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Abstract: Despite the theoretical correctness of thet-test in testing differences between two groups and the existence of the
nonparametric backup, i.e. Mann-Whitney-Wilcoxon test, these test failto simultaneously control Type I error and maintain adequate
power under certain condition. This study intends to alleviate this problem by applying the pseudo-median as the location measure of
interest into the one-sample nonparametric Wilcoxon procedure in a two group setting. Pseudo-median is the median of all possible
differences of observations from the two groups. Since the sampling distribution of this procedure is intractable, the bootstrap method
was used to achieve the significance level. The finding shows that the new procedure has the ability to control Type I error rates and
maintaining high power rates regardless of distributional shape whether symmetrical or asymmetrical. The performance of the new
procedure is compatible tot-test and Mann-Whitney-Wilcoxon test.
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1 Introduction

One of the underlying assumptions of parametric tests
used in hypothesis testing is that the populations from
which the data are sampled are normal in shape. If the
underlying distributions are normally distributed with
equal population variances, it is well known that the most
suitable test statistic to use is the Student’st-test.
Unfortunately, this test statistic is sensitive to
non-normality of data and heterogeneity of variances. For
this situation, Welch’s approximate test [1] offers the best
practical solution. However, until today this statistic still
has problems in controlling Type I error probabilities
under non-normal distributions.

A popular alternative for analyzing data from
non-normal populations is to select a nonparametric
method such as the Mann-Whitney-Wilcoxon (MWW)
test. Even though nonparametric methods are distribution
free, they are not assumptions free. Usually the
underlying distribution has to be symmetric.

The issue whether any methods for comparing two
independent groups can provide reasonable control over
Type I error and simultaneously improve power rates

under the violations of normality and variance
homogeneity has received considerable attention. The
development of new methods in testing the equality of
location measures in the one-way independent groups
design by controlling Type I error and power rates does
raise a serious attention and remains a very active area of
study. Even though many methods have been proposed,
researchers realized that no single statistical method is
ideal in all situations encountered in applied work
because different methods are sensitive to different
features of the data.

In this study, a method to work in both normal and
non-normal distributions was suggested. The proposed
method known as a pseudo-median (PM) procedure, used
pseudo-median of differences between group values as
the statistic of interest in the modification of the one
sample nonparametric Wilcoxon procedure in a two
groups setting. The pseudo-median of a distributionF is
defined to be the median of distribution

(

u+v
2

)

, whereu
andv are independent, each with the same distributionF
[5-6]. Hodges-Lehmann estimator was used to estimate
the pseudo-median values.
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This paper is organized as follows. In Section 2, we
provide the method used in this study, followed by
empirical investigation. The results of Monte Carlo study
and discussion are displayed in Section 3 and finally
conclusion in Section 4.

2 Methodology

This study covers both symmetric and asymmetric
distributions. The methods applied to the two types of
distributions are quite different. Let
X1 = (X11, X12, ..., X1n1) be samples from distributionF1
and X2 = (X21, X22, ..., X2n2) be samples from
distribution F2, respectively. The pseudo-median is
defined as

d̂ = median





(

X1i −X2 j
)

+
(

X1i′ −X2 j ′

)

2



 (1)

wherei 6= i′and j 6= j ′. WhenF1 andF2 are symmetric,d
can be defined as the difference between the centres of
symmetry. Hence, the null hypothesis isH0 : d = 0.
LetDi j = X1i −X2 j , i = 1,2, ...,n1 and j = 1,2, ...,n2 and
N = n1n2. The statistic is a one-sample Wilcoxon statistic
based on theND′

i j s. Let Ri j denotes the rank of
∣

∣Di j
∣

∣ and
let the indicator function be

ei j =







0, Di j < 0
0.5, Di j = 0
1, Di j > 0

(2)

Then the statistic is defined as

W =
n1

∑
i=1

n2

∑
j=1

Ri j ei j (3)

The modification of the Wilcoxon procedure is performed
by adding the pseudo-median value to the second sample
to form a new sample,
X2 + d̂ =

(

X21+ d̂, X22+ d̂, ..., X2n2 + d̂
)

where d̂ is the
estimate ofd. Then the aligned difference based on the
location-aligned samples becomes,D̂i j = X1i −

(

X2 j + d̂
)

.
Define the aligned statistic as Equation 4 where
Ŵrepresents the (approximate) value of the statistic, when
H0 is true.

