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Abstract: Singular system is a natural representation of dynamical systems. Guaranteed cost fuzzy control problem for a class
of nonlinear singular system is addressed. The nonlinear singular system contains time-varying and norm-bounded uncertainties
simultaneously in the matrices of states, delayed states and control inputs. Nonlinear singular system is formulated in the framework
of Takagi-Sugeno (T-S) fuzzy system. Parallel-distributed compensation (PDC) scheme is equipped to design T-S fuzzy controller.
Sufficient conditions are stated to guarantee both the stabilization and close-loop system’s performance requirements. The conditions
are obtained via linear matrix inequalities (LMIs) techniques, which can be solved through convex optimization method efficiently.
Finally, numerical example demonstrates the usage of the proposed results.
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1 Introduction

The problem of stabilizing singular systems has been
widely studied during past decades because of its
practical interest [1,2]. The singular system is also
referred to as singular system, implicit system,
generalized state-space system, differential-algebraic
system and semi-state system [1], and has a tighter
representation for a wider class of systems for
representing real independent parametric perturbations in
comparison with traditional state-space model. On the
other hand, dynamical systems with time delays
constitute the basic mathematical models of real
phenomena, and are very common in various industrial
fields, for instance, in chemical processes, communication
network, transportation systems, environmental systems,
and power systems. And, time delays also appear in
actuator and state measurements. Since time delays
frequently cause serious deterioration of the performance
and even stability of the system, various topics has been
addressed over the last decades [3,4,5,6]. Due to the
difficulties of constructing Lyapunov function and the
complexity of the existence and uniqueness of the
solution, there still remain some difficulties in tackling
the nonlinear singular systems with time delays.

On the other hand, fuzzy logic approach [7,8] has
proven to be an efficient method to represent complex
nonlinear systems by fuzzy sets and fuzzy reasoning. The
rule-based structure of fuzzy controller allows the
designer to implement a complex controller design within
an intuitively straightforward framework. Among various
fuzzy modeling methods, Takagi-Sugeno (T-S) fuzzy
model [7] is one of the most popular frameworks. It is
based on a fuzzy partition of input space. In each fuzzy
subspace, a linear input-output relation is formed. The
output of fuzzy reasoning is given by the aggregation of
the values inferred by some implications that are applied
to an input. Generally speaking, there are two kinds of
fuzzy logic controller. One is model-free fuzzy controller
[8], and the other is model-based fuzzy controller. The
former depends on heuristic knowledge from experts, and
is featured by difficulties in guaranteeing the stability and
control performance of the closed-loop system.
Therefore, the latter has attracted a lot of attention from
researchers during the last decade [9,10,11].

T-S fuzzy logic controller design using
parallel-distributed compensation (PDC) scheme had
been proposed and developed in [9]. Fuzzy model-based
controller can combine the merits of both fuzzy controller
and conventional linear theory, and furthermore guarantee
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stability in the sense of Lyapunov and control
performance theoretically. Moreover, linear matrix
inequality (LMI) techniques [12] also make model-based
fuzzy controller design more convenient. However, when
the controller is design for a real plant, it is also desirable
to design a controller that not only makes the closed-loop
system stable but also guarantees an adequate level of
performance [13]. There exists voluminous literature on
the subject of stabilization of linear singular system with
time delays [2,3,6]. Especially, the robust stability
analysis of uncertain discrete-time singular fuzzy systems
was discussed in [10]. However, guaranteed cost
controller for nonlinear singular system with time delays
is still an open problem for the researchers.

This paper deals with guaranteed cost fuzzy controller
design for a class of nonlinear singular fuzzy system with
time-delay. The uncertainty is assumed to be
norm-bounded and appears in the state matrices of current
states, delayed states as well as input matrix. First, the
nonlinear singular system is described by T-S fuzzy
model. The performance index considered in the paper is
an integral quadratic cost function as the regulator
problem. Then, the sufficient conditions for guaranteed
cost fuzzy controller are presented through PDC scheme.
And the conditions are reduced to a set of LMIs, which
can nowadays resort to some popular commercial
software. Finally, numerical example is given to illustrate
the effectiveness of the controller design.

