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Abstract: In order to overcome prematurity of ant colony algorithm, the conception of belief space originated in cultural algorithm
is introduced, and a new cultural ant algorithm is proposed for continuous optimization problems. Firstly, the coding scheme for ant
colony algorithm to solve continuous optimization problems is discussed. Then belief space is brought in, and designed as the form
of two parts: individual belief space and population belief space. The former is used to conduct individuals’ deep search for better
solutions, and the other to help worse individuals drop their current bad solution space for broad search. The update rules of both
population space and belief space are given subsequently. Eight common standard functions are used to test the new algorithm, which
is compared with four other algorithms at the same time. The results show effectiveness and superiority of the new algorithm. Finally
the effect of the parameter used in the algorithm is discussed, and so does the both two belief space.
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1 Introduction
Ant colony algorithm firstly proposed by M. Dorigo in
1992, imitates the process of ants group foraging [1]. For
the advantages of not depending on mathematics
description of definite problems, excellent capacity on
global optimization, better performance on reliability than
early genetic algorithm and annealing simulation
algorithm, little workload, and easy to realization, it has
been paid more attentions to solve discrete problems,
such as combination optimization and modification
consistency of judgment matrix [2,3,4].

But ant colony algorithm still has defects. First of all,
it was original designed for the discrete problems, so it
cannot be used to solve continuous optimization problems
directly. Secondly, its convergence mechanism is based
on positive feedback, which may not only help the
algorithm accelerate convergence, but also make the
algorithm being prone to be premature. Many methods
were introduced to improve the ant algorithm seen in
other research, which were mostly concentrated on the
update of pheromone and the generation of initial
solutions [5,6]. These approaches promote the
performance of the algorithm on overcoming premature
to some extent, but not thoroughly; they have finite effect

on improving search ability for better solutions either.
The cultural algorithm is a particular class of evolutionary
algorithm that uses domain knowledge extracted from
solutions during evolutionary process to improve the
performance of the search engine (i.e. the evolutionary
algorithm) adopted [7,8]. It has natural complementarity
with other intelligent algorithms. In this paper, cultural
algorithm and ant colony algorithm are combined to
construct a new algorithm called cultural ant algorithm
(abb. CACO) to against these defects.

The following is the organization of the paper. In
Section 2, existing coding schemes for ant colony
algorithm for continuous optimization problems are
discussed firstly, and then valid coding scheme that
discretizes continuous space to translate continuous
problems to discrete problems is chosen for the new
algorithm. Then the conception of cultural: belief space is
design as the form of two parts: individual belief space
and population belief space. And then update rules of
solutions and both two spaces are designed in Section 2.3
and 2.4. In Section 2.5, the steps of CACO are given.
Numerical studies to test CACO are laid in Section 3. The
influence analysis of the parameter and cultural operators
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are given in Section 3.2. Section 4 concludes the whole
paper and describes the future research direction.

2 Algorithm Design

Cultural algorithm and ant colony algorithm are
combined to construct CACO, which effectively use
knowledge guidance mechanism against premature.

Ant colony algorithm was original designed for
discrete problems, such as TSP [9]. It cannot be used in
continuous scenarios directly. There are two methods for
solving these scenarios: (1) continuous space
discretization, thus continuous problems are translated to
discrete problems; (2) combine with other continuous
algorithm, and use the real coding directly. If the latter
method is chosen, because of the unlimitedness of real
values, the advantage of positive feedback will not be
given full play. So the former is chosen in the paper.

2.1 Coding

If the continuous solution space is discretized directly as a
structure like TSP, ants have n choices at each variable for
a value. For ensuring precision of the algorithm,n may be
a big number exceed the amount of ants group. That
means many paths will not have their pheromone
incremental after one iteration. Because of positive
feedback mechanism, the algorithm is easy to be
premature.

In order to solve this problem, the binary coding
scheme is proposed. The structure for regular solutions
search is shown in Fig.2.1.

Assume the space of variable i is [ai,bi]. Discretize
this space to m small areas. The length of each area is
(bi − ai)/m. The middle value of each area is used to
present each small area. The binary bits to present each
variable is n, it satisfies 2n− 1 6 m 6 2n. Ants start from
S, and seek for their valid paths to E, depending on
pheromone concentration among adjacent points, and
then regular solutions is gotten.

Figure 2.1: The structure for solutions search

2.2 Belief Space

The core idea of belief space is to describe and update the
knowledge found in past iterations. In this paper the space
of variables in which potential better solutions lay is used
as the belief space. The belief space includes the individual
belief space and the population belief space.

2.2.1 Design of Belief Space

(1) Individual Belief Space
Each individual has its belief space in evolution

process. By evaluating solutions at current generate-on,
some useful information for the next search will be
acquired. This information is the belief space of
individuals. For derivative problems, the partial derivative
of solutions can support this information, so the belief
space of each individual is generated by calculating the
partial derivative of its solution.

