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Abstract:The advection diffusion equation (ADE) is solved in two directions to obtain the crosswind integrated concentration. The 

solution is solved using Laplace transformation technique and considering the wind speed depends on the vertical height and eddy 

diffusivity depends on downwind and vertical distances. We compared between the two predicted concentrations and observed 

concentration data are taken on the Copenhagen in Denmark. 
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1.Introduction 

 
The analytical solution of the atmospheric diffusion 

equation has been containing different shaped depending on 

Gaussian and non- Gaussian solutions. An analytical 

solution with power law for the wind speed and eddy 

diffusivity with the realistic assumption was studied by 

(Demuth, 1978). The solution has been implemented in the 

KAPPA-G model (Tirabassi et al., 1986). Lin and 

(Hildemann, 1997) extended the solution of (Demuth, 1978) 

under boundary conditions suitable for dry deposition at the 

ground.The mathematics of atmospheric dispersion 

modeling is studied by (John, 2011). In the analytical 

solutions of the diffusion-advection equation, assuming 

constant along the whole planetary boundary layer (PBL) 

or following a power law was studied by (Van Ulden, 1978; 

Pasquill and Smith, 1983; Seinfeld, 1986; Tirabassi et al., 1986; 

Sharan et al., 1996).   

Estimating of crosswind integrated Gaussian and non-

Gaussian concentration through different dispersion 

schemes is studied by (Essa and Fouad, 2011). Analytical 

solution of diffusion equation in two dimensions using two 

forms of eddy diffusivities is studied by (Essa and Fouad, 

2011). 

In this paper the advection diffusion equation 

(ADE) is solved in two directions to obtain crosswind 

integrated ground level concentration in unstable 

conditions. We use Laplace transformation technique and 

considering the wind speed and eddy diffusivity depends on 

the vertical height and downwind distance. We compare 

between observed data from Copenhagen (Denmark) and 

predicted concentration data using statistical technique.   

2. Analytical Method 

Time dependent advection – diffusion equation is written as 

(Arya, 1995). 

 𝜕𝑐
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𝜕
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(1) 

where: 

c is the average concentration of air pollution (μg/m3). 

u is the wind speed (m/s). 

Kx, ky and kz are the eddy diffusivities coefficients along x, 

y and z axes respectively (m2/s). 

For steady state, taking dc/dt=0 and the diffusion in the x-

axis direction is assumed to be zero compared with the 

advective in the same directions, hence: 
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We must assume that ky=kz=k(x). Integrating the                                                                                                                   

equation (2) with respect to y, we obtain the normalized  

crosswind integrated concentration cy (x,z) of contaminant 

at a point (x,z) of the atmospheric advection–diffusion 

equation is written in the form (Essa et al. 2006) : 

 

 
(3) 

Equation (3) is subjected to the following boundary 

condition 

1. It is assumed that the pollutants are absorbed at the 

ground surface 

 

 

(i) 

where vg is the deposition velocity (m/s). 

2. The flux at the top of the mixing layer can be given by 

  ,
( )0

y

k
c x z
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z

at z h

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
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(ii) 

3. The mass continuity is written in the form 

 u cy (x,z) =Q δ(z-h)                        at x=0 (iii) 

4. The concentration of the pollutant tends to zero at large 

distance of the source, i.e. 

 cy (x,z) =0                   at  z=∞ (iv) 

Applying the Laplace transform on equation (3) to have: 

 

 

(4) 

Substituting from equation (iii) in equation (3), we obtain 

that: 

 

   
2
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c s z z h
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Where    zxcLzsc ypy ,{,~  ; x→s}, where Lp is the 

operator of the Laplace transform  

 

 

 

The nonhomogeneous partial differential equation has a 

solution in the from: 

 

  1 2

1
, 1 (6)

s u s u s u
z z h
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y
c s z c e c e e

h s u k

 
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 
 
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 (6) 

From the boundary condition (iv), we find c1=0: 

 

  2

1
, 1 (7)

s u s u
z h

k k
yc s z c e e

h s u k

  
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 (7) 

Using the boundary condition (iii) after taking Laplace 

transform we get that: 
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 (8) 

