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Abstract: Speaker identification accuracy decreases significantly in the presenceof additive noise. In this paper, we propose a robust
speech feature extraction method, which is based on the harmonic structure of voiced segments. The robust features are composed
of fundamental and harmonic peak data from short-time spectrum. These features are evaluated by thirty speaker data from TIMIT
database and additive noise signals from NOISEX-92 database with cleantraining and noisy testing samples. Results reflect that
under low SNR (signal-to-noise ratio) environments new features achieve better performance than conventional MFCC (Mel-Frequency
Cepstral Coefficients) parameters.
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1. Introduction

Automatic speaker recognition (ASR) refers to
recognizing persons from their voice. It can be classified
into speaker identification and speaker verification[1].
Automatic speaker identification (ASI) involves
determining if a speaker is a specific person or is among a
group of persons. It is an N-way classification process.
Automatic speaker verification (ASV) decides a speaker
is whom he/she claims to be.

Speaker recognition systems have been studied
actively for several decades. It can also be used for some
mobile applications[2]. The performance of them under
clinical and controlled conditions is good but degrades
significantly in real-world noisy environments in case of
mismatched channel or additive noise. Recently, several
linear and nonlinear compensation methods, such as
front-end enhancement, feature domain processing and
model domain compensation, have been proposed to
reduce the effect of channel mismatch and additive noise.
Front-end enhancement methods such as spectral
subtraction[3], Wiener filtering[4] and Kalman
filtering[5] were proposed to improve the signal-to-noise
ratio (SNR), meanwhile, they suppress background

noises[6]. Front-end enhancement methods are all based
on building a statistical estimation for noise and removing
it from the noisy speech. However, one drawback of them
is that imperfect noise estimates may result in removing
both the noise and speaker-dependent information of the
original speech[7]. In the feature processing section,
researchers are dedicated to looking for robust acoustic
features or reprocessing the features which are extracted
from noisy speech. Some feature normalization methods,
such as cepstral mean normalization[8], Relative Spectra
(RASTA) filtering[9] and feature warping[10], are often
stacked with each other to reduce the impact of
environmental noise. Examples of model domain
compensation methods, include parallel model
combination (PMC)[11] and model-domain spectral
subtraction[12], are based on the assuming that the
statistical model of the noise is available.

Short-time and low-level acoustic information, such
as cepstrum characters, is commonly used in the current
speaker recognition systems. Linear prediction cepstral
coefficients (LPCC) and Mel-frequency cepstral
coefficients (MFCC) are the mostly used features. The
performance of these features under controlled conditions
is good but degrades significantly in real-world noisy
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environments. Although some researchers engaged in
adding△MFCC and△△MFCC into the basic MFCC to
improve the performance of systems in noisy conditions,
the increase in the number of dimensions of feature vector
will improve the amount of computation.

This letter describes a novel feature extraction
technique based on short-time spectrum analysis of clear
and noisy speech. The new feature parameters, called
fundamental and harmonic peak data (FHPD), are
generated by applying the excitation source harmonic
characteristics. To evaluate the results, TIMIT databases
are used. Experimental results show FHPD parameters
that can achieve higher recognition rate in speaker
identification application than MFCC parameters under
lower SNR noisy conditions.

This paper is organized as follow: Section 2 analyzes
voiced speech spectrogram and FHPD feature, Section 3
describes the FHPD parameters extraction process and
their performance evaluation, Section 4 shows the
experiments and results, and Section 5 reflects the
conclusions.

2. FHPD Feature Analysis

The innate difference of speakers’ vocal organs is mainly
expressed in the frequency of the structure of voices.
Excitation source and channel characteristics are included
in the short-time spectrum of speech. They can reflect the
speakers’ physiological differences. In conclusion, the
short-time spectrum of speech signals may show the
speakers’ personality traits and can be used as the
characteristic parameters of the speaker recognition
applications. In accordance with the human pronunciation
manner, speech can be divided into unvoiced, voiced and
plosive. Among them, voiced speech can be considered as
a quasi-periodic signal, and it contains most of
speaker-dependent information.

2.1. Short-term Spectrum Analysis

Firstly, we add a hamming window to every frame of
speech signal, and then calculate the Fourier amplitude
spectrum with normalization step. At last we use 20 times
of logarithm normalized spectrum to plot the speech
spectrogram. The flow chart of the short-time spectrum
calculation is shown as Figure1.

