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Abstract: The minimum edge cover (MEC) problem is to find a smallest edge subset in a given undirected and simple graph, that every
vertice in the graph at least belongs to one edge of the subset. It is a vitally important NP-complete problem in theory of computation
and applied mathematics, having numerous real life applications. It can be difficultly solved by the electronic computer in exponential
level time. In previous studies DNA molecular operations usually be used to solve NP-complete continuous path search problems (for
example HPP, travelling salesman problem), rarely for NP-hard problems with discrete vertices or edges solutions result, such as the
minimum edge cover problem, graph colouring problem and so on. In this paper, we present a DNA algorithm for solving the MEC
problem with DNA molecular operations. For an undirected and simple graph with n vertices and m edges, we reasonably design fixed
length DNA strands representing vertices and edges of the graph, take appropriate steps and get the solutions of the MEC problem in
proper length range using O(n2) time. We theoretically proved the algorithm and simulate the DNA experiment to get correct solution
of the ensample. We extend the application of DNA molecular operations and simultaneity simplify computational complexity of
NP-complete problem.
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1 Introduction

NP problems are a class of mathematical problems which
have most likely exponential complexity of computation,
with no efficient algorithm having been found yet [1].
Meanwhile DNA computation has emerged in the last
twenty years as an exciting new research field at the
intersection of computer science, biology, engineering,
and mathematics. Huge storage capacity and massive
parallelism are two important advantages of DNA
computation. DNA computing can execute billions of
operations simultaneously. The massive parallelism of
DNA computing comes from the large number of
molecules which chemically interact in a small volume.
DNA also provides a huge storage capacity since they
encode information on the molecular scale. So DNA has a
great application prospect for having wide range of
abundant resources. The notion of performing
computations at a molecular level was only realized in
1994, Adleman [2] presented an idea of solving the
Hamiltonian path problem with n vertices in O(n) steps

using DNA molecules. Since then the field has blossomed
rapidly, with significant theoretical and experimental
results being reported regularly. Lipton [3] demonstrated
that Adleman’s experiment could be used to figure out the
NP-complete satisfiability (SAT) problem (the first
NP-complete problem). In recent years, lots of papers
have occurred for designing DNA procedures and
algorithms to solve various NP-complete problems
[4-10].

However, most of the previous works in DNA
computing are concentrated on solving the path search
problems that the optimum results are continuous
head-to-tail ligation edges or vertices sets. For example,
Lee [11] first designs different length’s strands
representing paths values and cities, takes molecular
operations to generate strands standing for all possible
paths, then uses biochemical techniques, such as
denaturation temperature gradient polymerase chain
reaction and temperature gradient gel, to get the optimum
solutions of the traveling salesman problem. To solve the
shortest path problem, Narayanan [12] respectively
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carries out DNA reaction to get the strands for a list of
series paths, then chooses the shortest length strands as
the solution through DNA biotechnologies. The previous
researches have some insufficient factors. One is that the
strands for the possible paths are usually very long,
Whereas too long DNA strands can lead to error-prone in
annealing and separation procedures using modern
biotechniques. The other is that previous research
problems are all optimum path search problems, so that
the possible solutions can be relatively easily represented
by DNA strands. While the MEC problem is a discrete
edge set problem with discontinuous path. So
representation discrete data with DNA molecule is an
important issue to expand the capability of DNA
computing so as to solve many optimization problems.

The minimum edge cover problem is a problem of
central importance in mathematical graph theory and
computational sciences. It is intractable to solve. The
earliest research on it traces back to 1950s. Motwani and
Naor proved that MEC problem is NP-hard by showing
the equivalence between the vertex coloring problem and
the MEC problem. In 1972, Liberti et al. first presented an
integer programming formulation for the MEC and also
proposed heuristic algorithms for it. The authors used an
integer programming solver to compute the optimal
solutions for small instances to make comparison with
their heuristics. Since then, No better algorithm has been
derived up to now. However previous research work solve
the MEC problem in exponential level time. With the
increasing vertex number of n in graph, solving MEC
problem will become more and more impractical by the
previous algorithm. In this paper, a DNA procedure
proposed by Adleman [2] and Lipton [3] is introduced for
figuring out solutions of the minimum edge cover
problem: Given an undirected and simple graph
G = (V,E) with a vertex set V = {v1,v2, · · · ,vn} and edge
set E = {ei, j|1 ≤ i < j ≤ n}, a edge cover is a subset
E

