Appl. Math. Inf. Sci.7, No. 4, 1575-1584 (2013) =) 1575

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/070443

Fractional Riccati Equation Rational Expansion Method
For Fractional Differential Equations

Yongfeng Zhang and Qinghua Feng*
School of Science, Shandong University of Technology, Zibo, 8biag, 255049, China

Received: 28 Nov. 2012, Revised: 6 Dec. 2012, Accepted: 6 8413. 2
Published online: 1 Jul. 2013

Abstract: In this paper, a new fractional Riccati equation rational expansion methproposed to establish new exact solutions
for fractional differential equations. For illustrating the validity of this methee apply it to the nonlinear fractional Sharma-Tasso-
Olever (STO) equation, the nonlinear time fractional biological populatiodehand the nonlinear fractional foam drainage equation.
Compared with the existing results in the literature, more exact solutionsdtamed by the proposed method. We also illustrate the
application of the established exact solutions.
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1 Introduction these methods, a variety of fractional differential
equations have been investigated and solved.

Recently, Zhang et al1p] first proposed a new direct
falgebraic method named fractional sub-equation method

Fractional differential equations are generalizations o - L
d g based on the homogeneous balance principle, modified

classical differential equations of integer order. In réce _: liouville derivative by J i 4 th
decades, fractional differential equations have gained;'emann' iouville derivative by Jumarie2Ql, an €

much attention as they are widely used to describ _act.ional Riccatl quation. The ”.‘a‘” idga of thjs meth_od
various complex phenomena in many fields such as th ies in that the solutions of certain fractional dnlffer@'iltl
fluid flow, signal processing, control theory, systemsequations are supposed to have the fo@) = 5 a¢',
identification, biology and other areas. Many articles haveW =0
investigated some aspects of fractional differential
equations, such as the existence and uniqueness
solutions to Cauchy type problems, the methods for
explicit and numerical solutions, and the stability of
solutions [L,2,3,4,5,6,7,8]. Among the investigations for
fractional differential equations, research for seeking
exact solutions and numerical solutions of fractional n ' n 5B DO
differential equations is an important topic, which can formsu(é) = ¥ a¢', u(é) =ap+ ¥ aa(fDJr%O)'
also provide valuable reference for other related research . i=-n =1 (p_

Many powerful and efficient methods have been proposed@spectively, wherep = ‘P(Ez) satisfies the fractional

to obtain numerical solutions and exact solutions of Riccati equatiorDf @ =0+ ¢~.

fractional differential equations so far. For example sthe Motivated by the works above, in this paper, by
methods include the Adomian decomposition meth@d [ introducing a new ansatz with more general form, we
1Q], the variational iterative method1],1213], the propose a new fractional Riccati equation rational
homotopy perturbation method 4,15, the differential  expansion method for solving fractional differential
transformation methodlp], the finite difference method equations, in which the solutionsi(é) of certain
[17], the finite element methodL8] and so on. Based on fractional differential equations are supposed to have the

herep = @(&) satisfies the fractional Riccati equation
0'%?"’ = 0+ @?. With the aid of mathematical software,
the authors established successfully new exact solutions
for some fractional differential equations. Then &l]

22], the authors improved this method to be suitable for
more general cases, in which the solutions of certain
fractional differential equations are supposed to have the
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form and then Eq. (4) can be turned into the following fractional
_ ordinary differential equation with respect to the varabl
m ¢ Ha@+bi,/DIg) g
U(E):aﬁz - P(U,U’,U",D{U, ..) =0. (6)
=1 (Ho+ tap+ 12 /DS @)

Step 2. Suppose that the solution of (6) can be

where ¢ = (&) satisfies the fractional Riccati equation €XPressed i as follows:
ng) = 0+ ¢°. We organize the rest of this paper as

i1
follows. In Section 2, we give some definitions and m ¢ “(ap+bi,/DFg)
properties of Jumarie’s modified Riemann-liouville U(E)=ao+_z o’ (1)
derivative and the description of the fractional Riccati =1 (Ho + Ha@+ He Y %)

equation rational expansion method. Then in Section 3 we o . _ _ _
apply the method to solve the nonlinear fractional Whereg = ¢(¢) satisfies the following fractional Riccati
Sharma-Tasso-Olever (STO) equation, the nonlinear timegguation:

fractional biological population model, and the nonlinear D?(pz o+ ¢, (8)
fractional foam drainage equation. Some conclusions are ,
presented at the end of the paper. and &, &, b, ¢, i =12..m Ko, pu, W are all

constants to be determined later. The positive integer
can be determined by considering the homogeneous
balance between the highest order derivative and

2 Jumarie’s modified Riemann-liouville nonlinear term appearing in (6).

de“vatlve and dESCI’IptIOH Of the fraCtlona| In [23], by using the genera”zed Exp-function method’

Riccati equation rational expansion method Zhang et al. first obtained the following solutions of Eq.
(8):