Ŵ =
n1

∑
i=1

n2

∑
j=1

R̂i j êi j (4)

Since we have realigned the second sample with the
estimated d, we need to find the pseudo sampling
distribution for the estimatedW. We proposed to use
bootstrap procedure to construct the hypothesis test. The
reason of using bootstrapping method was due to the fact
that the sampling distribution for the statistic used was
intractable. Bootstrapping was conducted by separately
bootstrap n1 observations from X1 group and n2

observations from
(

X2+ d̂
)

group to obtain bootstrap

samples, X∗
1 =

(

X∗
11, X∗

12, ..., X∗
1n1

)

and

X∗
2 =

(

X∗
21, X∗

22, ..., X∗
2n2

)

. Then the bootstrap differences

becomeD∗
i j = X∗

1i −X∗
2 j . Therefore, the bootstrap statistic

is defined as

W∗ =
n1

∑
i=1

n2

∑
j=1

R∗
i j e

∗
i j (5)

In the case of symmetric distribution,d coincides with the
difference between the center of symmetry between two
groups. Therefore, without loss of generality, we may
assume thatd = 0. For asymmetric distributions, we
cannot assume the difference between the center of
symmetry between two groups as zero. Therefore, to
ensure the setting for the null condition, we have to
determine a constanta and add it to the members of the
second sample. Determination ofa algebraically or
analytically seems intractable, so we use simulation to
obtain its value. To calculate the constanta, two samples
of equal sizen1 = n2 = 2 are generated from the same
distribution asX1 andX2. For example, letF1 andF2 be
two skewed distributions where the standard deviations
need not be the same. LetY1 = (Y11,Y12) and
Y2 = (Y21,Y22) be any samples of size two fromF1 andF2,
respectively. Computea as given in Equation (6).

a=

[

(Y11−Y21)+(Y12−Y22)

2

]

(6)

Repeat the computation 10,000 times to get
a1,a2, ...,a10,000. The rule of thumb in simulation studies
requires computation of 1000 times if the sampling
distribution is known. In this case, the sampling
distribution is unknown, and therefore requires a larger
number of trials. So we choose 10,000 for this purpose.
The median of these 10,000 values is the value ofa.

In this study, the effect size or the shift parameter used
to obtain the statistical power is computed based on the
common language (CL) statistic proposed by McGraw and
Wong [2] andA from Vargha and Delaney’s [3]. The effect
size or the shift parameter used in this study is not a single
point but its value varies from 0.2 to 2.0 with increment of
0.2 units.

In studying the robustness of this procedure, two
variables were manipulated to create conditions that are
known to highlight the strengths and weaknesses of the
test for the equality of location parameters. The variables
are sample sizes and types of distributions. This study
was conducted under homogeneous variances 1:1.
Empirical Type 1 error rates and statistical power were
collected and later compared under various study
conditions.

The number of groups and sample sizes were fixed.
This study only covered the two groups case and the total
sample sizes was set atN = 40. This value was later
divided into two groups forming the balanced and
unbalanced designs. For the balanced design, the value is
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equally divided into(n1,n2) = (20,20) while for the
unbalanced design, the groups were divided into (15,25).

