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Abstract: Aim of the paper is to investigate approximate analytical solution of time-dependent partial differential equation using
a semi-analytical method, the Optimal Homotopy Asymptotic Method (OHAM). To show the efficiency of the proposed method,
we consider one-dimensional heat and advection-diffusion equations. OHAM uses simple computations with pretty good enough
approximate solution, which has an excellent agreement with the exact solution available in open literature. OHAM is not only reliable
in obtaining series solution for such problems with high accuracy but it also saving the volume and time as compared to other analytical
methods.
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1 Introduction

Consider the one dimensional advection-diffusion
equation [4]:

ut +βux = αuxx, a ≤ x ≤ b, t ≥ 0. (1)

subject to the initial condition:

u(x,0) = ϕ(x), x ∈ [a,b] (2)

and the boundary conditions are:{
u(a, t) = g0(t)

u(b, t) = g1(t), t ∈ [0,T ]
(3)

where the subscripts t and x denote differentiation with
respect to time and space respectively, and are supposed
to be smooth functions. In case of g0, g1 the
advection-diffusion equation will reduced into
one-dimensional heat equation is considered as thermal
diffusion.
In case of β = 0, the advection-diffusion equation will
reduced into one-dimensional heat equation is considered
as thermal diffusion.

The Advection-Diffusion Equation (ADE) is of primary
importance in many physical systems, especially those
involving fluid flow [1], one-dimensional version of the
partial differential equations which describe
advection-diffusion equation arise frequently in
transferring mass, heat, energy and vorticity in chemistry
and engineering [2]. Parlarge [3] used ADE is to model
water transport in soils, Caglar et al. [4] have utilized
third-degree B-Spline function for the numerical solution
of one dimensional heat equation, Mohebbi and Dehghan
[5] have presented finite difference approximation and
cubic C1-spline collocation method for the solution with
fourth-order accuracy in both space and time variables
O(h4,k4). Cubic B-Spline Collocation Method for the
numerical solution of one dimensional heat and
advection-diffusion equations are well reported by Goh et
al. [6].

A newly developed analytical method namely the
optimal homotopy asymptotic method has recently been
used to solve a wide class of physical problems. Marinca
and Nicolae [7,8,9] used OHAM for solving nonlinear
equations related to different physical phenomena. Also
Marinca et al. [10] studied the thin film flow using
OHAM. Iqbal et al. [11] provided the OHAM solutions of
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the linear and nonlinear Klein-Gordon equations, Islam et
al. [12] applied OHAM for the asymptotic solutions of
Couette and Poiseuille flows of a third grade fluid whilst
Idrees et al. [13,14] and Mabood et al. [15,16] have
utilized the proposed method (OHAM) effectively for
different higher order boundary values problems.

According to the best of author’s knowledge the heat
modeling problem mentioned above has not been yet
studied by optimal homotopy asymptotic method
(OHAM).

2 Basic Formulation of OHAM

We review the basic principles of OHAM as developed by
Marinca et al. [8]. Consider the following differential
equation and boundary condition:

L((v(z, t))+g(z, t)+N(v(z, t)) = 0, z ∈ Ω (4)

B
(

v,
dv
dt

)
= 0 (5)

where L, N are linear and nonlinear operators, z, t denote
the spatial and time variables respectively, Ω is the
problem domain and v(z, t) is an unknown function,
g(z, t) is a known function and B is a boundary operator.

An equation known as optimal homotopy equation is
constructed:

(1− r)[L(ϕ(z, t;r)+g(z, t)] = H(r)[L(ϕ(z, t;r)+
g(z, t)+N(ϕ(z, t;r))] (6)

where 0 ≤ r ≤ 1 is an embedding parameter, H(r) is
auxiliary function such that H(r) ̸= 0 for r ̸= 0 and
H(0) = 0, we have from Eq.(6)

r = 0 ⇒ [L(ϕ(z, t;0)+g(z,0)] = 0 (7)

r = 1 ⇒ [L(ϕ(z, t;1)+g(z,1)+N(ϕ(z, t;1))] = 0 (8)

Thus, for r = 0 and r = 1 we obtain, ϕ(z, t;0) = v0(z, t) and
ϕ(z, t;1) = v(z, t) respectively. Hence, as r varies from 0 to
1 the solution ϕ(z, t;r) varies from v0(z, t) to the solution
v(z, t), where v0(z, t) is obtained from Eq. (6) set r = 0