The short-time spectrum results without noise and
with a 10dB SNR noise are shown in Figure2. Both the
waveform and the spectrum are also shown in this figure.
The speech is selected from TIMIT database. The voice
sampling rate is 16kHz, and the window is with 256
samples.

Figure 3 is plotted by using the logarithm amplitude
of three typical frames, which are (a) voiced frame, (b)
unvoiced frame, and (c) noisy frame. As shown in Figure

Figure 1: short-time spectrum analysis flowchart
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(d) the spectrum of noisy speech

Figure 2: the waveform and the spectrum of one frame speech

3, there is an obvious difference among them. The
spectrum of voiced segment has a harmonic structure
apparently, and the energy is mainly concentrated at
fundamental and harmonic waveform peaks. However,
the energy of unvoiced or noisy spectrum is not regular,
and both of them do not have the harmonic structure.
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(b)  Unvoiced frame spectrum
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(c) Noisy frame spectrum 

Figure 3: Log-spectrums of voiced, unvoiced and noisy frames

2.2. FHPD under Different SNR Values

Figure4 shows the spectrums of the same voiced frame in
different SNR values. Among them, figure (a) is the
spectrum of the speech signal without any noise, figure
(b) is the spectrum of the speech signal with Gauss White
noise with SNR=15, and figure (c), (d) and (e) are the
spectrum diagrams with SNR equal to 10, 5 and 0
respectively. From the diagrams, it can be concluded that
the peak locations of lower harmonic waves are not been
affected enormously by noise. That is to say, fundamental
and harmonic peak data (FHPD) are not sensitive to
noise. The experiments in other noisy conditions, such as
babble noise, factory noise, car noise and airport noise,
lead to the same conclusion.

We also record the fundamental and harmonic peak
data to confirm that they are not sensitive to the noise in
different SNR values. Table.1 shows FHPD parameters of
a voiced frame selected from a female speaker voice
under high level SNR values. It is obvious that the peak
data of the same number harmonic waveform vary very
little. To further confirm the conclusion that FHPD
features are robust, the experiments in lower level SNR
values are done, and the results are shown in Table.2.

Table.1 compares the FHPD data between clean voice
and noisy speech with high SNR level noises, and table.2
compares the FHPD data between clean speech and noisy
speech with lower SNR level noise. We can easily
conclude that the FHPD features are robust not only to
high level SNR noise but also to lower level SNR noise
conditions.
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(b) Noisy sound log−spectrum with SNR=15
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(c) Noisy sound log−spectrum with SNR=10
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(d) Noisy sound log−spectrum with SNR=5
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(e) Noisy sound log−spectrum with SNR=0

Figure 4: Log-spectrums of a voiced frame of a female speaker
with different SNR values

The data in Table.1 and Table.2 can only improve the
robustness of the FHPD characters. In order to confirm
the FHPD parameters are speaker-dependent, the data of
three different frames as shown in Table.3 are from one
male speaker, and from Table.3 it can be concluded that
FHPD features are speaker dependent. That means
different speaker has different FHPD structure.

3. FHPD Feature Detection and performance
Evaluation

In this section we discuss how to get accurate peaks of
the fundamental and harmonic waveforms. The theoretical
analysis of the effectiveness of the FHPD feature is present
here too.
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Table 1 FHPD parameters of a voiced frame in high level
SNR values