To observe the effect of distributional shapes on Type
I error and power of the procedure, this study focused on
six distributions representing different degrees of
skewness and kurtosis from both spectrum of symmetric
and asymmetric distributions. For symmetric
distributions, the distributions used in this study were
standard normal, Beta (0.5, 0.5) and theg-and-h
distribution from Hoaglin [4] withg = 0 andh =0.225.
These distributions represent symmetric mesokurtic,
platykurtic and leptokurtic, respectively. The normal
distribution was used as the basis of comparison.
Meanwhile, for asymmetric distributions, two
distributions based upon Fleishman [5] transformation of
the standard normal distribution with different skewness
and kurtosis and the chi-square distribution with three
degrees of freedom

(

χ2
3

)

were chosen to represent
skewed mesokurtic, platykurtic and leptokurtic,
respectively. Table 1 shows the types of symmetrical and
nonsymmetrical distributions used in this study together
with their levels of skewness and kurtosis.

Table 1 Distributions used in the study

Distribution Skewness Kurtosis
Symmetric Beta (0.5,0.5)

Normal (0,1)
g=0, h=0.225

0
0
0

-1.5
0
154.84

AsymmetricFleishman 1
Fleishman 2
Chi-square
(3)

0.5
0.75
1.63

-0.5
0
4.00

Data from all of the distributions were generated
using RANDGEN function [6]. To generate data from the
g-and-h distribution, standard unit normal variates(Zi j )
were converted to g-and-h random variates via

Yi j = Zi j exp

(

hZ2
i j

2

)

. TheZi j scores were generated using

the RANDGEN generator with normal distribution
option. For each design, 599 bootstrap samples were
generated, and 5,000 data sets were simulated.

3 Results and Discussions

To evaluate each particular condition under which a test
was insensitive to assumption violations, Bradley’s
criterion of robustness [7] was employed. According to
this criterion, for the five percent nominal level used in
this study, a test is considered robust if its empirical rate
of Type I error fell within [0.025, 0.075].
Correspondingly, a test is considered to be non-robust if,
for a particular condition, its Type I error rate is not

contained within the interval. We choose this criterion as
it provides a reasonable standard for judging robustness.

The empirical Type I error rates for the investigated
procedures are displayed in Table 2. The results showed
that all the procedures produced robust Type I error rates
under Bradley’s liberal criterion of robustness. The
disparity between Type I error rates from balanced and
unbalanced design is minute and the rates are consistent
across the investigated conditions. The nature of the
sample sizes be it balanced or unbalanced, did not show
much difference in the procedure’s ability to control Type
I error rates.

Table 2 Empirical Type I error rates

Distribution Sample
Sizes

PM t-test MWW

Normal (20,20)
(15,25)

0.0552
0.0526

0.054
0.054

0.0516
0.0456

Beta (20,20)
(15,25)

0.046
0.0528

0.0536
0.0562

0.0546
0.0492

g =0, h =
0.225

(20,20)
(15,25)

0.0588
0.0566

0.0522
0.0504

0.0516
0.0456

Fleishman1
(F1)

(20,20)
(15,25)

0.0456
0.0528

0.052
0.0532

0.0508
0.0458

Fleishman2
(F2)

(20,20)
(15,25)

0.0482
0.0532

0.0524
0.0522

0.0506
0.0452

χ2
3 (20,20)

(15,25)
0.0454
0.0526

0.052
0.0482

0.052
0.0514

There are no formal standards for power. In
determining the desired power levels, most researchers
assess the power of their tests using 0.80 as the standard
for adequacy. There are no hard and fast rules about how
much power is enough, but according to Murphy and
Myors [8], there seems to be a consensus about two
things. First, power should be above 0.50. When power
drops below 0.50, the study is more likely to fail. Second,
power of 0.80 or above is usually judged to be adequate.
Most power analyses specify 0.80 as the desired level of
power to be achieved, and this convention seems to be
widely accepted. In this study, 0.80 was used as the
standard for adequacy in power analysis.