This paper is organized as follows. T-S fuzzy singular
system with time delays is constructed in Section2. Some
use lemmas are presented in Section3. Section4 deals
with guaranteed cost fuzzy controller. Section5 illustrates
the results on a numerical example. Finally, in Section6,
concluding remarks end the paper.

2 Problem Statement

Recent studies in [9] had shown that fuzzy model is a
universal approximator of any smooth nonlinear systems
having a first order that is differentiable. The appeal of a
linear T-S model is that it renders itself naturally to
Lyapunov based system analysis and design techniques.
The following T-S fuzzy singular system is constructed to
approximate the nonlinear singular with time delay and
uncertainties.

Plant Rulei :

IF z1(t) is Mi1 and, · · · , andzp is Mip,

THEN Eẋ(t) = (Ai +∆Ai)x(t)+(Adi +∆Adi)

×x(t −d)+(Bi +∆Bi)u(t)

x(t) = ϕ(t), t ∈ [−d,0],

i = 1,2, · · · , r,

(1)

wherez(t) = {z1(t),z2(t), · · · ,zq(t)} denote the variables
of premise part, Ai , Adi ∈ ℜn×n, Bi ∈ ℜn×m,

x(t) = [x1(t) x2(t) · · · xn(t)]T denotes state vector,u(t)
denotes control input vector, andMil denotes fuzzy sets,
andr denotes the number of IF-THEN rules.E is singular
matrix with rank(E) = q ≤ n. d > 0 is time delay,ϕ are
continuous vector-valued initial functions.∆Ai ,
∆Adi ∈ ℜn×n, ∆Bi ∈ ℜn×m represent the system’s
uncertainty matrices and satisfy Assumption1.

Assumption 1Uncertainty matrices∆Ai , ∆Bi and ∆Adi
are norm-bounded, and have the following structures

[

∆Ai ∆Bi ∆Adi
]

= DiFi(t)
[

E1i E2i Edi
]

, (2)

where Di , Ei1 and Ei2 are constant real matrices of
appropriate dimensions, and Fi(t) ∈ ℜi× j is unknown
matrix-valued functions with Lebesgue-measurable
elements, may be time-varying and satisfies

FT
i (t)Fi(t)≤ I , (3)

where I is the identity matrix with appropriate dimensions.
Uncertainties∆Ai , ∆Bi and∆Adi are said to be admissible
if both (2) and (3) hold. This form has been widely used to
deal with time-varying uncertainties.

By using the fuzzy inference method with a singleton
fuzzifier, product inference, and center average
defuzzifiers, the final output of T-S fuzzy model is
obtained as

Eẋ(t) =
r
∑

i=1
µi(z(t))[(Ai +∆Ai)x(t)+(Adi +∆Adi)

×x(t −d)+(Bi +∆Bi)u(t)]
, (4)

where

µi(z(t)) = ωi(z(t))

/

r

∑
i=1

ωi(z(t)),

ωi(z(t)) =
p

∏
j=1

Mi j (z(t)),

andMi j (z(t)) denotes the degree of membership ofz(t) on
Mi j . The degree of membership satisfies

r

∑
i=1

ωi(z(t))> 0, ωi(z(t))≥ 0, i = 1, 2, · · · , r.

Note that for allt, there exists

r

∑
i=1

µi(z(t)) = 1, µi(z(t))≥ 0, i = 1, 2, · · · , r,

whereµi(z(t)) can be taken as the weights of normalized
IF-THEN rules.
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As for PDC scheme, fuzzy controller and fuzzy model
(4) possess the same premises. Then, if we suppose that all
the system’s states are observable, thei-th controller rule
can be expressed by

Controller Rulei :

IF z1(t) is Mi1 and, · · · , and zp is Mip,

THEN u(t) = Kix(t), i = 1, 2, · · · , r,

(5)

whereu(t) is the local control, andKi is the local feedback
gains.

