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1 Introduction and Preliminaries iyuvnel* by(uvn)(x)=maxu(x),n(x)}, foreach
xe X.

X _
The notion of convergence is one of the basic notion in i) K’ €17, BYH'(X) = 1 — u(x), for each xc X.

analysis. In this paper, fuzzy continuous convergencenefinition 2. [4] A fuzzy topology on a non empty set X
theory of fuzzy nets on the setC(X,Y) of fuzzy is a family of fuzzy subsets of X such that:
continuous functions of an ftX into anotherY is

presented. In 1976, the concept of fuzzy topology was 1)U contains all constant fuzzy subsets of X,
introduced by R. Lowerd]. pnanel, foreachy,n € b,
In 1980, Pu and Liu introduced the notions of fuzzy li)If {143 }ren is subfamily of, theny, iy € 0.

nets and Q-neighborhoods. The concept of the The pair(X,0)is called a fuzzy topological space denoted
Q-neighborhood reflect the features of the neighborhoody fts. Each member @f is called fuzzy open set and its

structure in fuzzy topological spaces. By this new complementis called fuzzy closed set.
neighborhood structure the Moore-Smith convergence

theory was establishe@]] In this paper, we will give new  Definition 3. [6] Let (X, 0) be an fts angt, n € 1. Then:

concepts of fuzzy continuous convergence of fgzzy nets A fuzzy point xis said to be quasi-coincident with
on the setFC(X,Y). Also, we introduce the notions of denoted bypgu ifft > p'(x) ort+ p(x) > 1.

fuzzy splitting topologies and fuzzy jointly continuous i) is called quasi-coincident with, denoted byuqn,

topologies on the fuzzy functions spaces. if there exists >c X such thafu(x) +n(x) > 1. If y is
Let X be an arbitrary nonempty set. A fuzzy setdn not quasi-coincident witlp, then we writeu g4n.

is a mapping fronX to the closed unit intervadl = [0, 1], iii)A fuzzy subsep of X is called a neighborhood (or a

that is, an element df*. A fuzzy pointx; is a fuzzy set in nbd, for short) of a fuzzy point if there exists a fuzzy

X defined byx (x) =t andx (y) = 0 for all y # X, whose open sev of X such thatxe v C u. The family N, of

support is the single pointand whose value is€ (0,1] all nbds of x is called the system of nbds @f x

[6]. We denote byFP(X) the collection of all fuzzy points  iv)u is called Q-neighborhood of a fuzzy point

in X. % € FP(X) if there exists a fuzzy open sg 0 such

that xgn and n < u. The class of all open

Definition 1. [12] Let u,n € 1X. We define the following Q-neighborhoods ofyxs denoted by @
fuzzy sets:
Y Definition 4. [7] A map f: X — Y is called fuzzy

DuAnelX, by(uan)(x)=min{u(x),n(x)}, foreach  continuous if the inverse image of every fuzzy open subset
X € X. of Y is fuzzy open subset of X.
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Theorem 1. [7] Amap f: X — Y is fuzzy continuous
iff for each fuzzy pointixin X and each fuzzy open nbd
V of f(x), there exists fuzzy open nbd U efsxch that
f(U) CV.

Definition 5. [6] Let (X,0) be an fts, xe FP(X) and
u € IX. The closure of1, denoted by dlu) is defined by:
% € cl(u) iff for eachn € N@, we have)qu. The fuzzy set
Y is called closed ifu = cl(u).

Definition 6. [5] Let (X,71) and (Y,12) be fuzzy
topological spaces, then the fuzzy topolagy 7, x T2 on
the set Xx Y is defined as the initial fuzzy topology on
X xY making the projection mappingg PX xY — X
and B: X xY —Y fuzzy continuous.

Definition 7. [6] A mapping S D — FP(X) is called a
fuzzy net in X and is denoted K$(n) : n € D} or {S;:
n e D}, where D is a directed set.

Definition 8. [6] A fuzzy ne{ £ (m):me M} in X is called
a fuzzy subnet of a fuzzy nf(n) : n € D} iff there is a
mapping f: M — D such that:

i)ém = S¢(m), for each me M.
ii)For each ne D there exists some mM such that, if
p € M with p > m, then {p) > n.

Definition 9. [9] A fuzzy net{S(n) : n € D} in an fts X
is said to be fuzzy converges toikfor each fuzzy open
nbdv of x there is some i€ D such that n> ng implies

S(n) e v.