L((v0(z, t))+g(z, t) = 0, B
(

v0,
dv0

dt

)
= 0 (9)

The auxiliary function H(r) is chosen of the form:

H(r) =
n

∑
k=1

rkCk (10)

where Ci, i ∈ N are constants which are to be determined
latter [8].
For solution, expand ϕ(z, t;r,Ci) in Taylor’s series about r
and written as:

ϕ(z, t;r,Ci) = v0(z, t)+
∞

∑
k=1

vk(z, t;Ci), i = 1,2, · · · (11)

Substituting equation (11) into equation (6), and equating
the coefficients of the like powers of r equal to zero, gives
the linear equations as described below:
The zeroth order problem is given by equation (9), and
the first and second order problems are given by the
equations (12) and (13), respectively, while the general
governing equation for vk(z, t) is given in equation (14):

L(v1(z, t)) =C1N0(v0(z, t)), B
(

v1,
dv1

dt

)
= 0 (12)

L(v2(z, t))−L(v1(z, t)) =C2N0(v0(z, t))
+C1[L(v1(z, t))+N1(v0(z, t),v1(z, t))] (13)

B
(

v2,
dv2

dt

)
= 0

L(vk(z, t))−L(vk−1(z, t)) =CkN0(v0(z, t))

+
k−1

∑
i=1

Ci[L(vk−i(z, t))+Nk−i(v0(z, t),

v1(z, t), . . . ,vk−1(z, t)))] (14)

B
(

vk,
dvk

dt

)
= 0, k = 1,2, · · ·

where Nm(v0(z, t),v1(z, t),v2(z, t), ...,vm(z, t)) is the
coefficient of rm in the expansion of N(ϕ(z, t;r,Ci)) about
the embeding parameter.

N(ϕ(z, t;r,Ci)) = N0(v0(z, t))
+ ∑

k≥1
Nm(v0,v1,v2, ...,vm)rm (15)

The convergence of the series (11) is dependent upon the
auxiliary constants C1,C2, .... If it is convergent at r = 1,
one has:

ṽ(z, t;Ci) = v0(z, t)+
m

∑
i=1

vi(z, t;Ci) (16)

Substituting equation (16) into equation (4), the general
problem results in the following residual:

R(z, t;Ci) = L(ṽ(z, t;Ci))+g(z, t)+N(ṽ(z, t;Ci)) (17)

If R(z, t;Ci) = 0, then will be the exact solution. For
nonlinear problems, generally this will not be the case.
For determining Ci(i = 1,2, ...), a and b are chosen such
that the optimum values for Ci are obtained, using the
method of least squares:

J(Ci) =
∫ t

0

∫
Ω

R2(z, t,Ci)dzdt (18)

where R is the residual,

∂J
∂C1

=
∂J

∂C2
= . . .=

∂J
∂Cm

= 0 (19)
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3 Solution of Heat Equation via OHAM

Consider the heat equation is as follow [6]:

ut = uxx, 0 < x < 1, t > 0 (20)

with initial condition is

u(x,0) = sin(πx) (21)

and boundary conditions are

u(0, t) = u(1, t) = 0 (22)

The exact solution is u(x, t) = e−π2tsin(πx) wich satisfies
equation (20).

Applying the proposed method (OHAM) mentioned in
Section 2, on equation (20) leads to the following:
Zeroth order problem:

∂u0(x, t)
∂ t

= 0 (23)

with initial condition: u0(x,0) = sin(πx)
Its solution is

u0(x, t) = sin(πx) (24)

First order problem:

∂u1(x, t,C1)

∂ t
= (1+C1)

∂u0(x, t)
∂ t

−C1
∂ 2u0(x, t)

∂x2 (25)

with initial condition: u1(x,0) = 0
Its solution is

u1(x, t,C1) =C1π2tsin(πx) (26)

Second order problem:

∂u2(x, t,C1,C2)

∂ t
= (1+C1)

∂u1(x, t,C1)

∂ t

−C1
∂ 2u1(x, t,C1)

∂x2 +C2
∂u0(x, t)

∂ t
+C2

∂u0(x, t)
∂x

(27)

with initial condition: u2(x,0) = 0
Its solution is

u2(x, t,C1,C2) =
1
2
[2C1π2tsin(πx)+2C2

1π2tsin(πx)