At the consequent part, fuzzy control rules have linear
state feedback gain. It has been proved that the controller
using the PDC scheme is an approximator for any
nonlinear state feedback controller [9]. The overall fuzzy
controller can be represented as follows

u(t) =
r

∑
i=1

µi(z(t))Kix(t). (6)

Therefore, the fuzzy controller is to design local
feedback gainKis. Then, the combinations of (4) and (6)
results in the overall closed-loop fuzzy system

Eẋ(t) =
r

∑
i=1

µi(z(t)){[(Ai +∆Ai)+(Bi +∆Bi)Ki ]

×x(t)+(Adi +∆Adi)x(t −d)},

x(t) = ϕ(t), t ∈ [−d, 0].

(7)

In the following, we introduce some definitions and
useful properties for the system (7).

Definition 1.A pencil sE− ∑r
i=1 µi(z(t))Ai (or pair (E -

∑r
i=1 µi(z(t))Ai) is regular, if det(sE−∑r

i=1 µi(z(t))Ai) is
not identically zero.

Fuzzy singular system (7) has no impulsive mode (or
impulse free) if and only ifrank(E) = degdet(sE -
∑r

i=1 µi(z(t))Ai).

The notations det(·), rank(·) and deg(·) denote
determinant, rank and degree of a matrix, respectively.
The property of regularity guarantees the existence and
uniqueness of solution for any specified initial condition.
The condition of impulse free ensures that singular
system has no infinite poles.

The performance cost function associated with the
system (1) is given by

J =

∫ ∞

0
[xT(t)Qx(t)+uT(t)Ru(t)]dt, (8)

where positive semi-definiteQ ∈ ℜn×n and positive
definiteR∈ ℜm×m are constant weight matrices.

The definition of guaranteed cost fuzzy controller for
nonlinear singular system with time delays (1) is given as
follows:

Definition 2.Consider the delayed fuzzy singular system
(1). The fuzzy controller (6) is called guaranteed cost fuzzy
control law for the singular system with time delays (4), if
there exist fuzzy controller (6) and a positive scalar J∗ such
that

(i) fuzzy singular closed-loop system (7) is regular,
impulse free and asymptotically stable,

(ii) the cost function (8) is bounded, i.e. J∗, where J∗ is
the upper bound of the performance cost function (8).

The objective of this paper is to give the sufficient
conditions of guaranteed cost fuzzy controller (6) for the
fuzzy system with time delays (1) based on LMI
technique.

3 Mathematical Preliminaries

Before proceeding with the research on stability conditions
for the closed-loop fuzzy singular system with time delays
(7), some useful lemmas are introduced first.

Lemma 1. [4] Let A,D,E,F and P be real matrices of
appropriate dimensions with P> 0 and F satisfying
FTF ≤ I. Then we have the following

(i) For any scalarε> 0,

DFE+(DFE)T ≤ ε−1DDT + εETE. (9)

(ii) For any scalarε > 0, such thatεI −EPET > 0

(A+DEF)P(A+DFE)T ≤ APAT + εDDT

+APET(εI −EPET)−1EPAT,
(10)

or equivalently

(A+DEF)P(A+DFE)T ≤ εDDT

+A(P−1− ε−1ETE)−1AT,
(11)

(iii) For any scalarε> 0 such that I− εETE> 0,

(A+DEF)(A+DEF)T ≤ ε−1DDT

+A(I − εETE)−1AT, (12)

AD+(AD)T ≤ εAPAT + ε−1DTP−1D. (13)

Lemma 2.[12] Let F : V → Sn be an affine function which
is partitioned according to

F(x) =

[

F11(x) F12(x)
F21(x) F22(x)

]

, (14)

where F11(x) is square. Then F(x) >0 if and only if

{

F11(x)> 0,
F22(x)−F12(x)F

−1
11 (x)F21(x)> 0.

(15)
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Lemma 3.[14] if
∫ 0
−d ϕ(τ)ϕT(τ)dt = WWT, then for any

X = XT > 0, the following formulae

∫ 0

−d
ϕ(τ)XϕT(τ)dt = tr(WTXW), (16)

holds, wheretr(·) denote the trace of(·).