Take minimal optimization problems as examples.
Assume the solution of individual i at current generation
gen (gen=1,2,...) is:

slngen
i = {xi1,xi2, ...,xin}

Its partial derivative is:

∆sgen
i = {∆xi1,∆xi2, ...,∆xin}

Obviously, the search diretion of j-th variable at
(gen+1) is −∆xi j. Then the belief space of individual i at
j-th variable is defined as:

bl f gen
i j =

{
(xi j,xi j − rand ∗∆xi j), if ∆xi j < 0
(xi j − rand ∗∆xi j,xi j), if ∆xi j > 0

Where, rand is a random value in (0, 1).
(2) Population Belief Space
The population belief space will be gained from

statistics in search process. It records the distribute-on of
excellent individuals in global solution space, extracts
potential good area, and then sequentially executes
dynamic division at the solution space, for inducing
global search. The topological knowledge [10] is used as
the representation of the population belief space. If some
current individuals are lack of competitiveness, they will
be guided by the population belief space.

Take 2d variables optimization as an example.
Assume the solution space is [a0,b0] for both two
variables, and the degree of division is set to 2. At the first
search process, the solution space is divided into four
subregions, all of which have same size. The superiority
of these subregions is described by regional attribute,
which is calculated by the current average fitness of
individuals in the subregion, the fitness of the best
individual in the subregion, and the average fitness of
current group. Remember bSk as the best individual in
subregion k, and f tn(bSk) as its fitness value; a f itk

gen as
current average fitness of individuals in subregion k, then
regional attribute of subregion k is :

atbk
gen+1 = (

a f itk
gen

aveFitgen
)α · ( f tn(bSk)

aveFitgen
)β (1)

Then, the probability of using the subregion k to
induce individuals that are lack of competitiveness for
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optimization is:

pk
gen+1 =

atbk
gen+1

Tgen+1

∑
j=1

atb j
gen+1

(2)

In which, Tgen+1 is the total number of subregions at
generation gen + 1. That is, new individuals which at
generation gen are lack of competitiveness will be
generated in the subregion k, which is gained by a process
of roulette.

2.2.2 Update of the Belief Space

(1) Update of individual belief space
Assume current generation is gen. The local best

solution of individual i is slnlocal
i , and its current solution

is slngen
i . The fitness of slngen

i is f tn(slngen
i ); mCnt, which

describes the maximal continuous times that CACO has
not found better solution after the current best history
solution was found, and cnt is the continuous times. If
individual i satisfies:

f tn(slngen
i )> f tn(slnlocal

i )
Or satisfies:
f tn(slngen

i ) < f tn(slnlocal
i ), f tn(slngen

i ) > aveFitgen
and at the same time cnt < mCnt.

Then, the individual i is regarded as an excellent
individual at current generation.

Excellent individuals update their belief space with
their current belief space and their local belief space. The
update principle is to contract the length of space as much
as possible, helping to realize more effective search.

Take individual i as an example. Its local best belief
space at j-th variable is:

bl f local
i j = (xlocal

low ,xlocal
upp )

And its current solution at j-th variable is xi j.
If ∆xi j < 0,∆xlocal

low < 0,bl f gen
i j = (xi j,x

upp
i j ), and

xlocal
upp < xupp

i j . There are 2 situations:
1) ∆xlocal

upp < 0. Update the local best belief space to
bl f gen

i j . That means bl f local
i j = bl f gen

i j ;
2) ∆xlocal

upp > 0. Update the local best belief space as
(xi j,xlocal

upp ). That means bl f local
i j = (xi j,xlocal

upp ).
When xlocal

upp > xupp
i j , there are also 2 situations:

1) ∆xupp
i j > 0. Update the local best belief space to

bl f gen
i j . That means bl f local

i j = bl f gen
i j ;

2) ∆xupp
i j < 0. Update the local best belief space to

bl f gen
i j . The update method at other situations is similar to

the above.
(2) Update of the population belief space
There are two situations to update the population belief

space:

1) Subregions refining. If current average fitness of
individuals in subregion k is greater than current average
fitness of the group, or though the former is not satisfied,
the fitness of the best individual in the subregion k is
greater than current average fitness of the group, the
subregion k will be refined.

2) Update regional attribute. If current average fitness
of individuals in subregion k is smaller than current
average fitness of the group, and at the same time, the
fitness of the best individual in subregion k is smaller than
current average fitness of group, the subregion k will not
be refined. Then the regional attribute of all the
subregions are updated according to (1) and (2).

2.3 Solution Updating

The belief space is used to conduct generating solutions
at next generation. Each individual has its own individual
belief space.

There are 4 situations in which the methods of
generating solution at next generation is different:

1) If

{
obji[gen]< ob jave[gen]
obji[gen]< ob jlocal

i
, individual i will

be conducted by its own individual belief space at next
generation.