The Jumarie’s modified Riemann-Liouville derivative of

ordera is defined by the following expressiof(: —v—otanh(v-0¢), 0 <0,

—v/—acothy(v/—0¢), 0 <0,
1 dgt o(&) = Votang(v/oé), o >0, ©
mgﬁfo(t*f)_a(f(f)*f(o))d'fv —\/acoty(\/aé), a >0,
D’[af(t): O<a<l1, _,—(1+a> . -
(f(n)(t))(a—n)7 n<a<n+l n>1 Tl wisacongant, o =0,

) ) ) _where the generalized hyperbolic and trigonometric
We list some important properties for the modified fynctions are defined as

Riemann-Liouville derivative as follows (see [20,
(3.10)-(3.13)]: Eq(i&) —Ea(-1&%)

sira (£) = . ,
O = it W Eq (i€%) + Eq(~i£%)
cosi (&) = 5 :
a a
D (f(t)g(t) = g(t)DI (1) + F(DFgH),  (2) sinhy (&) = 22 >—2Ea<—f ),
a _za
coshy (&) = Ea(¢ )+2Ea( 3 )’
Df f[g(t)] = fglg(®)]Dfg(t) = D flg](g 1) (3) e .
Ny CO%y
Suppose that a fractional partial differential equation, tane (§) = co%(8)’ Ol (&) = Sing (2)
say in two or three independent variableg t, is given by o (6) e (€)
sin cos
P(u, U, Uy, Uy, Df'u, DY u, Dffu...) =0, 4) tanhe($) = Cosne ) M (&) = Snne ()
. . . ® k
where u = u(x,y,t) is an unknown functionP is a \ynere E _ ¢ a > 0 is the
polynomial in u = u(x,y,t) and its various partial a($) _kgo’_(lJrka)’
derivatives, in which the highest order derivative and Mittag-Leffler function. _ _
nonlinear term are involved. Step 3. Substituting (7) into (6) and using (8), the
Step 1. Suppose that Ie_ft—hand sidt_a of (6) is converted to another polynomial in
o' (\/o+¢@?)' after eliminating the denominator.
ux,y,t) =U (&), &=E&(xyt), (5) Equating each coefficient of this polynomial to zero,
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yields a set of algebraic equations &, &, b, ¢, i =1, Case l:

27"'um7 I~107 IJL !-12- . . ar—3a
Step 4. Solving the equations system in Step 3, and by a0—=0, a; = —Hok?, by =0, 0 = c'k

using the solutions of Eq. (8), we can construct a variety e ot LTS a ’

of exact solutions of Eq. (4). [y =0, 1t 0. flo = 1
1=0, k2 =0, Lo = Ho,

whereL is an arbitrary constant.

3 Applications Case2:
In this section, we will apply the described method in B B a 4Kk
Section 2 to some fractional differential equations. 8 =0, & = —2lok”, by =0, 0= a
p1 =0, k2 =0, Ho = Ho,
31 nonlin@ fractional Sharma-Tasso-Olever where is an arbitrary constant.
(STO) equation Case3:
We consider the nonlinear fractional Sharma-Tasso-Olever . _ a _ _ 4k 3
. ) . . S ap=0 a=—uk", by =0, o= ,
(STO) equation with space- and time-fractional derivative a
of the form

IJ1=07 IJZZOv Ho = Ho,
whereL is an arbitrary constant.
Case 4:
O<a<l, (20) cOK3a
aozov al:_zl-loka7 bl:0,0_: a )

DZu+ 3a(D%u)? + 3au’DYu+ 3auD2®u+aD%u = 0,

which is the variation of the following nonlinear fractidna
Sharma-Tasso-Olever (STO) equati@4,p5] with time-

fractional derivative of the form =0, 2 =0, Lo = Lo,
whereL is an arbitrary constant.
D U+ 3au? 4 3auUy -+ 3aUlk + Al = 0. c aégS: y
To begin with, we supposgx,t) =U (&), where§ = kx+ c-3a
ct+&o. Then by use of Eq. (3), Eq. (10) can be turned into gy =0, a; = —ok®, by = i%ka’ o= )
ana 20 a 2 21,0 O
¢’DgU +3ak™ (DgU)“ +3aU k" Dz U 1 =0, tp =0, o= Lo,
wherellp is an arbitrary constant.
+3ak’"UDZ"U +ak** DU = 0. (11) Case 6
Suppose that the solution of Eg. (11) can be expressed K3
by a polynomial ing as follows: ag=0, a; = — k™, by = +k?, 0 = ,
o) i ¢ @@+, /DIg) 2 =0, tz =0, to = o,
i1 (Ho+ U1+ Uz, /DY @) whereL is an arbitrary constant.
¢ Case7:
whereg = @(&) satisfies Eq. (8). caK-3a

Balancing the order between the highest order ayg=0, a;= —@k"’, b = i@k", o=
derivative term and nonlinear term in Eq. (11), we can 2 2
obtainm= 1. So we have

)

p1=0, u2 =0, to = Ho,
a1¢+by, /D @ wherep is an arbitrary constant.