Power rates for all procedures are displayed in Table 3
to 5. All power rates that reached the standard level are in
bold. We observe that all the investigated procedures
achieved the adequate power rate of 0.80 at the shift
parameter between 0.8 and 1.0. In Table 3, at shift
parameter of 1.0, the psudo-median procedure achieved
greater power rate under balanced group sample sizes as
compared to unbalanced group sample sizes except for
Fleishman 2 and chi-square distributions. These two
distributions show that the procedure produced greater
power rates under unbalanced group sample sizes.

The results in Table 4 and Table 5 show thatt-test and
Man-Whitney-Wilcoxon test achieved greater power rate
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under balanced group sample sizes as compared to
unbalanced group sample sizes at shift parameter of 1.0.

Table 3 Statistical power of pseudo-median procedure

Normal Beta g=0,
h=.225

F1 F2 χ2
3

Shift
Parameter

Group sizes (20,20)

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

0.095
0.231
0.450
0.681
0.860
0.956
0.990
0.998
1.000
1.000

0.085
0.195
0.406
0.649
0.835
0.959
0.991
0.998
1.000
1.000

0.128
0.333
0.597
0.803
0.929
0.978
0.992
0.996
0.999
0.999

0.091
0.219
0.436
0.673
0.854
0.954
0.989
0.999
0.999
1.000

0.095
0.227
0.453
0.684
0.859
0.953
0.988
0.999
0.999
0.999

0.105
0.296
0.541
0.758
0.894
0.961
0.987
0.998
0.999
0.999

Group Sizes (15,25)
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

0.089
0.216
0.429
0.670
0.829
0.947
0.984
0.997
0.999
1.000

0.090
0.176
0.389
0.610
0.806
0.941
0.988
0.998
0.999
1.000

0.119
0.309
0.565
0.791
0.898
0.967
0.984
0.996
0.998
0.999

0.079
0.202
0.422
0.653
0.848
0.956
0.988
0.999
0.999
1.000

0.077
0.206
0.436
0.671
0.862
0.960
0.989
0.999
0.999
1.000

0.092
0.251
0.522
0.766
0.917
0.975
0.994
0.999
0.999
1.000

Table 4 Statistical power oft-test

Normal Beta g=0,
h=.225

F1 F2 χ2
3

Shift
Parameter

Group sizes (20,20)

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

0.099
0.236
0.460
0.696
0.866
0.962
0.991
0.998
1.000
1.000

0.097
0.214
0.445
0.699
0.869
0.968
0.993
0.998
1.000
1.000

0.110
0.281
0.528
0.744
0.875
0.947
0.972
0.987
0.993
0.996

0.093
0.236
0.462
0.698
0.869
0.963
0.992
0.999
1.000
1.000

0.093
0.242
0.468
0.700
0.866
0.961
0.991
0.998
1.000
1.000

0.096
0.249
0.485
0.712
0.863
0.951
0.982
0.994
0.999
0.999

Group Sizes (15,25)
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

0.088
0.224
0.444
0.676
0.841
0.953
0.987
0.997
0.999
1.000

0.098
0.191
0.432
0.663
0.845
0.954
0.990
0.999
0.999
1.000

0.099
0.265
0.505
0.734
0.856
0.938
0.968
0.985
0.991
0.996

0.090
0.223
0.432
0.675
0.842
0.954
0.988
0.998
1.000
1.000

0.091
0.226
0.437
0.681
0.843
0.954
0.987
0.998
1.000
1.000

0.097
0.235
0.457
0.678
0.843
0.939
0.980
0.994
0.999
0.999

The results of the statistical power for all procedures
as tabulated in Table 3 to Table 5 show the range of shift
parameters when the procedures achieved the desired
power of 0.80. The approximated shift parameters when
the three procedures achieved power of 0.80 are shown in
Table 6. Linear approximation is chosen here because of
the two reasons. First, the equation of the power curve is
unknown. Second, the approximation is carried out over a
small range of effect size. Hence the portion of the power
curve used in the approximation resembles a straight line.