Definition 10. [2] A fuzzy nef f,,: me M} in FC(X,Y) is
said to be fuzzy continuously converges toFC(X,Y) iff
for every xin X and for every fuzzy open nbd V dk) in
Y there exists an elemenym M and a fuzzy open nbd U
of % in X such that {(U) CV, for every me M, m> m.

2 Fuzzy Continuously Convergence of Fuzzy
Nets

Definition 11. Let IX be the set of all fuzzy subsets of the
fuzzy topological space X. If D is a directed set, then by

Ii[p(u}\), wherep, € 1%X, we denote the fuzzxupper limit of
the fuzzy nefu, : A € D} in 1%, that is xdlim(wy ) iff for
everyAg € D and for every fuzzy open nbd V qgfir X
there exists an elemehte D for whichA > Agandu,qV.

Definition 12. Let D be a directed set, and for eachanD
there are a directed setFand fuzzy nef fm(n) : n € Em}
in FC(X,Y). Then, for the directed set ¥ D X []mep Em
(ordered by(ny,g) > (ng,h) iff np > ny, and gn) > h(n)
for each ne D), we have a fuzzy netfg) : T — FC(X,Y)
defined by f, = fm(g(n)), n€ D, g € [mep Em- The
fuzzy net f,q) is called the induced fuzzy netin ECY).

Definition 13. Let C be a class of pair&S, ), where S is

a fuzzy netin FCX,Y) and fe FC(X,Y). We say that C

is a continuously convergence class for BCY) iff the
following axioms listed below are satisfied. For
convenience, we write SC-converges to f whenever

(§f)ecC:

1I1f S={fy:ne D} isafuzzy netin FCX,Y) such that
fn = f for each n, ther{S, f) € C;

2.If (S, f) € C, then for every subnet T of §;,, f) € C;

3.If S does not C-converges to f, then there is a subnet
of S, no subnet of which C-converges to f.

4 Let D be a directed set. For eachaD, let B, be a
directed set andnf = {fm(n) : n € Em} be a fuzzy net
C-converges to (im) and let the fuzzy n€tf(m) : me
D} C-converges to f. Then, the induced §ét,g) =
fm(g(n)) :n€ D,9 € [Tmep Em} C-convergesto f.

Theorem 2. A fuzzy nef{f,: ne D} in FC(X,Y) fuzzy
continuously converges tod FC(X,Y) iff for every fuzzy
net{nm: me M} in X which fuzzy converges tg ix X
we have that the fuzzy net,(nm) : (n,m) € D x M} fuzzy
converges to () in'Y.

ProofLet % in X and letV be a fuzzy open nbd of (x)
in Y such that for everyny € D and for every fuzzy open
nbdU of % in X there existan > mg, m € D such that
fm(U) V. Then, for every fuzzy open nlidiof % in X we
can choose a fuzzy poirt € U such thatfim(x) ¢ V. Itis
clear that the fuzzy n€pg’ : U € N(x )} fuzzy converges
to x but the fuzzy ne{ fo(x’) : (U,n) € N(x) x D} does
not fuzzy converges té(x) in'Y.

Conversely, lef{S(n) : n € A} be a fuzzy net inX
which fuzzy converges te; in X and letV be a fuzzy
open nbd off (%) in Y. Then, there exists a fuzzy open
nbd U of x in X and an elemenng € D such that
fn(U) CV, for everyn > ny, n € D. Since the fuzzy net
{S(n) : ne A} fuzzy converges to in X. There exists
no € A such thatS(n) € U, for everyn € A, n > no. Let
(ng,mp) € A x D. Then, for every(n,m) € A x D, n > n,
m> my we have thatfm(S(n)) € fm(U) C V. Thus, the
fuzzy net{ fm(S(n)) : (m,n) € D x A} fuzzy converges to
f(x)inY.

Theorem 3. A fuzzy ne{ f: me M} in FC(X,Y) fuzzy
continuously converges toef FC(X, Y) iff lim( ft(K)) C
f~1(K), for every fuzzy closed subset K of Y.