2) If

{
obji[gen]< ob jave[gen]
obji[gen]> ob jlocal

i
, and cnt > mCnt,

the individual i will be conducted by population belief
space at next generation; but if cnt < mCnt, it will still be
conducted by its own individual belief.

3) If

{
obji[gen]> ob jave[gen]
obji[gen]< ob jlocal

i
, individual i at next

generation will be conducted by its own individual belief
space.

4) If

{
obji[gen]> ob jave[gen]
obji[gen]> ob jlocal

i
, the individual i at

next generation will be conducted by the population belief
space.

2.4 Update Pheromone

Concentration When ants group finish their search and all
the solutions have been evaluated, the pheromone
concentration of the paths will be updated as:

τi,i+1[gen+1] = ρτi,i+1[gen]+ ∑
i∈ants

∆τi (3)

∆τi = Q/ f tn(slngen
i ) (4)
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2.5 The steps of the algorithm

Step 1 Initialize pheromone concentration, and
parameters. Ants group are set to S for iteration. gen is set
to 1.

Step 2 Ants search regular solutions, and then
evaluate these solutions. Update the global best solution
globalBest.

Step 3 Update global pheromone concentrations.
Step 4 Update the two belief space.
Step 5 Generate new solutions. gen = gen+ 1. Then

evaluate these solutions, and update the global best
solution globalBest.

Step 6 If gen = maxGen, output globalBest; or else
return to Step 3.

3 Tests and Analysis

3.1 Common standard functions

The dimension n of each function [11] is given a value of
30, x∗ is the theoretical global optimal solution.

(1) Sphere Model

min f 1(x) =
n
∑

i=1
x2

i

S = [−100,100]n,x∗ = (0,0, ...,0)T , f 1(x∗) = 0.
(2) Cosine Mixture Problem

min f 2(x) =
n
∑

i=1
x2

i −0.1
n
∑

i=1
cos(5πxi)

S = [−1,1]n,x∗ = (0,0, ...,0)T , f 2(x∗) =−0.1n.
(3) Exponential Problem

min f 3(x) =−(exp(−0.5
n
∑

i=1
x2

i ))

S = [−1,1]n,x∗ = (0,0, ...,0)T , f 3(x∗) =−1.
(4) Griewank Problem

min f 4(x) = 1+ 1
4000

n
∑

i=1
x2

i −
n
∏
i=1

cos( xi√
i
)

S = [−600,600]n,x∗ = (0,0, ...,0)T , f 4(x∗) = 0.
(5) Levy and Montalvo Problem

min f 5(x) = 0.1{sin2(3πx1)

+
n−1

∑
i=1

(xi−1)
2[1+ sin2(3π xi+1)]

+ (xn−1)
2[1+ sin2(2πxn)]}

S = [−5,5]n,x∗ = (1,1, ...,1)T , f 5(x∗) = 0.
(6) Schwefels Problem

min f 6(x) =
n
∑

i=1
(

i
∑
j=1

x j)
2

S = [−100,100]n,x∗ = (0,0, ...,0)T , f 6(x∗) = 0.
(7) De Jong Function

min f 7(x) =
n−1
∑

i=1
100(xi+1 − x2

i )
2 +(xi+1 −1)2

S = [−10,10]n,x∗ = (1,1, ...,1)T , f 7(x∗) = 0.
(8) Sinusoidal Problem

min f 8(x) =−[2.5
n
∏
i=1

sin(xi − π
6 )+

n
∏
i=1

sin5(xi − π
6 )]

S = [0,π]n,x∗ = ( 2π
3 , 2π

3 , ..., 2π
3 )T , f 8(x∗) =−3.5.

3.2 Results and analysis

The algorithm is compared with the prototype culture
algorithm (CA), ant colony algorithm (abb. ACO),
maximal-minimal ant colony algorithm (abb. MMACO),
and elite ant colony algorithm (abb. EACO). Some
similar parameters of these algorithms are set same value,
for the comparability of numerical tests: ants is set to 20,
which is the number of ants group, and the group size of
CA is also set to 20; maxGen is set to 1000, which is the
maximal times of iteration; Q is set to 1.0, which is the
initial value of pheromone concentration on each path; the
volatile coefficient of pheromone ρ is set to 0.2;
maximal-minimal pheromone concentration is set to (0.2,
1.0). The binary bits of each variable are set to 20. All the
algorithms run 50 times separately, for each test function.
The times that the algorithm was convergent (abb. TOC)
and the average generation at which the algorithm first
time found the global best solutions (abb. AFG) are
shown in Table 3.1.