4 Main Results

Now we are in a position to present the main results in this
paper.

Theorem 1.As for fuzzy system (1) and performance cost
function (8), the fuzzy closed-loop system with time delays
(7) is asymptotically stable and the controller (6) is state-
feedback guaranteed cost fuzzy controller for the system
(1), if there exist feedback gains Kis and symmetric positive
definite matrix P,µ , and M such that

ETP= PE≥ 0, (17)

Φ̃ii +PAdi(R1− ε−1
1i ET

diEdi)
−1AT

diP+ ε−1
2i (E1i

+E2iKi)
T(E1i +E2iKi)+Q+KT

i RKi < 0,
(18)

Φ̃i j + ε−1
2i j (E1i +E2iK j)

T(E1i +E2iK j)+ ε3i j (E1 j

+E2 jKi)
T(E1 j +E2 jKi)+PAdi(R1− ε−1

3i ET
diEdi)

−1

×AT
diP+PAd j(R1− ε−1

d j ET
d jEd j)

−1AT
d jP

+2Q+ ε1i j KT
i Ki + ε−1

1i j KT
j RRKj < 0,

(19)

[

−µ ϕT(0)
ϕ(0) −P−1

]

< 0, (20)

[

−M WT

W −R−1
1

]

< 0, (21)

where

Φ̃ii = AT
i P+PAi +KT

i BT
i P+PBiKi +R1

+(ε1i+ε2iPDiD
T
i P),

Φ̃i j = AT
i P+PAi +KT

j BT
i P+PBiK j +AT

j P

+PAj +KT
i BT

j P+PBjKi +2R1+(ε2i j

+ ε2i)PDiD
T
i P+(ε3i j + ε3i)PD jD

T
j P,

∫ 0

−d
ϕT(τ)ϕ(τ)dτ =WWT,

where 1≤ i < j ≤ r, εα i (α = 1, 2, 3) andεα i j are arbitrary
positive scalars, and * denotes the transposed element in
the symmetric position.

And also for any admissible uncertainties, the
performance cost function (8) of fuzzy closed-loop system
(7) satisfies

J ≤ J∗ = min
µ ,P,R1,Ki ,M

(µ + tr(M)). (22)

Proof.Firstly, we define a Lyapunov functional candidate
as follows

V(x(t)) = xT(t)Px(t)+
∫ t

t−d
xT(τ)R1x(τ)dτ , (23)

whereP is a time-invariant, symmetric positive definite
matrix. Then, by using the inequality (17), the time
derivative ofV(x(t)) is given by

V̇(x(t)) = ẋT(t)EPx(t)+xT(t)EPẋ(t)+ [xT(s)R1x(s)]tt−d

=
r

∑
i=1

r

∑
j=1

µi(z(t))µ j(z(t)){xT(t)[P(Ai +∆Ai)

+P(Bi +∆Bi)K j +(AT
i +∆AT

i )P+KT
j (B

T

+∆BT
i )P]x(t)+xT(t)P(Adi +∆Adi)x(t −d)

+xT(t −d)(AT
di +∆AT

di)Px(t)}x(t)+xT(t)R1x(t)

−xT(t −d)R1x(t −d).

By use of Lemma1, some manipulations will result in

V̇(x(t)) =
r

∑
i=1

µ2
i (z(t)){xT(t)[Q+KT

i RKi +PAi +P∆Ai

+PBiKi +AT
i P+∆AT

i P+KT
i BT

i P+KT
i ∆BT

i P]x(t)

+xT(t)P(Adi +∆Adi)x(t −d)+xT(t −d)(AT
di +∆AT

di)

×Px(t)−xT(t)Qx(t)−xT(t)KT
i RKix(t)}

+
r

∑
i< j

µi(z(t))µ j(z(t)){[x
T(t)(2Q+KT

i RKj +KT
j RKi

+AT
i P+KT

j ∆BT
i P+∆AT

i P+KT
j ∆BT

i P+PAi

+PBiK j +P∆Ai +P∆BT
i K j +AT

j P+KT
i BT

j P

+∆AT
j P+KT

i ∆BT
j P+PAj +PBjKi +P∆A j

+P∆B jKi −2Q−KT
i RKj −KT

j RKi ]x(t)

