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Abstract: In some adaptive sampling designs, expectations need talbelated as sampling progresses. For situations whee thes
calculations need to be done in the field where there is nosadmecomputers, or for very complicated and computer intens
calculations, we introduce an approximation method. Thihatkto approximate the expectation is based on conditipomsmall set

of points. An application of the approximation method isatédzed for a sample design with a complicated estimator.
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1 Introduction

In most statistical applications the true underlying pagioh is assumed unknown. A sample is taken and inferenak use
to estimate the population model. In situations where thaufasion’s model is known the parameters of the population
are considered known and further statistical methods areeguired. For example, when the probability function of
a discrete variable is known the expectation of any functiam be calculated easily. However, sometimes, in practice,
when there are a large number of data points and the expmtfatim cannot be simplified or calculated easily, the exact
value of the expectation cannot be found. In such cases, éMBatlo simulation methods can be used to estimate the
expectations. These methods typically require consideramputational work.

In this paper we introduce an approximation method that doesequire a lot of computational work for complicated
expectations. This method can be useful in field surveys evtteg researcher needs to calculate an expectation, for
example, for decisions to be made to terminate samplingdé&ptive sampling{] the process of sampling is dependent
on the sequence of observed sample values. In sequentiglisgnior example, selection of sample units continuelunti
the variance of the estimator is smaller than a predetednimatie. In general, in adaptive sampling, expectations are
calculated when a new unit is selected. Calculation metfardbese expectations should be fast and easy for fielddbase
sampling e.g., in ecological studies, environmental gsidjeographic studies, and biological studies.

The approximation method is introduced for discrete vaesbut it can also be used for a complicated expectation of
a continuous variable. With continuous variables an exiiect is calculated from an integral which can be approxédat
by numerical integration techniques like Riemann IntégratUsually in numerical integration algorithms, the ozl
value is approximated by calculating a summation over atfandén a finite set of points. While summation over a finite
set of points may be simpler than calculating a complicatégbiral, the summation itself may need to be simplified by
other approximation methods.

In this paper an approximation method is used to calculgpeaations by conditioning on a small number of points.
We use the example of a complicated sampling design with uadeslection probabilities without replacement and a
Rao-Blackwell estimator. Rao-Blackwellization is a pofuémethod to improve the efficiency of trivial estimatorhi§
estimator is given by calculating expectation of a trivistimator and it is used frequently in different fieldg]([ 3], and
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2 Select a subset from all values of a discrete variable

Let X be a discrete variable with valugg x2, ..., xn and probability functiorp(x). The expectation of each function &n
asf(X) is defined as following,
N
=% f(x)p(x) 1)
2

For a largeN and a complicate@(x), calculatingge(f (X)) is difficult or computationally expensive.
A Monte Carlo simulation method could be used. Firstly, #tnredom set of numberg, xo, ..., X, is generated from the
distributionp(x). Then the sample mean of generafér) values defined as following is calculated.

=3 10)/n. @

Using the law of large numbers,iifis large, therf (x) converges tde (f(X)).

Although the Monte Carlo simulation method has some delgirpioperties and calculating the estimator generally is
not difficult, generating the random numbers from the distibn p(x) is not straightforward. Generating such random
numbers, especially for a complicated formpgk), requires sophisticated methods, e.g., as Markov Chainé/0arlo
(MCMC), and access to computers for numerical processing.

In our approximation method we do not need to generate randambers, and instead, only some numbers are
selected by the researcher from the range walues. We should note that the numbers can be selectedmindo
non-randomly. The method is described as follows.

In order to approximat&(f (X)), firstly a few points are selected from &l points such that the distribution shape
of selected points is as similar as possible to the disiohughape of alN points as judged by symmetry, skewness and
kurtosis of both histograms, or bar plots. For example, wkien B(N, p) the representative set can be a systematic set
selected from (1,...,N, where the first value can be selected non-randomly. In dadselect a systematic set of size
n from 0,1,...,N, firstly the range of points are divided intoequal intervals. Next, the first point is selected from the
firstinterval Q1,...,(N+1)/n. Each of remaindan— 1 points can be selected systematically by additgthe previous
selected point, sequentially. Selecting the mid intera@hpas the first selected point helps to select a set with siwslkar
distribution shape to the &N points one.

When sortingX values is more difficult than sorting(x) values, we can select the representative set from the list of
X values ordered corresponding to the ascending, or desgemlk) values. This can be used for example, in sorting
multivariateX values where sorting the related single) numbers will be easier.