Proof. Let {fm: me M} be a fuzzy net inFC(X.,Y),
which fuzzy continuously converges tb and letK be
arbitrary fuzzy closed subset of. Let xqlim( f1(K))
and letw be an arbitrary fuzzy open nbd dfx ) in Y.
Since the fuzzy nef{ f, : m e M} fuzzy continuously
converges td, there exists a fuzzy open nhdof x; in X
and an elementy € M such thatf,m(V) C w, for every
m e M, m > mp. Then Vqgf;1(K). Hence,
fn(V)qfn(f2(K)) € K. So, wgK. This means that
f(x)qcl(K) = K. Thusx.qf~1(K).
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Conversely, let{fn : m e M} be a fuzzy net in
FC(X,Y) and f € FC(X,Y) such that
lim(f1(K)) € £73(K), for every fuzzy closed subsét
of Y. Let x be a fuzzy point inX andw be a fuzzy open
nbd of f (%) inY. Letk = w, thenx gf~1(K). Then, we
have tha glim( fo1(K)). This means that there exists an
elementmy € M and a fuzzy open nbd of x in X such
that f;,1(K) gV, for everyme M, m> my. Then, we have
that V C (f1(K)) = fRX(K) C fht(w). Therefore,
fm(V) C w, for everyme M, m> my. Hence, the fuzzy
net{ f,: me M} fuzzy continuously converges fo

Theorem 4. If {n(n) :ne D} is a fuzzy netin FCX,Y)
such thatn(n) = n for every ne D, then n(n) fuzzy
continuously converges tpe FC(X,Y).

Proof. Suppose tha{n(n): n € D} be a fuzzy net in
FC(X,Y) such thatn(n) = n for every n € D. Let

{S(e) : ec E} be a fuzzy net irX fuzzy converges to;.

Sincen € FC(X,Y), then the fuzzy nefn(S(e)) :ec E}

fuzzy converges tq) (%) in Y. Thereforenn(S) = n(S)

fuzzy converges to n(x). Hence, n(n) fuzzy
continuously converges tp € FC(X,Y).

Theorem 5. If {n(n): ne D} is a fuzzy net in FCX,Y)
which fuzzy continuously convergesite FC(X,Y) and

{&(m): me M} is a subnet ofn(n) : ne D}, then the
fuzzy ne{ & (m): me M} is fuzzy continuously converges
ton.

Proof. Letx be a fuzzy point inX andV be a fuzzy open
nbd ofn (%) in Y. Then, there isp € D and a fuzzy open
nbdU of X such thain,(U) CV, for everyn € D, n > n.
Since{&(m): me M} isasubneto{n(n): neD}, there
is a mapf : M — D such that:

0 & (M) = Ntm);
(ii)for the elementng € D, there ismyg € M such that if
m>my, me M, thenf(m) > no.

Hence, we havém(U) = n¢m(U) €V, for everym >
mp, m € M. Thus, the fuzzy ne{é(m): me M} fuzzy
continuously converges tp.

Theorem 6. Let{fm: me M} be afuzzy netin F(X,Y)

{ls: se€ S} be a subnet ofg, : ve H} and& be the
corresponding map dfinto H. Let 55 € SandV be an
arbitrary fuzzy open nbd of x in X. |If
&(s0) = vop = (mp, o), then if we takeVp = Lo N U, we
have that there exists an elemept Ssuch thats; > 5
and for everys > s; we haveé (s) > vp. Lets > s; and
&(s) = (V). Then (1K) N = f(;é(s))(K) Ny >

-1 1
foee) () N Vo = foi6(K) N V. Therefore,

xqlintls 1(K)). Hencelinits*(K)) ¢ f~1(K). That s,
{ls: se S} does not fuzzy continuously convergesfto

Theorem 7. Let FC(Y,Z) be a fuzzy topological space,
let D be a directed set andE, : n € D} a family of
directed sets, If f, : n € D} be a fuzzy net in F{,Z)
continuously converges to f affd,(m) : me E,} be a
fuzzy net in FCY,Z) continuously converges to(rf).
Then, the induced fuzzy nfelty, g) : (n,9) € D X [[nep En}

in FC(Y,Z) continuously converges to f.

Proof. Let FC(Y,Z) be a fuzzy topological space, let
{fn : n € D} be a fuzzy net inFC(Y,Z) continuously
converges tdf, then there exist$n; : T € T} be a fuzzy
net in Y converges toy, in Y, the fuzzy net
{fa(n7) : (n,T) € D x T} which fuzzy converges to
f(yr). Thus there exists fuzzy open nldof f(y,) and
there exists)y € D such thatf,(n;) € v for everyn > n.
Since fo(1)(n¢) € v for all (n,7) > (np,h(n)). Now, for
(n,g) > (ng,h), we haven > np,g(n) > h(n) and hence
fing) (M) € v. Hence {fg) : (n,9) € D X [[nep En} the
induced fuzzy net ifFC(Y,Z) continuously converges to
f.