Substituting from equation (8) in equation (7), we get that:  
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Substituting from equation (9) in equation (7), we get that: 
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(10) 

Taking the inverse Laplace transform for the equation (10), 

we get the normalized crosswind integrated concentration 

in the form: 

 2 2
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(11) 

In unstable case we take the value of the vertical eddy 

diffusivity in the form: 

 k (z) =kv w* z   (1-z/h) (12) 

Substituting from equation (12) in equation (3), we get that: 
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Applying the Laplace transform on equation (13) respect to 

x and considering that:  

 𝑐̌𝑦(𝑠, 𝑧) = 𝐿𝑝{𝑐𝑦(𝑥, 𝑧); 𝑥 → 𝑠} 
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Where Lp  is the operator of the Laplace transform  
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Substituting from (14) in equation (13), we obtain that:  
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(15) 

Substituting from (ii) in equation (15) we get:- 
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(16) 

After integrated equation (16) with respect to z, we obtain 

that:  
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(17) 

Equation (17) is nonhomogeneous differential equation 

then, above equation has got two solutions, one is 

homogeneous and other is special solution, in order to solve 

the homogeneous, we put,−
𝑄

𝑘𝑣𝑤∗ℎ𝑠(1−
ℎ𝑠
ℎ

)
 =0 in equation 

(17), the solution becomes: 
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After taking Laplace transform in equation (18) and 

substitute from (ii), we obtain that:  
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Substituting from equation (19) in equation (18) we get 

that:- 
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The special solution of equation (17) becomes: 
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(21) 

Then, the general solution of equation (17) is as follows:- 
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(22) 

Taking Laplace inverse of equation (22), we get that:- 
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Since: 
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L-1is the operator of the Laplace inverse transform by 
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(Shamus, 1980). 

To get the crosswind integrated ground level concentration, 

we put z=0 in equation (23), we get that: 
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(19) 

 

3. Validation 

The used data was observed from the atmospheric diffusion 

experiments conducted at the northern part of Copenhagen, 

Denmark, under neutral and unstable conditions (Gryning 

and Lyck, 1984; Gryning et al., 1987). Table (1) shows that 

the comparison between observed, predicted model 1 and 

predicted model integrated crosswind ground level 

concentrations under unstable condition and downwind 

distance. 

Table.1. 

Run 

no. Stability 

Down 

distance 

(m) 

 

)3(s/m 4-/Q *10yC 

observed 

Predicted model 1 

/u) x.2
wx) = 0.16 (σK( 

Predicted model  2 

z /h)-z   (1* w vk K(z)= 

1 Very unstable (A) 1900 
6.48 

8.95 
5.01 

1 Very unstable (A) 3700 
2.31 

4.64 
2.62 

2 Slightly unstable (C) 2100 
5.38 

6.28 
4.36 

2 Slightly unstable (C) 4200 
2.95 

3.14 
2.26 

3 Moderately unstable (B) 1900 
8.2 

10.92 
5.01 

3 Moderately unstable (B) 3700 
6.22 

6.30 
2.61 

3 Moderately unstable (B) 5400 
4.3 

8.30 
1.80 

5 Slightly unstable (C) 2100 
6.72 

9.47 
4.50 

5 Slightly unstable (C) 4200 
5.84 

9.01 
2.27 

5 Slightly unstable (C) 6100 
4.97 

12.19 
1.57 

6 Slightly unstable (C) 2000 
3.96 

5.30 
4.35 

6 Slightly unstable (C) 4200 
2.22 

2.53 
2.21 

6 Slightly unstable (C) 5900 
1.83 

1.98 
1.60 

7 Moderately unstable (B) 2000 
6.7 

8.11 
4.57 

7 Moderately unstable (B) 4100 
3.25 

3.96 
2.32 

7 Moderately unstable (B) 5300 
2.23 

3.06 
1.81 

8 Neutral (D) 1900 
4.16 

10.31 
4.89 

8 Neutral (D) 3600 
2.02 

5.45 
2.68 

8 Neutral (D) 5300 
1.52 

4.37 
1.85 

9 Slightly unstable (C) 2100 
4.58 

6.86 
4.34 

9 Slightly unstable (C) 4200 
3.11 

3.43 
2.26 

9 Slightly unstable (C) 6000 
2.59 

2.40 
1.60 
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Fig. 1. The variation of the two predicted and observed 

models via downwind distances. 