Letxy, Xo, ..., Xn be selected fromy, Xy, ..., Xn. The approximated expectation BfX) shown byAE( f (X)) is obtained
by calculating the expectation 6{X) conditioned on the selected points, as following:

AR % (3)

Example: AssumeX ~ B(20,p), it is clear E(X) = np = 20p. To examine the precision of the approximation
method, we calculate the difference of the approximatedeetgtions with the exact expectatio®§X) and
E(Log(X + 1)), respectively, fop = .1, .3, .5 and set point$3,10,17} and{1,4,7,10,13,16,19}. The difference and
relative difference of approximated expectations and esgmectations oK andLog(X + 1) are given as following:

dif(X)=AE(X)—E(X) = 'iXiP(Xi X1, ..+, Xns) — NP = % —np, (4)

dif(Log(X +1)) = AE(Log(X + 1)) — E(Log(X+ 1)) = ¥, Log(X + 1)P(Xi[X1, ..., Xns) — S 1_oLOg(X+ 1)P(x)

ZI”SlLog X +1)P
lP Xi)

- zoLog (x+1)P (5)

Relative difference is defined adi f (f (X)) = di f (f(X))/E(f(X)). The results of relative difference for all combinations
ofns=3, 7andp=.1, .3, .5 are summarized in Table (1).

In this small example, the approximated expectations fonpa set size, 7, were very close to the exact
approximations, and relative differences in expectatisere very small with largep values. The relative differences in
the skewed distribution were larger than non-skewed digtion.

@© 2013 NSP
Natural Sciences Publishing Cor.



J. Stat. Appl. Pro2, No. 2, 165-170 (2013)www.naturalspublishing.com/Journals.asp NS 2 167

3 Applying approximated expectation in a complicated survey sampling

Here we illustrate the approximation method for a more carafgd sampling design where an auxiliary variable has
been used. The auxiliary variable is correlated with thg@aase variable, an approach used to increase the efficiency
of an estimator for a given sample size. Auxiliary variabtes be used to improve both the sampling design and the
estimator. Stratified sampling is an example of the use ofuadliary variable in the sample design when it is used to
partition the population. Sampling with unequal selecfioobabilities which are proportional to an auxiliary véli, is
another example of the use of an auxiliary variables to impthe sampling design so that the efficiency of the estimator
is increased. Ratio estimators, regression estimata$jdmsen-Hurwitz estimator and the Horvitz-Thompson egtim

are examples of estimators which use auxiliary variableleir formula ).

In general, if a correlated variable with the response Wi available, sampling with unequal selection proliidssl

is preferable to equal selection probabilities. Furthemgling without replacements generally ensures a mordgerec
estimator than sampling with replacement.

With unequal probability sampling, one drawback is thatekiting an efficient estimator is computationally difficaihd

time consuming. The Rao-Blackwell estimator has a comggttaalculation, for instance. As an alternative method, we
illustrate an approximate expectation method for the the-Blackwell estimator, for sampling with unequal selectio
probabilities.

Assume a sample of siza is selected from a finite populatidh = {1,2,..,N} corresponding to unequal selection
probabilitiesps, pz, ..., py and without replacement. L& = (i1, ...,im) be the selected units which the order unit§in
is corresponding to the order of selection. In the selectéd setS= {i4,...,im}, the order is not important.

In finite populations the ordered sample set is sufficienttaadset of distinct sample units is minimally sufficient for
each sampling desigid].

Some estimators like Raj's estimatdf pre functions defined on the ordered sample. The efficiehsyah estimators
can be increased by calculating the Rao-Blackwell estimati the estimatof be a function of the ordered s& =
(i1,...,im), and the set of unordered units 8e- {i4, ...,im}. For simplicity, we will eliminate subscriptirom S, andS. If
p1, P2, ..., Pm are the probabilities of selecting units2]...,m, respectively, the probabilities of obtainipgS,) and p(S)
are given as:

— P2 Pm
P(S) =P g

_ m P2g Py
g=1 1*plgm1*plg*---*pmflg.

(6)

Where subscripg determines the number of each permutation. The Rao-Bldtksténator of6 is shown by@R and
is calculated as:

br = E(B]S) = — % R P (7)
p(S) g=1 o1 1g 1 Py — - — Pm-14
Varjance arld estimatg of variance fare given as:
V(6r) =V(8) —E(V(6]9))
V(6r) =V (8)-V(6]9
V(0) - S (B B i (8)
S & 91— py, 1—Prg— - — P 1
Table 1: Relative difference
ns p rdif(X) rdif(Log(X+1))
3 01 0.5 0.4
3 03 -0.15 -0.11
3 05 0 0.01
7 0.1 -0.11 -0.06
7 0.3 -0.00 0.00
7 05 0 0.00
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It is clear that calculatingE (8|S) for m > 4 is too difficult without a computer on hand, and far> 180 it is near
impossible.
In order to calculatAE(6|S), firstly, a small number of alin! possible permutations are selected. T 8|S) and
AV(@R) are given by conditioning the expectations on the selectethptations. Let a subset of sime< m! be selected
from all m! possible permutations. TheXE (6|S) andAV (6r) are given as:

AE((§|S)=L§€)pl Po_ Py 9)
PS) & O Pl—py 1—pyg— =Py
and L
A/ (6r) =V(6) -AV(6]9)
~oA 1 E . . P2 Py
=V(0)— — 0y — Br)? . 10
)5y 2% R P e 10)

wherep(S") = y0°1 P(Sy)-

The permutations are vectors withelements and sorting all of them will be more difficult thamtsg thex values
in a binomial distribution. As an alternative method a sqi@imutations can be selected such that their probabilitiega
cover the range of possiblg§S,) values. Although sorting alp(S,) values and selecting a systematic set from them is
not straightforward we can arrange some of the permutasiools that their probability values are distinct and cover th
range ofp(S) values homogenously. Before introducing this method, thlewing Theorem is proved.