′ ⊆ E such that for any vertex vi ∈ V at least belongs to
one edge ei, j of the subset E

′
. A edge cover E

′
is to be a

minimum edge cover of graph G, if for any edge subset
E

′′ ⊆ E with |E ′ | ≤ |E ′′ |. For instance, the undirected and
simple graph G in Fig. 1 defines such a problem. It is not
difficult to find that the edge subset {e1,2,e3,5,e4,6} is the
solution to the minimum edge cover problem for graph G
in Fig. 1.

The rest of this paper is organized as follows. In
Section 2, the Adleman-Lipton model is introduced in
detail. Section 3 uses a DNA molecular algorithm for
solving the minimum edge cover problem. Section 4
proved DNA algorithm complexity and feasibility. We get
conclusions in Section 5.

2 The Adleman-Liption Model

A DNA(deoxyribonucleic acid) is a polymer, which is
strung together from monomers called

Fig. 1. An undirected and simple graph G with 6 vertices and 8
edges

deoxyribonucleotides [15]. Distinct nucleotides are
detected only with their bases. Those bases are,
respectively, abbreviated as adenine (A) , guanine (G),
cytosine (C), and thymine (T). Two strands of DNA can
form (under appropriate conditions) a double strand, if the
respective bases are the Watson-Crick complements of
each other: A matches T and C matches G; also 3′ end
matches 5′ end. The length of a single stranded DNA is
the number of nucleotides comprising the single strand.
Thus, if a single stranded DNA includes 20 nucleotides, it
is called a 20mer. The length of a double stranded DNA
(where each nucleotide is base paired) is counted in the
number of base pairs. Thus, if we make a double stranded
DNA from a single stranded 20 mer, then the length of the
double stranded DNA is 20 base pairs, also written as 20
bp.

The DNA operations proposed by Aldeman [2] and
Lipton [3] are described below. These operations will be
used for figuring out solutions of the minimum vertex
cover problem in this paper. The Adleman-Lipton model:
A (test) tube is a set of molecules of DNA (i.e., a
multi-set of finite strings over the alphabet {A,C,G,T}).
Given a tube, one can perform the following operations:

(1) Merge (T1,T2): for two given test tubes T1,T2, it
stores the union T1

∪
T2 in T1 and leaves T2 empty;

(2)Copy (T1,T2): for a given test tube T1, it produces a
test tube T2 with the same contents as T1 ;

(3)Detect (T): given a test tube T , it outputs ”yes” if T
contains at least one strand, otherwise, outputs ”no”;

(4) Separation (T1,X ,T2): for a given test tube T1 and
a given set of strings X , it removes all single strands
containing a string in X from T1, and produces a test tube
T2 with the removed strands;

(5) Selection (T1,L,T2): for a given test tube T1 and a
given integer L, it removes all strands with length L from
T1, and produces a test tube T2 with the removed strands;

(6) Discard (T): for a given test tube T , it discards the
tube T ;

(7) Read (T): for a given tube T , the operation is used
to describe a single molecule, which is contained in the
tube T . Even if T contains many different molecules each
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encoding a different set of bases, the operation can give an
explicit description of exactly one of them;

(8)Append-tail (T,Z): for a given test tube T and a given
DNA singled strand Z, it appends Z onto the end of every
strand in the tube T .

Since these eight manipulations are implemented with
a constant number of biological steps for DNA strands
[14], we assume that the complexity of each manipulation
is O(1) steps.

3 DNA algorithm for the minimum edge
cover problem

For a given undirected and simple graph G = (V,E), V =
{vk|k = 1,2, . . . ,n} is vertex set and E = {ei, j|1 ≤ i < j ≤
n} is edge set. Some vertices vi and v j can be connected
by the edge ei, j (i < j) in graph. We let |E| = m and m ≤
n(n+1)/2. At the same time, the simple graph processed
in this paper has no self-loops.

