + εa2PmPr

(
(
2Q

N
+ T )l2π2 +

a2

Pr
RM

)]
λ−1

}

+ σ

{
(2Pm + Pr + 2)λ4 +

[ 2
N

(Pr + 2Pm + 1) + εa2(Pr + Pm + 2)
]
λ3

+
[
2Ql2π2(Pr + Pm + 1) +

1
N2

(2Pm + Pr) +
2εa2

N
(1 + Pm + Pr)

]
λ2

+
[
a2RM(1 + 2Pm) +

(2Q

N
(Pr + Pm) + T (Pr + 2Pm)

)
l2π2

+ εa2
(
Ql2π2(2 + Pm + 2Pr)− 1

N2
(Pr + Pm)

)]
λ

+ 2a2 R

N
PmM + Q2l4π4Pr + εa4RM(1 + Pm) + εa2

[ Q

N
+ T

]
(Pm + Pr)l2π2

+
[
a2RQMPml2π2 + εa2

(
a2Pm

R

N
M + PrQ

2l4π4
)]

λ−1

}

+ (λ + εa2)
[
λ4 +

2
N

λ3 +
(
Ql2π2 +

1
N

)
λ2 +

[
a2RM + (

2Q

N
+ T )l2π2

]
λ

+ a2 R

N
M + Q2l4π4 + a2RMQl2π2λ−1

]
= 0. (5.7)

Since the coefficients of this polynomial are real, its solutions satisfy one of the following
conditions:

1. All solutions are real.
2. Three solutions are real and two are complex conjugate pair solutions.
3. One solution is real and four are complex conjugate solutions.
The stationary instability happens if any real solution is positive while overstability

happens if any real part of the complex conjugate solutions is positive. Solutions of (5.7)
are functions of Pr, Pm, N, ε,Q, T and R and we have to examine how the nature of these
solutions depends on Pr, Pm, N, ε,Q, T and R in the context of heating the fluid layer
from below. Let us assume that |B| is an increasing function of |H| so that dB/dH > 0.
Consequently

d(φB)
dB

> 0 ⇒ φ + BφB > 0,

1 +
BφB

φ
> 0 ⇒ 1 + ε > 0,

and so ε > −1, which implies that

λ + εa2 > 0. (5.8)
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5.1 Stationary convection case

To find the critical Rayleigh number for the onset of stationary convection we set σ = 0
in equation (5.7). Thus

(λ + εa2)
[

λ

a2C

(
C2 + Tλl2π2

)−R

]
= 0,

where C = λ2 + λ/N + l2π2Q, i.e.

R =
λ

a2C

(
C2 + Tλl2π2

)
. (5.9)

Since this equation does not contain Pr, Pm or ε the critical Rayleigh number for stationary
convection is independent of Pr, Pm or ε, which means that the non-linear relation between
B and H has no effect on the development of stationary instability. From equation (5.9)
we find that

dR

dQ
=

λl2π2

a2

[
1− Tλl2π2

C2

]
,

dR

dN
= − λ2

a2N2

[
1− Tλl2π2

C2

]
, (5.10)

dR

dT
=

λ2l2π2

a2C2
.

It is clear from equation (5.10)1 that the magnetic field has a stabilizing effect on the system
in the absence of rotation. Also it has a stabilizing effect on the system in the presence of
rotation provided that T < C2/(l2π2λ). From equation (5.10)2 we find that the permeabil-
ity of porous medium has a destabilizing effect on the system in the absence of rotation.
Also it has a destabilizing effect on the system in the presence of rotation provided that
T < C2/(l2π2λ). From equation (5.10)3 it is clear that the rotation has a stabilizing effect
on the system.

5.2 The overstability case

Since the equations are so complicated, we were unable to obtain analytical solution
for the overstability case but we have produced numerical solutions for the corresponding
problem.

6 Numerical Discussion

The eigenvalue problem (5.4) together with the boundary conditions are solved using
expansion of Chebyshev polynomials. The non-linear relationship between the magnetic
field H and the magnetic induction B has no effects on the relation between the critical
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Figure 6.1: The relation between R and Q for the overstability case when both boundaries are free
for T = 10000 and ε = 1 .