Table 5 Statistical power of Mann-Whitney-Wilcoxon

Normal Beta g=0,
h=.225

F1 F2 χ2
3

Shift
Parameter

Group sizes (20,20)

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

0.091
0.223
0.442
0.672
0.845
0.954
0.987
0.997
1.000
1.000

0.124
0.263
0.467
0.666
0.804
0.913
0.959
0.986
0.998
0.999

0.128
0.366
0.667
0.871
0.965
0.993
0.999
0.999
1.000
1.000

0.093
0.228
0.446
0.669
0.838
0.949
0.984
0.995
1.000
1.000

0.101
0.251
0.487
0.707
0.863
0.955
0.986
0.996
0.999
0.999

0.131
0.352
0.632
0.842
0.948
0.984
0.996
0.999
0.999
1.000

Group Sizes (15,25)
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

0.082
0.207
0.411
0.647
0.812
0.937
0.980
0.996
0.999
1.000

0.121
0.223
0.438
0.617
0.771
0.892
0.946
0.980
0.998
0.999

0.114
0.339
0.627
0.852
0.948
0.989
0.996
0.999
1.000
1.000

0.083
0.205
0.408
0.645
0.816
0.939
0.982
0.995
0.999
0.999

0.089
0.227
0.445
0.691
0.848
0.953
0.987
0.997
0.999
0.999

0.114
0.305
0.604
0.827
0.941
0.986
0.997
0.999
1.000
1.000

Table 6 Approximated shift parameter when power achieve
0.80.

Distribution Sample
Sizes

PM t-test MWW

Normal (20,20)
(15,25)

0.93
0.96

0.92
0.95

0.95
0.99

Beta (20,20)
(15,25)

0.96
0.99

0.92
0.95

0.99
1.05

g =0, h =
0.225

(20,20)
(15,25)

0.80
0.82

0.89
0.91

0.73
0.75

Fleishman1
(F1)

(20,20)
(15,25)

0.94
0.95

0.92
0.95

0.96
0.98

Fleishman2
(F2)

(20,20)
(15,25)

0.93
0.93

0.92
0.95

0.92
0.94

χ2
3 (20,20)

(15,25)
0.86
0.85

0.92
0.95

0.76
0.78
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Generally, the performance of the new procedure in
achieving the desired power level is comparable tot-test
and Mann-Whitney-Wilcoxon test. Under Normal and
Beta distributions, the results from Table 6 show that the
t-test achieved the desired power of 0.80 at lower shift
parameter values, followed very closely by the
pseudo-median procedure. The Mann-Whitney-Wilcoxon
test however, required larger shift parameters to achieve
the same power value. For theg-and-h distribution, the
Mann-Whitney-Wilcoxon test achieved the desired power
of 0.80 at the lowest shift parameters followed by the
pseudo-median procedure and thet-test.

Under the Fleishman 1 distribution, the findings
showed that the rate at which thet-test reached the power
of 0.80 is on par with the pseudo-median procedure.
However, the results indicate that the
Mann-Whitney-Wilcoxon test reached 0.80 at larger shift
parameters compared to thet-test and the new procedure.
Under the Fleishman 2 distribution, all procedures are on
par with each other in achieving the 0.80 level. Lastly,
under the chi-square distribution, the
Mann-Whitney-Wilcoxon test achieved the desired power
of 0.80 faster than the pseudo-median procedure and the
t-test for all conditions. However, the pseudo-median
procedure reached 0.80 at lower shift parameters than the
t-test.

4 Conclusions

In this paper, we investigated the performance of the new
procedure, known as the pseudo-median procedure to the
violations of normality. This procedure recorded
empirical Type I error rates within the robustness
criterion. The findings suggest that under all conditions
used in this study, the pseudo-median procedure has the
ability to control Type I error rates and maintaining high
power rates regardless of distributional shapes. The
performance of the pseudo-median procedure is
compatible to thet-test and Mann-Whitney-Wilcoxon
test. Thus, this new procedure can be considered as an
alternative procedure for comparing two groups
especially when the violations of assumptions of
normality exist.
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