Hence, the class of all pairs(S, f) whereSis a fuzzy
net in FC(X,Y) and SGconverges tof € FC(X,Y) is a
continuously convergence class.

3 Fuzzy Function Spaces

In this section, we introduce fuzzy splitting topology and
fuzzy jointly continuous topology on the s&C(Y,Z).
Also, we give a necessary and sufficient condition for the

which does not fuzzy continuously converges to f. Thergxistence of the splitting and jointly continuous topology

there is a subnet dff, : me M} no subnet of which fuzzy
continuously converges tod FC(X,Y).

Proof. Let {fn: me& M} be a fuzzy net inFC(X,Y),
f € FC(X,Y) and let {fy, : m € M} does not fuzzy
continuously converges tof. This means that
lim(fa'(K)) € f~1(K), for some fuzzy closed subskt

of Y. Let xqlim( fal(K)). Let Ny, be the set of all fuzzy
open nbds ofx in X directed by inclusion and let
H =M xNy. If v=(m ) €M x Ny, then we denote by
m the element ofM such thatni> m and f1(K)qu
wherem= @(v). ¢ : M x Ny, — M. Obviously, the fuzzy
net{gy = fm: v € H} is a subnet of f,,: me M}. Let

on the seFC(Y, Z).

Notation: By FC* we denote the class of all pairs
({fn: ne D}, f) where{f, : n € D} is a fuzzy net in
FC(Y,Z) which fuzzy continuously converges fo If O
is a fuzzy topology onFC(Y,Z), then by FC(O) we
denote the class of all pair§{f, : n € D}, f) where
{fn: ne D} is a fuzzy net inFC(Y,Z) which fuzzy
convergestd € FC(Y,Z) in the fuzzy topology .

Definition 14. A fuzzy topology] on FC(Y,Z) is called
fuzzy splitting iff for every fts X, the fuzzy continuity of
the mapF : X xY — Z implies that of the map : X —
FCq(Y,Z2), for whichF (X, Ym) = F (%) (Ym)-
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Theorem 8. There exists the greatest splitting topology on Z, there exists g€ D such that § € U for every

the set FQY, Z).

Proof. Suppose thaft;};., be a family of fuzzy splitting
topologies onFC(Y,Z) and letd = sup{t }. For any
fuzzy topological spac¥, let F : X xY — Z be a fuzzy
continuous map. Consider the mép: X — FCa(Y, Z)
Let x in X and letU be a fuzzy open nbd of (x) in
FC(Y,Z). Since = sup 1j, we have thatl € t; for some
i. Also, sinceF : X — FC;(Y,Z) is fuzzy continuous,
there exists a fuzzy open nbof x such that (V) CuU.
Thus, the mapF is fuzzy continuous and the fuzzy
topology is fuzzy splitting.

Theorem 9. A fuzzy topologyd on FC(Y,Z) is fuzzy
splitting topology iff FC C FC(O).

ProofLet O be a fuzzy splitting topology oRC(Y,Z) and
let({f) : A € A}, f) € FC*. Consider the set = AU{z},
wherez ¢ A is a symbol such tha> A, for everyA € A.
Then, we define a fuzzy topology ot by defining any
singleton{x, } wherex € A to be fuzzy open and a fuzzy
nbds ofz are the fuzzy set§x) : A € X andA > Ao}, for
some)\o c /\} LetF : X x Y — Z be a map, for which
F(Ay)=fa(y),A #2 andF (zy) = f(y), for everyy e
Y. The mapF is fuzzy continuous. Alsd;- (A) = ) and
F (z) = f. Since, the fuzzy topologyl is fuzzy splitting,
the mapF : X — FC;(Y,Z2) is fuzzy continuous. Then,
for every fuzzy open nb;i of fin FC(Y,Z), there exists
a fuzzy open nbd of zin X such thafF (v) C . Hence,
there existg\o € A suchthai €v, foreveryA € A,A > Ao.
ThereforeF (A) = f) € u for everyA € A\A > )\0 which
means that the fuzzy néff, : A € A} fuzzy converges to
f in the fuzzy topology’. ThusFC* C FC(O).
Conversely, let] be a fuzzy topology or-C(Y,Z)
such thatFC* C FC(O). We aim to prove that the fuzzy
topology [ is fuzzy splitting. LetX be any fts and , let