 

4.020

4.070

4.120

4.170

4.220

4.270

4.320

4.370

4.420

4.470

4.520

4.570

4.620

4.670

4.720

4.770

4.820

4.870

4.920

4.970

5.020

5.070

5.120

5.170

2
.3
01

2
.6
02

2
.9
03

3
.0
79

3
.2
04

3
.3
01

3
.3
80

3
.4
47

3
.5
05

3
.5
56

3
.6
02

3
.6
53

3
.6
99

3
.7
40

3
.7
78

3
.8
13

3
.8
45

3
.8
75

3
.9
03

3
.9
29

3
.9
54

3
.9
78

4
.0
00

 

QLog
 

LogR
 

).( 10=N
 

).( 010=N
 

).( 0010=N
 

Figure 6.2: The relation between R and Q for the overstability case when both boundaries are free
for T = 10000 and ε = 2.
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Figure 6.3: The relation between R and Q for the overstability case when both boundaries are free
for T = 50000 and ε = 1.
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Figure 6.4: The relation between R and Q for the overstability case when both boundaries are free
for T = 50000 and ε = 2.



72 F. M. Allehiany and A. A. Abdullah

 

4.559

4.659

4.759

4.859

4.959

5.059

5.159

5.259

5.359

5.459

5.559

5.659

3
.3
01

3
.6
02

3
.7
78

3
.9
03

4
.0
00

4
.0
79

4
.1
46

4
.2
04

4
.2
55

4
.3
01

4
.3
42

4
.3
80

4
.4
15

4
.4
47

4
.4
77

4
.5
05

4
.5
31

4
.5
56

4
.5
80

4
.6
02

 

QLog
 

LogR
 ).( 0010=N

 

).( 010=N
 

).( 10=N
 

Figure 6.5: The relation between R and Q for the overstability case when both boundaries are free
for T = 50000 and ε = 3.
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Figure 6.6: The relation between R and Q for the overstability case when both boundaries are rigid
T = 10000 and ε = 0.25.
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Figure 6.7: The relation between R and Q for the overstability case when both boundaries are rigid
T = 10000 and ε = 0.5.

Rayleigh number R and the magnetic parameter Q for the stationary convection case for
different boundary conditions. However it has a great effect in the development of insta-
bilities through overstability case. The relation between the critical Rayleigh number R
and the magnetic parameter Q for the overstability case for different values of the porous
medium permeability when both boundaries are free is displayed in figures 6.1 and 6.2
when T = 104 for ε = 1, 2 respectively and in figures 6.3, 6.4 and 6.5 when T = 5× 104

for ε = 1, 2, 3 respectively. For rigid boundary conditions the relation is displayed in fig-
ures 6.6 and 6.7 when T = 104 for ε = 0.25, 0.5 respectively and in figures 6.8 and 6.9
when T = 5 × 104 for ε = 0.25, 0.5 respectively. The figures show that as Q increases R
increases which means that the magnetic field has a stabilizing effect. Also it appears from
the figures that as the permeability of the porous medium, N, decreases R increases which
means that as the fluid becomes less porous it becomes more stable. Moreover the critical
value of the magnetic parameter Q, at which overstability becomes possible, increases as
the porous medium permeability N decreases. Figure 6.10 shows a comparison between
the free boundary conditions and the rigid boundary conditions for T = 104 when ε = 0.5.
In fact, it appears that as the value of the parameter ε increases, the critical Rayleigh num-
ber increases which means that the non-linearity has a stabilizing effect for the overstability
case.
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Figure 6.8: The relation between R and Q for the overstability case when both boundaries are rigid
T = 50000 and ε = 0.25.
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Figure 6.9: The relation between R and Q for the overstability case when both boundaries are rigid
T = 50000 and ε = 0.5.
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Figure 6.10: A comparison between the free boundary conditions and the rigid boundary conditions
for the overstability case when T = 1000 and ε = 0.5.

7 Conclusion

Benard convection instability of an infinite horizontal layer occupied by a conducting
viscous fluid using Brinkmann model when the relation between H and B is non-linear is
investigated. The non-linearity has no effect on the development of instabilities through
the mechanism of stationary convection, which is preferred process from the viewpoint
of terrestrial applications. However it has great effect in the development of instabilities
through overstability case. The presence of porous medium increases the stability of fluid.
Moreover the critical value of the magnetic parameter Q , at which overstability becomes
possible, increases as the porous medium permeability N decreases.
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