Table 3.1 Numerical tests results
CACO CA ACO

TOC AFG TOC AFG TOC AFG
f 1(x) 50 189 16 688 15 530
f 2(x) 50 215 11 712 12 616
f 3(x) 50 206 14 825 12 598
f 4(x) 50 221 10 738 11 863
f 5(x) 50 228 10 891 12 901
f 6(x) 50 253 9 942 10 922
f 7(x) 50 268 9 739 8 762
f 8(x) 50 226 12 822 12 721

MMACO EACO
TOC AFG TOC AFG

f 1(x) 22 335 23 378
f 2(x) 19 531 19 421
f 3(x) 21 457 22 536
f 4(x) 19 556 21 457
f 5(x) 20 582 18 764
f 6(x) 14 537 16 592
f 7(x) 14 628 13 575
f 8(x) 18 533 21 468

Remark: AFG did not count times that algorithm was not
convergent.

As shown in Table 3.1, CA and ACO are not good at
high dimensions and complex optimization problems.
Their convergence rates are about 25%. It is indicated that
only small probability to find the global best solutions
when solution space is huge and the dimensions are high
through random search. MMACO limits the available
scope of pher-omone concentration, and has obtained a
certain effect on restraining premature and improving
global search, but the convergence rate is still
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unsatisfactory, 44% approximately. It is indicated that
only improving the representation of pheromone
concentration may not improve performance of
algorithms satisfyingly. EACO relies on elite ants to
provide the guidance at whole group, and promote the
convergence rate to 45%. But when elite ants are not
excellent enough, the effectiveness of the algorithm is
discounted. CACO adopts the method that using the
individual belief space to guide better individuals for deep
search, and the population belief space to guide worse
ones for broad search, so it acquires the best performance
on convergence rate and convergence speed.

3.2.1 Influence analysis of the parameter

The influence of mCnt on the performance of CACO is
analyzed in this part. mCnt was set to different values, and
all the results are shown in Table 3.2.

Table 3.2 Convergence speed at different mCnt
f 1(x) f 2(x) f 3(x) f 4(x) f 5(x)

mCnt 10 322 465 420 406 418
20 238 401 388 325 351
30 189 215 206 221 228
40 286 352 385 324 372

f 6(x) f 7(x) f 8(x)
mCnt 10 423 436 408

20 324 372 365
30 253 268 226
40 298 325 373

When mCnt is set too small (as an example: 10), the
times that individuals are guided by population belief are
increased, yet the depth of individuals search is limited.
And so the convergence speed of CACO is reduced. When
mCnt is set too big (as an exaple: 40), the impediment is
also obvious. In this situation, the probability for worse
individuals drop-ing their bad solution space and jumping
to a better one is low. 30 may be the most suitable value
for mCnt in CACO.

3.2.2 Influence analysis of the population belief

In this part, the influence of the population belief space is
analyzed. All the individuals are guided by their own
individual belief space only, and with this strategy a new
algorithm NGA is found. The results of NGA on test
functions above are shown in Table 3.3. The parameters
are set the same as CACO.

Table 3.3 The performance of NGA
f 1(x) f 2(x) f 3(x) f 4(x) f 5(x)

NGA TOC 26 12 21 16 16
AFG 352 681 831 764 623

f 6(x) f 7(x) f 8(x)
NGA TOC 17 13 14

AFG 547 611 705

It is indicated that without the population belief space
guidance, the convergence rate of NGA is reduced. In fact,
NGA degenerates to quasi-Newton method, and as known,
the latter is not good at high dimensions optimization.

3.2.3 Influence analysis of the individual belief

In this part, the influence of the individual belief space is
analyzed. All the individuals are guided by population
belief space only, and with this strategy another new
algorithm NIA is found. The results of NIA on test
functions above are shown in Table 3.4. The parameters
are set the same asCACO.

Table 3.4 The performance of NIA
f 1(x) f 2(x) f 3(x) f 4(x) f 5(x)

NIA TOC 29 18 22 16 20
AFG 469 806 887 863 732

f 6(x) f 7(x) f 8(x)
NIA TOC 18 15 18

AFG 771 783 811

It is indicated that without the individual belief
guidance, the convergent rates of NIA is reduced either,
but yet higher than NGA. For the population belief space
guidance, the variety of individuals in NIA is guaranteed.
These results present the effect of the population belief
space in iteration process. The convergence speed of NIA
is slower than NGA, and so obviously, the individual
belief space has an important effect on the speed of
optimization.

4 Conclusions

A new culture ant colony algorithm (CACO) is
introduced in the paper for continuous optimization. The
individuals in CACO, according to the rules, are guided
by the individual belief space for deep search, and the
population belief space for broad search. This mechanism
ensures that CACO has excellent ability on finding global
best solutions and fast optimization. The testing results on
eight common standard functions, compared with four
other algorithms prove the views above. Finally, the
influence and effect of the parameter, the individual belief
space and the population belief space are analyzed. It is
indicated that CACO is the best one in these algorithms.
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