+xT(t)P(Adi +∆Adi)x(t −d)+xT(t −d)(AT
di

+∆AT
di)Px(t)+xT(t)P(Ad j +∆Ad j)x(t −d)

+xT(t −d)(AT
d j +∆AT

d j)Px(t)+xTR1x(t)

−xT(t −d)R1x(t −d)}.

Note that the following inequalities hold

xT(t)Qx(t)+uT(t)Ru(t)

=
r

∑
i=1

r

∑
j=1

µ2
i (z(t))µ2

j (z(t))[x
T(t)Qx(t)

+xT(t)KT
i RKjx(t)]

=
r

∑
i=1

µ2
i (z(t))[x

T(t)Qx(t)+xT(t)KT
i RKix(t)]
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+
r

∑
i< j

µi(z(t))µ j(z(t))[x
T(t)KT

i RKjx(t)

+xT(t)KT
j RKix(t)+2xT(t)Qx(t)]

≤
r

∑
i=1

µ2
i (z(t))x

T(t)(Q+KT
i RKi)x(t)

+
r

∑
i< j

µi(z(t))µ j(z(t))x
T(t)[2Q+ ε1i j K

T
i Ki

+ ε−1
1i j KT

j RRKj ]x(t).

Then, from Lemma1 and Assumption1, we obtain

V̇(x(t))≤
r

∑
i=1

µ2
i (z(t)){[x

T(t)Qx(t)+xT(t)KT
i RKix(t)

+x(t)(ATP+PBiKi +PAi +KT
i BT

i P)x(t)+(ε1i

+ ε2i)x
T(t)PDiD

T
i Px(t)+ ε−1

2i xT(t)(E1i +E2iKi)
T

× (E1i +E2iKi)x(t)+xT(t)PAdi(R1− ε−1
i ET

diEdi)
−1

×AT
diPx(t)−xT(t)R1x(t)]−xT(t)KT

i RKix(t)

−xT(t)Qx(t)}+
r

∑
i< j

µi(z(t))µ j(z(t)){[2xT(t)Qx(t)

+ ε1i j x
T(t)KT

i Kix(t)+ ε−1
1i j xT(t)KT

j RRKjx(t)

+xT(t)(AT
i P+PAi +KT

j BT
i P+PBiK j +AT

j P

+PAj +KT
i BT

j P+PBjKi)x(t)+(ε2i j + ε3i)

×xT(t)PDiD
T
i Px(t)+(ε3i j + ε3i)x

T(t)PD jD
T
j Px(t)

+ ε−1
2i j xT(t)(E1i +E2iK j)

T(E1i +E2iK j)x(t)

+ ε−1
3i j xT(t)(E1 j +E2 jKi)

T(E1 j +E2 jKi)x(t)

+xT(t)R1x(t)]−2xT(t)Qx(t)−xT(t)KT
j RKix(t)

−xT(t)KT
i RKjx(t)}.

Because of the inequalities (18) and (19), the above
formulae can be rewritten as follows

V̇(x(t)) =−xT(t)

(

Q+

(

r
∑

i=1
µi(z(t))Ki

)T

×R

(

r
∑

i=1
µi(z(t))Ki

))

x(t)< 0.

(24)

Therefore, the fuzzy closed-loop singular system (7) is
asymptotically stable. Then, integrating both sides of (24)
from t = 0 to t = T yields

V(x(T))−V(x(0))<
∫ T

0
(−xT(t)Qx(t)

−

(

r

∑
i=1

µi(z(t))(Kix(t))
T

)

R

(

r

∑
i=1

µi(z(t))(Kix(t))

)

dt.