harmonic

waveform

number orf0 SNR=∞ SNR=30 SNR=20 SNR=15

f0 -19.2600 -19.2633 -19.3064 -19.3145

1 -6.7836 -6.7815 -6.7859 -6.7989

2 0 0 0 0

3 -9.4267 -9.4345 -9.4386 -9.5622

4 -4.7002 -4.7322 -4.7314 -4.7369

5 -0.3625 -0.3632 -0.3573 -0.3763

6 -8.7705 -8.7743 -8.7724 -8.7764

7 -21.1233 -21.1258 -21.1276 -21.1253

8 -36.0425 -36.8622 -36.4123 -36.5135

9 -21.7099 -21.7642 -21.7242 -21.4257

10 -12.5823 -12.5932 -12.5894 -12.5845

11 -26.3985 -26.3934 -26.3810 -26.3904

Table 2 FHPD parameters of a voiced frame in low level SNR
values

harmonic

waveform

number orf0 SNR=∞ SNR=10 SNR=5 SNR=0

f0 -19.2600 -19.1856 -20.6373 -19.9146

1 -6.7836 -6.8816 -6.9086 -4.1849

2 0 0 0 0

3 -9.4267 -9.4945 -9.5486 -7.9622

4 -4.7002 -4.9613 -4.3307 -4.3469

5 -0.3625 -0.5163 -0.0883 -0.0447

6 -8.7705 -9.0081 -8.2451 -8.6446

7 -21.1233 -21.5483 -21.4251 -21.6422

8 -36.0425 -35.2249 -32.0527 -26.8421

9 -21.7099 -21.8313 -22.0630 -21.5710

10 -12.5823 -12.6795 -12.2389 -12.3382

11 -26.3985 -26.3185 -28.6085 -26.7319

3.1. Calculation of Fundamental Frequency and
harmonic peak data

As we know, the frequency location of the first waveform
peak in spectrum is the fundamental frequency.
Fundamental frequency, often abbreviatedf0 , is defined
as the frequency at which the vocal cords vibrate during a
voiced sound. Due to the non-stationary of speech signal,
it seems clear thatf0 estimation is a difficult matter. There
are many methods for evaluatingf0 estimation. Among
these methods, autocorrelation function and average
magnitude function methods are typical[13]. These two
methods are simple and robust when the signal is
noiseless. However, the accuracy of these methods is
significantly decreased when the speech signal is
degraded.

In this letter, we choose Harmonic Power Spectrum
(HPS) algorithm[14] to detect f0. Sn(e jω) is set to be the

short-time spectrum of signals(n) , and then harmonic
power spectrum is defined as follow:

Pn(e
jω) =

D

∏
r=1

Sn(e
jrω), (1)

whereD is the number of the harmonics that are used
in the algorithm.

HPS algorithm works in frequency domain and thus,
different from the algorithm based on autocorrelation, it is
quite robust to additive and multiplicative noise.

Successfully extracting the fundamental frequencyf0
, literature [15] put f0,2 f0,3 f0, · · · ,N f0 into S( f ) , and
the resultsS( f0),S(2 f0),S(3 f0), · · · ,S(N f0) are FHPD
parameters, whereS( f ) is the short-time log spectrum of
signals(n) . As shown in figure5(a), the peak location of
fundamental waveform is almost accurate, but in other
harmonic waveforms, the results are not exactly at the
peak. To fix these errors, we propose an improved
method. We use the maximum ofS( f ) in the interval
[n f0 − m,n f0 + m] to be peak spectrum at frequency
n f0(n = 2· · ·N) , and the results are recorded asS̃(n f0) ,
as defined in formula (2). Further more, the frequency
locations of the harmonic waveforms peaks are used to
adjust f0 in turn. We determine the m value by the initial
f0 , because fundamental frequency of male and female
are always in different intervals.

S̃(n f0) =
n f0+m
max

k=n f0−m
{S(k)},(n = 2· · ·N) (2)

The result derived from improved method is shown as
Figure5(b).
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(a) FHPD detection results using unimproved algorithm
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(b) FHPD detection results using improved algorithm

Figure 5: Fundamental and Harmonic Peak Data results using
unimproved and improved algorithm
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Table 3 FHPD parameters of three different voiced frames from a malespeaker

harmonic

waveform

number orf0

frame A frame B frame C

freq

-uency

magn

-itude

freq

-uency

magn

-itude

freq

-uency

magn

-itude

f0 156 -29.5576 156 -28.3654 141 -26.9616

1 297 -7.3176 297 -7.2302 281 -7.0717

2 438 0.0000 438 0.0000 422 0.0000

3 578 -8.4685 563 -6.9983 563 -5.9306

4 719 -8.3196 703 -7.8032 703 -8.9742

5 859 -10.0237 859 -7.7098 844 -7.3376

6 984 -18.5008 984 -14.6200 969 -10.5227

7 1125 -26.9582 1109 -23.2654 1094 -20.6580

8 1266 -42.3121 1266 -35.4052 1266 -32.7561

9 1391 -38.3435 1375 -35.4980 1375 -34.1615

10 1547 -43.8533 1516 -43.0902 1531 -42.2465

11 1688 -36.8468 1688 -36.4351 1656 -36.8322

3.2. Performance Evaluation of FHPD Feature

Feature extraction method is of great value to speaker
recognition systems. In this part, we will useF Ratio
from Fisher identification theory to evaluate the
performance of FHPD feature in each dimension for
speaker recognition.