+C2
1π4t2sin(πx)+2C2πtcos(πx)] (28)

Third order problem:

∂u3(x, t,C1,C2,C3)

∂ t
= (1+C1)

∂u2(x, t,C1,C2)

∂ t

+C3
∂u0(x, t)

∂ t
+C2

∂u1(x, t,C1)

∂ t
−C3

∂ 2u0(x, t)
∂x2

−C2
∂ 2u1(x, t,C1)

∂x2 −C1
∂ 2u2(x, t,C1,C2)

∂x2 (29)

with initial condition: u3(x,0) = 0
Its solution is

u3(x, t,C1,C2,C3) =
1
6
[6C1π2tsin(πx)+12C2

1π2tsin(πx)

+6C2
1π4t2sin(πx)+6C3

1π2tsin(πx)

+6C3
1π4t2sin(πx)+C3

1π6t3sin(πx)
+6C2πtcos(πx)+6C1C2πtcos(πx)

+3C1C2π3t2cos(πx)+6C3π2tsin(πx)

+3C1C2π4t2sin(πx)

+6C1C2π2tsin(πx)] (30)

Using equations (24), (26), (28) and (30), the third order
approximate solution via OHAM for r = 1 is

ũ(x, t,C1,C2,C3) = u0(x, t)+u1(x, t,C1)+u2(x, t,C1,C2)

+u3(x, t,C1,C2,C3) (31)

With the help of least square method, we can obtain the
values of unknown constants, for t = 0.0001 the values of
C1 = 0.003639, C2 = 0.00007461, C3 = 0.001725 and
substituting the values of C1,C2,C3 in equation (31),
we obtain the approximate solution of heat equation as
follow:

ũ(x, t) = [0.04194−0.02048t]tcos(πx)[1+ t(−4.03304
+(4.10617−0.9361011t)t)]sin(πx) (32)

Figs.1, 2 and 3 have been prepared for the comparative
picture of the series solution obtained using OHAM with
the existing exact solution for different assigned values of
t.
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Fig. 1: Comparison of solution suing OHAM (solid line) with
exact solution (dashed line) for t = 0.001

4 Solution of Advection-Diffusion Equation
via OHAM

The advection-diffusion equation with β = 1,α = 0.1 in
equation (1) is as follow [4]:

ut +ux = 0.1uxx, 0 < x < 1, t > 0 (33)
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Fig. 2: Comparison of solution suing OHAM (solid line) with
exact solution (dashed line) for t = 0.00125
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Fig. 3: Comparison of solution suing OHAM (solid line) with
exact solution (dashed line) for t = 0.0001
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Fig. 4: Comparison of solution using OHAM with exact solution

with initial condition is

u(x,0) = e5x[cos(
πx
2
)+0.25sin(

πx
2
)] (34)

The exact solution of equation (33) is

u(x, t) = e5(x− t
2 )e(

−π2t
40 )[cos(

πx
2
)+0.25sin(

πx
2
)] (35)

The boundary conditions can be obtained easily at x = 0
and x = 1 from the exact solution. Applying the proposed
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Fig. 5: Spatial-time approximation for Advection-Diffusion
Equation over a time period t ∈ [0,1.2]

method (OHAM) on Eq. (33), the zeroth, first and second
order problem are given as:

∂u0(x, t)
∂ t

= 0 (36)

with boundary condition:
u0(x,0) = e5x[cos(πx

2 )+0.25sin(πx
2 )]

∂u1(x, t,C1)

∂ t
= (1+C1)

∂u0(x, t)
∂ t

+C1
∂u0(x, t)

∂x

−0.1C1
∂ 2u0(x, t)

∂x2 (37)

with initial condition: u1(x,0) = 0

∂u2(x, t,C1,C2)

∂ t
= (1+C1)

∂u1(x, t,C1)

∂ t
+C1

∂u1(x, t,C1)

∂x

+C2
∂u0(x, t)

∂ t
−0.1C1

∂ 2u1(x, t)
∂x2

+C2
∂u0(x, t)

∂x
−0.1C2

∂ 2u0(x, t)
∂x2 (38)

with initial condition: u2(x,0) = 0
Solving equations (36), (37) and (38), we can obtain
second order approximate solution using OHAM for
r = 1 is

ũ(x, t,C1,C2) = u0(x, t)+u1(x, t,C1)+u2(x, t,C1,C2) (39)