Considering that the closed-loop singular system (7) is
asymptotically stable, we havex(∞)→ 0 and

J =
∫ T

0

(

xT(t)Qx(t)+uT(t)Ru(t)
)

dt

≤ ϕT(0)Pϕ(0)+
∫ 0

−d
ϕT(τ)R1ϕ(τ)dτ = J̄∗.

From Lemma2, (20) is equivalent to

ϕT(0)Pϕ(0)< µ . (25)

By use of Lemma3, we obtain

∫ 0

−d
ϕT(τ)R1ϕ(τ)dτ = tr(WTR1W). (26)

Because (21) is equivalent toWTR1W <M, we get

∫ 0

−d
ϕT(τ)R1ϕ(τ)dτ = tr(M). (27)

By (25), (26) and (27), we obtain

J̄∗ ≤ J∗ = min
µ ,P,R1,Ki ,M

(µ + tr(M)). (28)

According to Definition 2, (6) is guaranteed cost
fuzzy controller for the singular system with time delays
(4). Then, J∗ is the corresponding upper bound of the
performance cost function (8).

The search for the common matrixP andKis nowadays
can resort to some efficient numerical methods in terms of
LMIs. However, the conditions are not jointly convex in
Kis andP in Theorem1. Hence, Theorem2 is proposed, in
which the LMIs are tractable.

Theorem 2.The controller (6) is guaranteed cost fuzzy
controller for the closed-loop T-S fuzzy singular system
with time delays (7), if there exist matrices Mis, symmetric
positive definite matrix N and U,µ and M such that the
LMIs

NET = EN> 0, (29)

[

−µ ϕT(0)
ϕ(0) −N

]

< 0, (30)





−M WT I
W 0 0
I 0 U



< 0, (31)

and (32), (33) hold, where “*” denotes generically each
of its symmetric blocks

Φii = NAT
i +AiN+MT

i BT
i +(ε1i + ε2i)DiD

T
i +U,

Φi j = NAT
i +AiN+MT

j BT
i +A jN+MiB

T
j +B jMi
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













Φii ∗ ∗ ∗ ∗ ∗
E1iN+E2iMi −ε2i I ∗ ∗ ∗ ∗

NAT
di 0 −U ∗ ∗ ∗

N 0 0 −Q−1 ∗ ∗
Mi 0 0 0 −R−1 ∗
0 0 EdiN 0 0 −ε1i I















< 0, (32)































Φi j ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
E1iN+E2iM j −ε1i j I ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
E1 jN+E2 jMi 0 −ε3i j I ∗ ∗ ∗ ∗ ∗ ∗ ∗

NAT
di 0 0 −U ∗ ∗ ∗ ∗ ∗ ∗

NAT
d j 0 0 0 −U ∗ ∗ ∗ ∗ ∗

N 0 0 0 0 −1/2Q−1 ∗ ∗ ∗ ∗
Mi 0 0 0 0 0 −ε1i j I ∗ ∗ ∗

RMj 0 0 0 0 0 0 −ε−1
1i j I ∗ ∗

0 0 0 EdiN 0 0 0 0 −ε3i I ∗
0 0 0 0 Ed jN 0 0 0 0 −ε3 j I































< 0, (33)

+(ε2i j + ε2i)DiD
T
i +(ε3i j + ε3 j)D jD

T
j +2U.

Furthermore, feedback gain Ki and symmetric positive
definite matrix P are obtained by

P= N−1, Ki = MiN
−1, R1 = N−1UN−1. (34)

And for any admissible uncertainties, the performance
cost function (8) of fuzzy closed-loop system (7) satisfies

J ≤ J∗ = min
µ ,N,U,Mi ,M

(µ + tr(M)). (35)

Proof.By use of Schur complement in Lemma2, we obtain
(36) and (37). Multiply (36) and (37) with

Π1 = diag(P−1, I ,P−1, I , I , I), (38)

and

Π2 = diag(P−1, I , I ,P−1,P−1, I , I , I , I , I), (39)

both left and right side, respectively. LetN = P−1, Mi =
KiP−1 andU = P−1R1P−1. Then, the LMIs (32) and (33)
can be obtained. Similarly, multiplying (17) with P−1 both
left and right side will result in LMI (29). Similarly, LMIs
(30) and (31) can also be obtained. So far, the LMI (29)-
(33) can be solved by convex optimization method.