TheF Ratio is defined as follow[16]:

F =
mean variance o f di f f erent speakers

variance mean value o f the same speaker

=
< [µi − µ̄]2 >i

< [x(i)a −µi]2 >a,i

(3)

where
x(i)a → the feature parameters at timea of speakeri ;
< •>i→ average computing fori ;
< • >a→ the average of different speech segment of

one speaker;

µi =< x(i)a >→ the estimation mean of all characters
of speakeri;

µ̄ =< µi >i→ the mean ofµi for all speakers.
Obviously, the features of largerF Ratio value are suit

to present the personal character of the speaker.
Experiments show that the middle and the lower
dimension FHPD values are of more contributions to
speaker recognition process. We choose the lower 12
dimensions of FHPD features to build a speaker model
and complete the training and recognition processes.

We choose the peak amplitudes of fundamental
waveform and the 11 low harmonic waveforms to form a
12-dimension feature vector.

Experiments show that different speaker has different
harmonic structure. Table.4 shows FHPD features of 3
speakers (2 females and 1 male).

4. Experiments and Results

Speaker models such as Vector Quantization (VQ)[17],
Gaussian Mixture Model (GMM)[18], Hidden Markov
Model (HMM)[19], Artificial Neural Network
(ANN)[20], and Support Vector Machine (SVM)[21] are
commonly used in speaker recognition systems. As a
generic probabilistic model, Gauss Mixture Model can
simulate any continuous probability of the
multi-dimensional vector, and thus it is suitable for
text-independent speaker recognition system.

The proposed FHPD features as well as the classical
MFCC features are used in a GMM-based speaker
identification system. Both input speech features are
12-dimensional vectors, and the effectiveness of them is
evaluated on the TIMIT database. We choose 30 speakers
(16 males and 14 females) from TIMIT. Each speaker
contributing ten utterances and each utterance has an
average duration of about 3s. Seven utterances of each
speaker are spliced together to be the training samples,
and the other three are also spliced together as test
samples. As we all know, several kinds of noise signals
are frequently encountered in the real life. Therefore, we
choose speech babble, volvo car interior and factory
noises from the NOISEX-92 database[22] .

The babble noises are added to the testing speech
utterances to obtain the signal-to-noise ratio (SNR) of 30,
20, 10, 5 and 0 dB. The results are shown in Table.5.
Table 5 and Table 6 show the performance evaluated
using MFCC and FHPD features with different order of
GMM model.

Table.7 and Table.8 show the true recognition rates on
volov car interior and factory noises at different levels.

Experiments show that MFCC features perform better
than FHPD features with clean test speech or the speech
with high level SNR noises. When the SNR level drops
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Table 4 FHPD parameters of three speakers (2 females and 1 male)

harmonic

waveform

number orf0

Speaker 1(female) Speaker 2(female) Speaker 3(male)

freq

-uency

magn

-itude

freq

-uency

magn

-itude

freq

-uency

magn

-itude

f0 234 -16.5271 250 -19.3167 141 -29.4138

1 453 -18.2687 469 -8.87 297 -6.8593

2 672 -12.4713 703 -7.8785 438 0

3 891 -5.0369 938 -6.3114 578 -11.9867

4 1125 -4.8645 1156 0 734 -9.2196

5 1344 0 1391 -4.2599 875 -13.1855

6 1563 -4.9505 1609 -2.9724 1016 -22.9625

7 1781 -17.0043 1844 -7.5558 1156 -34.765

8 2000 -19.4903 2078 -30.6002 1297 -34.5652

9 2219 -16.7966 2328 -45.4616 1438 -37.9868

10 2375 -19.2894 2531 -24.0361 1578 -37.7772

11 2672 -22.6021 2766 -20.1938 1719 -38.2223

Table 5 True identification rates using 12-MFCC on babble
noises with different order GMM