Theorem 1 1f in a given permutation, say

Sog = (1g, .-, k—1g,kg, K+ 1g, ..., 1 = 1g,1g,1 + 1g,...,mg), two elements like kg and Iy be replaced together and the new
permutation
Sg = (g, -, K= 1g,lg, K+ 1g, ...,I — 1g,Kg, | + g, ...,my) be formed, the following results are given:

Piy < Py & P(Sog) < P(Sog)

Pk = Py & P(Sog) > P(Sog) (11)

Proof. The first inequality is proved, and the second one can be dreiweilarly. Letpyx < pj, the subscripy is deleted
for simplicity, probabilityP(Sg) can be written as:

— P2 Pm _ M2, pi
P(Sog) = PLr -+ Tt — n;";f(llfz?zl Pj)

_ iy pi
M1 (=35 i) Mak(1-331 P MA (1571 Py)

A

= (12)
BMak(1— 31 pi)C
Also, P(Sy) can be written as:
_ NiZy b
P(Sy) =
(Sog) Me1 (1521 Pj) Mact k1.0 1(1= 521 Pj) Maki+1,..m-1(1- 53 })
A
(13)

Itis clear thatA, B andC in P(S) are equal to their corresponding term®i{Sy ). Now, in order to compare(Sg)
with P(Soy), we just need to compaqq[;:}((l— Y51Pj) and [Maci ke, 1—1(1— Y1 pj). For a givena in the first
production, we have:

a

a
1-% pj=1- Pj — Pk (14)
JZ:L : k#]=1 :
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And for the same in the second one:

a a
1—ij=1—; Pj — P (15)
=1 I#£]=1

We knowpg < p; then for a givera the value of - Z?:l pj in the P(Sg) is greater than similar one (S ), therefore

Let the ordereg values in the sample be as follows:

Pa) < P2) <... <Pm) (16)
Using Theorem (1), the smallest and largest valugy &) are given as:

. . P(2) P(m)
Pmin(So) = Pa) l*;(l) TP Py
P(m-1) P
S) — “ee ’ 17

which are correspond to the ascending arrangerfign{2), ...(m) and the descending arrangemémj, (m—1),...,(1),
respectively. An arrangement of some permutations whigkrstthe interval pmin(S), Pmax(S)) homogenously, can be
introduced as follows:

Ary = (1)7(2)7(3)7a(m_2)7(m_1)a(m)
Ar2 = (m)v(z) (3)7---a(m_2)7(m_ 1))(1)
Ar3: (m)v(m71)5(3>5 7(m72)5(2)5(1)
Ar4: (m)v(m_l)a(m_z)v5(3)5(2)5(1)

Arps = (m), (M—1),(M—2),..,(3),(2), (1)

where, in this methods = [m/2] + 1, andRyin(S) = P(Ar1) < P(Arp) < ... < P(Arps) = Puax(S)-
Another method yielding a larges is carried out as follows, such that in each arrangement gighiborhood elements
of the previous arrangement are replaced together.

Ar1: (1),(2),(3),,(mfZ),(mfl),(m)
Ary = (2),(1),(3),...,(m—2),(m—1),(m)
Ar3: (2)7(3)7(1)75(”]72) (mil)a(m)
Arm = (2),(3),(4), .., (= 1), (m), (1)
Arm+l: (3)7(2)7(4)7 a(mil)v(m)v(l)
Armip = (3)7 (4)7 (2)7 a(m_ 1)7 (m), (1)
Arom 2= (3),(4),(5). ... (m). (2). (1)
Aerfl - (4)5 (3)5 (5)5 ceey (m)7 (2)7 (1)

Arps = (m), (M—1),(M—2),..,(3),(2), (1)

wherens= m(m—1)/2+ 1, andRuin(S) = P(Ar1) < P(Arp) < ... < P(Arns) = Puax(So)-
Other arrangements can be constructed similarly to gedreifit values ofis. The smallest arrangement set consisting of
two or three permutations can be constructed as follows:

Ar1:(1)7(2)7(3)7“'a(m_2)7(m_1)a(m) (18)

Arp = (m),(m—1),(m—2),...,(3),(2),(1) (19)

If the observed, is different from the two first arrangements, then the AE Iswdated based on three points. Such an
arrangement set can be useful in adaptive sampling desigieb the value of Rao-Blackwell estimator is used to decide
on when to terminate sequential sample selection. The fiaatBackwell estimator can be calculated based on a larger
arrangement set.
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