Using the method of least square, the values of unknown
constants for t = 0.0025 are
C1 =−0.36295,C2 = 0.06096.
Substituting the values of C1,C2 in equation (39) one can
obtain the three terms approximate analytical solution via
OHAM for advection-diffusion equation. Fig. 4 has been
presented for comparison of OHAM solution with exact
solution of advection-diffusion equation whilst in Fig. 5
we have shown the spatial-time approximation.
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5 Conclusion

A series solution based on Optimal Homotopy
Asymptotic Method had been described in section 3 and 4
for solving one-dimensional heat and advection-diffusion
equations. The obtained solution using OHAM is then
compared with the exact solutions. The results are in good
agreement with the existing exact results and therefore
elucidate the reliability and efficiency of OHAM. The
comparisons made suggest that the OHAM could be a
useful and effective tool for solving one-dimensional heat
and advection-diffusion equations accurately.

References

[1] M. Dehghan, Weighted finite difference techniques for
the one-dimensional advection-diffusion equation, Applied
Mathematics and Computation. 147, 307-319 (2004).

[2] B.J. Noye, Numerical solution of partial differential
equations, Lecture Notes (1990).

[3] H. Caglar, M. Ozer and N. Caglar, The numerical solution
of the one-dimensional heat equation by using third degree
B-spline functions, Chaos, Solitons and Fractals. 38, 1197-
1201 (2008).

[4] A. Mohebbi and M. Dehghan, High-order compact solution
of the one-dimensional heat and advection-diffusion
equations, Applied Mathematical Modelling. 34, 3071-3084
(2010).

[5] J.Y. Parlarge, Water transport in soils, Ann Rev Fluids
Mech., 2, 77-102 (1980).

[6] J. Goh, Ahmad Abd. Majid and Ahmad Izani Md
Ismail, Cubic B-Spline Collocation Method for One-
Dimensional Heat and Advection-Diffusion Equations,
Journal of Applied Mathematics. Article ID 458701, 8
(2012).

[7] V. Marinca and N. Herisanu, Application of optimal
homotopy asymptotic method for solving nonlinear
equations arising in heat transfer, Int. Commun. Heat Mass
Transfer, 35, 710-715 (2008).

[8] V. Marinca and N. Herisanu, Optimal homotopy
perturbation method for strongly nonlinear differential
equations, Nonlinear Sci. Lett. A, 1, 273-280 (2010).

[9] N. Herisanu and V. Marinca, Accurate analytical solutions
to oscillators with discontinuities and fractional-power
restoring force by means of the optimal homotopy
asymptotic method, Computers and Mathematics with
Applications, 60, 1607-1615 (2010).

[10] V. Marinca, N. Herisanu and I. Nemes, Optimal homotopy
asymptotic method with application to thin film flow, Cent.
Eur. J. Phys. 6, 648-653 (2008).

[11] S. Iqbal, M. Idrees, A.M. Siddiqui, A.R. Ansari, Some
solutions of the linear and nonlinear Klein-Gordon
equations using the optimal homotopy asymptotic method,
Applied Mathematics and Computation. 216, 2898-2909
(2010).

[12] S. Islam, R. A. Shah, I. Ali, Optimal homotopy asymptotic
solutions of Couette and Poiseuille flows of a third grade
fluid with heat transfer analysis, Int. J. Nonlinear Sci.
Numer. Simul. 11, 389-400 (2010).

[13] M. Idrees, S.l Haq, S. Islam, Application of optimal
homotopy asymptotic method to Fourth Order Boundary
Values Problems. World Applied Sciences Journal. 9, 131-
137 (2010).

[14] M. Idrees, S. Haq, S. Islam, Application of Optimal
Homotopy Asymptotic Method to special Sixth Order
Boundary Values Problems, World Applied Sciences
Journal. 9, 138-143 (2010).

[15] F. Mabood, W. A. Khan, A. I. M. Ismail, Solution of Fifth
Order Boundary Values Problems via Optimal Homotopy
Asymptotic Method, Wulfenia Journal. 19, 103-115 (2012).

[16] F. Mabood, A.I.M. Ismail, I. Hashim. The application
of Optimal Homotopy Asymptotic Method for the
Approximate Solution of Riccati Equation, Sains
Malaysiana. 42, (2013) (In-Press).

c⃝ 2013 NSP
Natural Sciences Publishing Cor.