F:X xY — Z be a fuzzy continuous map. Con5|der the

mapF : X — FC(Y,Z). Let {S(n) : n € D} be a fuzzy
net in X which fuzzy converges t& in X. We prove that
the fuzzy nefF (S(n)) : n € D} fuzzy converges t& (x).
Let {n(m): mec M} be a fuzzy net inY which fuzzy
converges tg, in Y. Since the map is fuzzy continuous
and the fuzzy ne(S(n),n (m)) : (n,m) € D x M} in
X x Y fuzzy converges tdx,yr) in X x Y, we have that
{F (m)) : (n,m) € D x M} fuzzy converges to

F(x, y,) Wh|ch means tha{FS(n (m): (n,m) € D x M}
fuzzy converges toFXt(yr) Therefore, the fuzzy net
{F(S(n)) : ne D} fuzzy continuously converges k().
Since FC* C FC(O), then the fuzzy net
{F(S(n)) : n € D} fuzzy converges t¢ (x). Hence, the
map F is fuzzy continuous and the fuzzy topologyis
fuzzy splitting.

Theorem 10. A subset U of FCY,Z) is fuzzy open in the
finest splitting topology iff for every € U and for every
fuzzy net {f, : n € D} in FC(Y,Z) such that

N> no.(x)

Proof. It is clear that the setl of all subsetsU of
FC(Y,Z) satisfy the conditior{x) is a fuzzy topology on
FC(Y,Z). Also, we prove that this fuzzy topology is
splitting. For any fuzzy topological space, let

F : X xY — Z be a fuzzy continuous map. Consider the
mapF : X — FC(Y,Z2), let {S(n ) :n€ D} be a fuzzy net
in X which fuzzy converges t& in X. We prove that the
fuzzy net{F( (n)) :ne D} in FC(Y,Z) fuzzy converges
to F(x). Let {n (m) : me M} be a fuzzy net ir¥ fuzzy
converges tg; in Y. Since the mag is fuzzy continuous
and the fuzzy net{(S(n),n (m)) : (n,m) € D x M} in
XxY fuzzy converges t0§xt yr) in X xY, we have that
{F (m)) : (n,m) € Dx M} fuzzy converges to
F Q(t,yr) which means that
{Fs(n) (n(m)) : (n,m) € D x M} fuzzy converges to
Fx (yr). Therefore, the fuzzy ndtF (S(n)) : n € D} fuzzy
converges td- (x ). Hence, the map is fuzzy continuous
and the fuzzy topology] is fuzzy splitting. Now, we
prove that( is the finest splitting topology oRC(Y,Z).
Let [ be a fuzzy splitting topology o C(Y,Z) and let
V € [0'. Suppose that € V and{f, : A € D} be a fuzzy
net inFC(Y,Z) such that the conditiofx) is satisfied, for
every fuzzy closed subsetK of Z. Then,
({fy : A € D}, f) € FC*. Since,[J is a fuzzy splitting
topology, FC* C FC((D) and so,
({fy : A € D},f) € FC(L¥). Therefore, there exists
Ao € D such thatf, €V, for eachA > Ag. Thus,V € [.
Hencel is the finest splitting topology.

Definition 15. A fuzzy topology] on FC(Y,Z) is called
fuzzy jointly continuous iff for any fts X, the fuzzy
continuity of the mapG : X — FCy(Y,2) |mpI|es the
fuzzy continuity of the map : X x Y — Z, for which

G(x,Ym) = G(%) (Ym)-

Theorem 11. A fuzzy topology] on FC(Y,Z) is fuzzy
jointly continuous iff the fuzzy evaluation map
e:FCq(Y,Z) xY — Z defined by éf yy) = f(y;) is fuzzy
continuous.

Proof. Obviously, the identity map
G=1:FCq(Y,Z) —» FCy(Y,2)

is fuzzy continuous. Since, the fuzzy topologyis fuzzy
jointly continuous. Then, the map

G=e:FC(Y,Z)xY = Z

is fuzzy continuous.

Conversely, letX be an fts,G : X — FC;(Y,Z) be a
fuzzy continuous map and :— Y be the identity map.
The mapGx 1:X xY — FCy(Y,Z) xY is fuzzy
continuous. Hence, the mago (G x 1) : X xY — Z is

lim(f,1(K)) € f~1(K) for each fuzzy closed subset K of fuzzy continuous.
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