In the following, the symbols #,X ,0,1,Ak
(k = 1,2, . . . ,n) denote distinct DNA singled strands with
same length, say t-mer (t can choose a small integer, such
as 5 mer). Obviously the length t of the DNA singled
strands greatly depends on the size of the problem
involved in order to distinguish all above symbols and to
avoid hairpin formation. Then in the below operations, we
use the distinct DNA singled strands symbols Ai0A j,
Ai1A j (1 ≤ i < j ≤ n) to denote the edge ei, j, with Ai1A j
for in the edge subset, while Ai0A j for not. For
distinguishing some edges in a edge subset or not, we
meantime design DNA string X with t-mer length. the
symbols # means starting signal of the strands. Let

T0 = {#},

For a graph with n vertices and m edges, every
possible subset of the edge subset E

′
can be expressed by

an m-digit binary number. A bit set to 1 represents the
edge in the subset, and a bit set to 0 represents the edge
out of the subset. For example in Fig. 1, the subset
{e1,3,e2,3,e3,4,e4,6} can be expressed by the binary
number 01101001. In this way, we transform all possible
subsets of E in a m-edge graph into an ensemble of all
m-digit binary numbers. We call this the data pool.

(1)We get all possible subsets of edge in graph.
For i = 1 to i = n−1

For j = i to j = n
(1-1)If(ei, j ∈ E)

Then
(1-2)Copy(T0,T1);
(1-3)Copy(T0,T2);
(1-4)Discard(T0);
(1-5)Append − tail(T1,Ai1A j);
(1-6)Append − tail(T2,Ai0A j);
(1-7)Merge(T0,T1);
(1-8)Merge(T0,T2);

End for
End for
After the above steps of manipulations, the singled
strands in tube T0 will encode all possible subsets of
edge. For example, for the graph in Fig. 1, we have
singled strands:

#A11A2A10A3A21A3A21A4A30A4

A31A5A40A5A41A6 ∈ T0

which denotes the subset of edge

{e1,2,e2,3,e2,4,e3,5,e4,6}

corresponding to the binary number 10110101.
Meanwhile we use two “For” clauses, thus these
operations can be finished in O(n2) steps since each
single manipulation above works in O(1) steps.

(2)Each singled strand in tube T0 denotes one possible
edge subset. The minimum edge cover problem is
firstly require that any vertex of the graph at least
belongs to one edge of the subset. So we should check
all the edge subsets whether to satisfy the above
condition. We should discard the strands which vertex
vi(1 ≤ i ≤ n) is not in the subset. For example in Fig.
1, the singled strands

#A10A2A11A3A20A3A20A4A31A4

A30A5A41A5A41A6 ∈ T0

(representing the subset of edge {e1,3,e3,4,e4,5,e5,6})
should be discarded for the vertex v2 is not in the
subset. We can choose all possible edge cover subsets
in graph through following algorithm.

For i = 1 to i = n
(2-1)Separation(T0,Ai1,T3);
(2-2)Separation(T0,1Ai,T4);
(2-3)Discard(T0);
(2-4)Merge(T3,T4);
(2-5)Copy(T3,T0);
(2-6)Discard(T3);
End for
After the above operations, the singled strands in tube
T0 are all edge cover subsets. Meanwhile we use one
“For” clauses, thus this operation can be finished in
O(n) steps since each single manipulation above works
in O(1) steps.

(3)The minimum edge cover problem should be a
smallest edge cover subset which satisfy above
condition in graph. So we choose the leastest edge
subset in all edge cover subsets. If a edge ei, j in the
edge subset, we append additional strand X at the end
of previous strand in order to find the optimum strand
solutions. For example, for the graph in Fig. 1, the
singled strands

#A10A2A11A3A20A3A20A4A31A4
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A30A5A41A5A41A6 ∈ T0

represent containing the edges {e1,3,e3,4,e4,5,e4,6}, So
we append strand X four times at the end of previous
strands to

#A10A2A11A3A20A3A20A4A31A4

A30A5A41A5A41A6XXXX

This is done by the following manipulations:
For i = 1 to i = n−1

For j = i+1 to j = n
(3-1)Separation(T0,Ai1A j,T5);
(3-2)Append − tail(T5,X);
(3-3)Merge(T0,T5);

End for
End for
In the above operation, we use two “For” clause, thus
this operation can be finished in O(n2) steps since each
single manipulation above works in O(1) steps.