SNR
2-

GMM

4-

GMM

8-

GMM

16-

GMM

32-

GMM

64-

GMM

∞ 50.00% 63.33% 76.67% 83.33% 90.00% 93.33%

30 50.00% 70.00% 80.00% 86.67% 86.67% 93.33%

20 23.33% 40.00% 40.00% 56.67% 50.00% 53.33%

10 3.33% 3.33% 6.67% 6.67% 6.67% 6.67%

5 3.33% 6.67% 3.33% 6.67% 6.67% 6.67%

0 0.00% 6.67% 3.33% 3.33% 3.33% 3.33%

Table 6 True identification rates using 12-FHPD on babble
noises with different order GMM

SNR
2-

GMM

4-

GMM

8-

GMM

16-

GMM

32-

GMM

64-

GMM

∞ 23.33% 36.67% 46.67% 60.00% 80.00% 83.33%

30 20.00% 33.33% 43.33% 53.33% 73.33% 76.67%

20 16.67% 30.00% 43.33% 46.67% 70.00% 70.00%

10 16.67% 26.67% 43.33% 43.33% 66.67% 63.33%

5 16.67% 20.00% 30.00% 50.00% 56.67% 60.00%

0 13.33% 16.67% 23.33% 40.00% 53.33% 53.33%

from 20 to 10, the identification rate using MFCC features
drops quickly.

We also find that when the order of GMM model
changes form 32 to 64, the identification results change
little. Therefore we choose 32-GMM as the final speaker
model. MFCC and FHPD features’ performance
comparison can be easily learned from Figure6, which is
plotted by the average identification rates of 32-GMM
model under three kinds of noises.

Although at high SNR values, MFCC features work
well, FHPD features can achieve much higher

Table 7 True identification rates under volvo car interior
noises with different SNR levels

Features SNR
8-

GMM

16-

GMM

32-

GMM

64-

GMM

MFCC

∞ 80.00% 86.67% 90.00% 90.00%

30 80.00% 86.67% 83.33% 86.67%

20 40.00% 53.33% 53.33% 56.67%

10 6.67% 10.00% 10.00% 10.00%

5 6.67% 6.67% 6.67% 6.67%

0 3.33% 3.33% 3.33% 3.33%

FHPD

∞ 46.67% 60.00% 83.33% 83.33%

30 43.33% 56.67% 76.67% 80.00%

20 40.00% 46.67% 70.00% 70.00%

10 40.00% 43.33% 63.33% 63.33%

5 30.00% 40.00% 56.67% 60.00%

0 23.33% 40.00% 53.33% 53.33%

Table 8 True identification rates under factory noises with
different SNR levels

Features SNR
8-

GMM

16-

GMM

32-

GMM

64-

GMM

MFCC

∞ 80.00% 83.33% 90.00% 93.33%

30 80.00% 86.67% 90.00% 90.00%

20 36.67% 53.33% 53.33% 56.67%

10 6.67% 6.67% 10.00% 10.00%

5 3.33% 6.67% 6.67% 6.67%

0 3.33% 3.33% 3.33% 3.33%

FHPD

∞ 50.00% 60.00% 83.33% 83.33%

30 46.67% 53.33% 76.67% 76.67%

20 43.33% 50.00% 73.33% 76.67%

10 40.00% 46.67% 63.33% 63.33%

5 30.00% 46.67% 56.67% 60.00%

0 23.33% 40.00% 53.33% 53.33%
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Figure 6: declining trend diagram of identification rate

identification rate than MFCC features when the SNR
value is less than 30.

5. Conclusion and Future Work

In order to solve the robustness of speaker recognition
systems in the feature domain, the short-time spectrum of
pure and noisy voiced speech were analyzed in this paper.
A new feature FHPD based on short-time spectrum was
introduced for robust speaker identification system. In
order to compare the performance of FHPD features,
MFCC features were used as a baseline. In general,
FHPD features outperformed standard MFCC features
under babble noises at low SNR values. In summary, the
FHPD features are robust and using them for speaker
identification is a promising approach in the presence of
additive noise.

Future work will be in the direction of combining
FHPD parameters with other features to increase the
identification rate.
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