5 Numerical Example

To demonstrate the effectiveness of our method, we
consider nonlinear time-delay system approximated by
the following IF-THEN fuzzy rules

Plant Rule 1: IFx1(t) is P,

THEN Eẋ(t) = (A1+∆A1)x(t)+(Ad1+∆Ad1)x(t −d)

+(B1+∆B1)u(t),

Plant Rule 2: IFx1(t) is N,

Eẋ(t) = (A2+∆A2)x(t)+(Ad2+∆Ad2)x(t −d)

+(B2+∆B2)u(t),

where the membership functions of ‘P’, ‘N’ are given as
follows

M1(x1(t)) = 1−
1

1+exp(−2x1)
, (40)

M1(x1(t)) = 1−M1(x1(t)). (41)

Matrices ∆Ai(t),∆Adi(t) and ∆Bi(t) are assumed to
have the form of (2). Then, the relevant matrices in T-S
fuzzy model are given as follows

E =

[

1 0
0 0

]

,

A1 =

[

0 1
−1 −2

]

,

Ad1 =

[

0 0
0.2 0.1

]

,

B1 =

[

0
0.1

]

,

A2 =

[

0 1
−2 −2

]

,

Ad2 =

[

0 0
0.1 0.5

]

,

B2 =

[

0
0.1

]

,

D1 =

[

0.1
0.2

]

,

D2 =

[

0.1
0.5

]

,

ET
11 = ET

12 =

[

1
0

]

,

Ed1 = Ed2 =
[

0.1 0
]

,

ϕ(t) =
[

exp(t +1) 0
]T

, E21 = 0.3, E22 = 0.2,

F1 = F2 = sin(t), d = 1.

Choose the scalar coefficientsεα i(α = 1, 2, 3) =
εα i j = 1. By using Matlab LMI Control Toolbox [15], the

c© 2013 NSP
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













Φ̃ii ∗ ∗ ∗ ∗ ∗
E1i +E2iKi −ε2i I ∗ ∗ ∗ ∗

AT
di 0 −R1 ∗ ∗ ∗
I 0 0 −Q−1 ∗ ∗
Ki 0 0 0 −R−1 ∗
0 0 Edi 0 0 −ε1i I















< 0, (36)































Φ̃i j ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
E1i +E2iK j −ε1i j I ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
E1 j +E2 jKi 0 −ε3i j I ∗ ∗ ∗ ∗ ∗ ∗ ∗

AT
diP 0 0 −R1 ∗ ∗ ∗ ∗ ∗ ∗

AT
d jP 0 0 0 −R1 ∗ ∗ ∗ ∗ ∗

I 0 0 0 0 −1/2Q−1 ∗ ∗ ∗ ∗
Ki 0 0 0 0 0 −ε1i j I ∗ ∗ ∗

RKj 0 0 0 0 0 0 −ε−1
1i j I ∗ ∗

0 0 0 Edi 0 0 0 0 −ε3i I ∗
0 0 0 0 Ed j 0 0 0 0 −ε3 j I































< 0, (37)

positive definite matricesP, R1 and feedback gainKis can
be obtained as follows

P=

[

5.0910 2.4098
2.4098 2.2416

]

, R=

[

1.1587 0.7717
0.7717 1.3059

]

,

KT
1=

[

−0.4847
−0.5798

]

, KT
2 =

[

−1.0992
−1.0867

]

.

Then, the corresponding upper bound of performance
index function can be obtained asJ∗ = 78.9363.

6 Conclusion

In this paper, guaranteed cost fuzzy controller design has
been addressed for a class of nonlinear singular system
with time delays through the fuzzy interpolation of a
series of linear systems. The controller is reduced to the
solution of a set of LMIs, which make the design much
more convenient. Furthermore, an example has shown
that the effectiveness of the proposed T-S fuzzy logic
controller.
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