(4)We take out those singled strands in T0 with smallest
length, which give the solutions to minimum edge
cover problem. For example, for the graph in Fig. 1,
those singled strands in T0 with leastest length are

#A11A2A10A3A20A3A20A4A30A4

A31A5A40A5A41A6XXX ∈ T0.

Therefore, solutions to minimum edge cover problem
in Fig. 1 is the edge subset with {e1,2,e3,5,e4,6}.
For i = 1 to i = m
(4-1)Selection(T0,(3m+1+ i)t,T6);
(4-2)If(Detect(T6) = “Yes”)

Then
break;

End for
(4-3)Read(T6);
In the above operation, we use one “For” clause, the
worst conditions is that the algorithm stop at i = m and
m≤ n(n+1)/2, thus this operation can be finished less
than O(n2) steps since each single manipulation above
works in O(1) steps. Finally the “Read” operation is
applied to giving the exact solutions of the minimum
edge cover problem.

4 The complexity and feasibility of the
proposed DNA algorithm

The following theorem tells that the algorithm proposed
above really can get solutions of the minimum edge cover
problem in O(n2) steps using DNA molecules.

Theorem 1. The solutions of minimum edge cover
problems for a graph with n vertices and m edges can be
solved by the above DNA operations.

Proof. We first get all possible combinations of the
edges in the data pool after the first step. Because any
vertex in graph should at least belong to one edge of the
subset, basic biological operations are used to remove
illegal solution and find legal solution from data pool
through at the second step. In order to choose the
minimum edge subset, at the third step we append a series
of “tails” X at the end of the strands if some edges belong
to the edge subset. The shortest strands in the pool mean
the solution of minimum edge cover problem, and we can
“read” the answer at the last step.

Theorem 2. The solutions of minimum edge cover
problems for a graph with n vertices and m edges can be
figured out in O(n2) steps using DNA molecules.

Proof. The manipulates of algorithm can be entirely
finished in finite operations. Such as step (1) and step (3)
in O(n2), step (4) less than O(n2), Simultaneity step (2) in
O(n). In conclusion, We can get the solution of minimum
edge cover problems with n vertices and m edges in O(n2).

Theorem 3. The solutions of minimum edge cover
problems for a graph with n vertices and m edges can be
founded between (3m+2)t and (4m+1)t length range.

Proof. After the operations of first step, all the singled
strands in tube T0 denote all possible edge subsets. Then
strands can be described:

#A1y1,kAk · · ·Aiyi, jA j · · ·Alyl,nAn yi, j = 0 or 1

After the operations of second step, all the strands in T0
contain all the vertices information in the edge subsets. We
reasonably design the length of #,Ak,yi, j and X , For

||Ak||= ||#||= ||yi, j||= ||X ||= t

So we define S as the strands after the third step. Then S
can be described:

#A1y1,kAk · · ·Aiyi, jA j · · ·Alyl,nAnX · · ·X
The number p of appending X times is decided by the
existing edges information on the strands. Due to the
possible of containing edges ei, j information between 1
and m in the edge subset, So

||S||= ||#||+ ||A1||+ ||y1,k||+ ||Ak||+ · · ·+ ||Al ||
+||yl,n||+ ||An||+ ||X ||+ · · ·+ ||X ||

= ||#||+2
m

∑
i=1

||Ai||+
m

∑
i=1

||yi, j||+ p||X ||

= (3m+1)t + pt
∵ 1 ≤ p ≤ m
∴ (3m+2)t ≤ ||S|| ≤ (4m+1)t
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So the length of strands which denote containing all the
vertices information must be between (3m+2)t and (4m+
1)t. So we can get the solution in step 4 in appropriate
length range.

5 Conclusion

In this paper, we present DNA algorithms for solving the
minimum edge cover problem based on biological
operations in the Adleman-Lipton model. The proposed
algorithms have two advantages. Firstly, the proposed
algorithm actually has a lower rate of errors for
hybridization because we generate fixed reasonable DNA
sequences for generating the solutions of the problem.
Secondly, the proposed algorithms can works in O(n2)
steps for the minimum edge cover problem of an
undirected and simple graph with n vertices and m edges,
Comparing exponential level time by electronic computer.
The ability to perform complex operations in solution
might help us learn more about the nature of computation
and lead to the development of better DNA based
computation, capable of solving a wide range of complex
problems.
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