Fig. (1) Shows that the predicted normalized crosswind 

integrated concentrations values of the model 2are good to 

the observed data than the predicted of model 1. 

Fig. (2) Shows that the predicted data of model 2 is nearer 

to the observed concentrations data than the predicted data 

of model 1. 

From the above figures, we find that there are agreement 

between the predicted normalized crosswind integrated 

concentrations of model 2 depends on the vertical height 

with the observed normalized crosswind integrated 

concentrations than the predicted model 1 which depends 

on the downwind distance.  

 
Fig. 2. The variation between the predicted models and 

observed concentrations data. 

4. Statistical method 

Now, the statistical method is presented and comparison 

between predicted and observed results will be offered by 

(Hanna, 1989).The following standard statistical 

performance measures that characterize the agreement 

between prediction (Cp=Cpred/Q) and observations 

(Co=Cobs/Q): 

 

 

𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝐵𝑖𝑎𝑠 (𝐹𝐵)

=
(𝐶𝑜 − 𝐶𝑝)

[0.5(𝐶𝑜 + 𝐶𝑝)]
Normalized Mean Square Error (NMSE)

=
(Cp − Co)2

(CpCo)
𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 (𝐶𝑂𝑅)

=
1

𝑁𝑚
∑(𝐶𝑝𝑖 − 𝐶𝑝)

𝑁𝑚

𝑖=1

×
(𝐶𝑜𝑖 − 𝐶𝑜)

(𝜎𝑝𝜎𝑜
𝐹𝑎𝑐𝑡𝑜𝑟 𝑜𝑓 𝑇𝑤𝑜 (𝐹𝐴𝐶2) = 0.5 ≤

𝐶𝑝

𝐶𝑜

≤ 2.0 

Where σp and σo are the standard deviations of Cp and Co 

respectively. Here the over bars indicate the average over 

all measurements. A perfect model would have the 

following idealized performance: NMSE = FB = 0 and 

COR = 1.0. 

Normalized Mean Square Error (NMSE) =
(Cp − Co)2

(CpCo)
 

𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝐵𝑖𝑎𝑠 (𝐹𝐵) =
(𝐶𝑜 − 𝐶𝑝)

[0.5(𝐶𝑜 + 𝐶𝑝)]
 

 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 (𝐶𝑂𝑅)

=
1

𝑁𝑚

∑(𝐶𝑝𝑖 − 𝐶𝑝) ×
(𝐶𝑜𝑖 − 𝐶𝑜)

(𝜎𝑝𝜎𝑜

𝑁𝑚

𝑖=1

 

 

𝐹𝑎𝑐𝑡𝑜𝑟 𝑜𝑓 𝑇𝑤𝑜 (𝐹𝐴𝐶2) = 0.5 ≤
𝐶𝑝

𝐶𝑜

≤ 2.0 

Where σp and σo are the standard deviations of Cp and Co 

respectively. Here the over bars indicate the average over 

all measurements. A perfect model would have the 

following idealized performance: NMSE = FB = 0 and 

COR = 1.0. 

Table. 2. Comparison between our two models according 

to standard statistical Performance measure 

Models NMSE FB COR FAC2 

Predicated 

model 1 
0.30 -0.40 0.78 1.56 

Predicated 

model 2 
0.26 0.32 0.67 0.80 

From the statistical method, we find that the two models are 

inside a factor of two with observed data.  Regarding to 

NMSE and FB, the predicted two models are good with 
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observed data the correlation of predicated model 1 equals 

(0.78) and model 2 equals (0.67). 

4. Conclusion 

5.  
We find that the predicted crosswind integrated 

concentrations of the two models are inside a factor of two 

with observed concentration data. One finds that there is 

agreement between the predicted normalized crosswind 

integrated concentrations of model 2 depends on the 

vertical height with the observed normalized crosswind 

integrated concentrations than the predicted model 1 which 

depends on the downwind distance.  
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