: (13) Case 8:
Ho+ H1@+ Mz, /DS @

Substituting (13) into (11) and collecting all the terms
with the same power af! (/o + @2)' together, equating 0 L= 0. L
each coefficient to zero, yields a set of algebraic equations HL=0 H2 =0, Ho = Ho,
Solving these equations, yields: whereL is an arbitrary constant.

U(¢)=ao+

ak73o{
ag =0, al=—%ka, by = +Hok?, 0 = ¢ T
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Case 9: From Cases 5-12 we have the following generalized
exact solutions for Eq. (10)
=0.a;=—Uk?. b IJO ka 4Cak_3a ap—a ak—3a
B =5 & =—Ho, b= , Up1(x,t) = my/— K — tanhy [py/ & (kx+ct+zo>]
a a
+n \/C lé {1—tantf[py/-C (kx+ct+£o]}
ulZOa IJ2:07 IJO:IJ07 Cc{léfa<o
wherep is an arbitrary constant. Up2(X,t) =my/— Ca'ga cothy [py/ _c 'g“ (kx+ct+&o)]
Case 10: _ =3
in% KT {1 cotrp [py/ — SR (ko ct + &0},
4Ca k—3a Ok« <0
ag=0, a; = —Hok?, by = £k?, 0 = ; — a '
a uz3(X,t) = —m\/ o — k tana[p\/ . (kX—i—Ct +&o)]
ulZOa IJ2:07 Ho = Ho, +n (kX‘ZCt“FEO)]}
k*
>0,
whereLl is an arbitrary constant. & —a & 3a
Case 11: U 4(X,t) = \/% Cob[p\/%(kwrctntéo)]
/[ ~a—3a
20=0, = 2k, by =+ 22k, o , K,
(15)
wherem=1, n= % orm=1 n=1lorm= %, n= % or
UlZOaHZZQIJO:IJm 1

m=5,n= 1, andpis determined byp=1 orp = 2.
wherep is an arbitrary constant.

Case12: . . . . .
3.2 nonlinear time fractional biological

4c% K30 population model
a )

aO = Oa al = _%kaa bl = :tl“loka) 0=
We consider the nonlinear time fractional biological
population model19,22]:
I"ll:Oa H2:07 Ho = Ho,
Dfu= (U)ux+ (W) +h?—r),0<a <1 (16)
whereL is an arbitrary constant.
Substituting the results above into Eq. (13), andWhereh. rare constants.
combining with the solutions of Eq. (8) as denoted in (9) _Similar as in 119,22, we supposal(x,y,t) = U(¢),
we can obtain a rich variety of exact solutions to the Whereé = kx+iky+ct + <o, k, ¢, &o are all constants
nonlinear fractional Sharma-Tasso-Olever (STO) equatioith k. ¢ # 0, andi is the unit of imaginary numbers.
with space- and time-fractional derivatives. Then by use of Eq. (3), Eq. (16) can be tumed into

From Cases 1-4 we have the following generalized DU — h(Uz—r). (17)
exact solutions for Eq. (10) ¢

Suppose that the solution of Eq. (17) can be expressed by

— 73 . . .
Ui (xt) =m 7c0’|é a tanhy[n *Caka o (kx4 ¢t + &), a polynomial ing as follows:
ka .
_ & <o m ¢ ap+hb,/Dig)
up 2(x,t) = my/ — EK = cothy [ny/ — EK = (loc-+ et + &), u() :%+.Z( AP (18)
. c“lé—“ <0, =1 (Ho+ @+ H2,4 /D5 @
ap—a a,—sa
Uz 3(x,t) = —my/ SK— tany [ny/ SK = (ke + &), whereg = ¢(&) satisfies Eq. (8).
@ >0, Balancing the order between the highest order
K 3a derivative term and nonlinear term in Eq. (17), we can
Upa(xt) =my/ € k cola[n \/7k7(kx+0t+fo)]v obtainm= 1. So we have
Cagfa >0
(14) a¢+by, /DI @
wherem=1, n=1lorm=4 n=2o0orm=2, n=2or U()=ao+ ) (19)
m=2 n=1. Ho+ H1¢+ Mz, /DS @
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Substituting (19) into (17) and collecting all the terms
with the same power of! (\/0 + @?)' together, equating

each coefficient to zero, yields a set of algebraic equations

Solving these equations, yields
Case 1.

—a 201120 _ ;20
ag— 2hr e o _4h ruic usc

Mo 2hpo ’

CO(
bl = 07 U2 = + hl\‘l/ojm’v 0= 74h2rc_207 Ho = Ho, M1 = M1,

wherepp, H1 are arbitrary constants.
Case 2:

2hr e @ ARr e — péc®
a0 = H1 A= Hy Ho

Ho B 2hiio

)

—APPr py ploc @ £ \/ 4h2r g (uz — p2) + pge?a
1= i ;

Lo = Up, 0 = —4h?rc™2 Lo = Lo, pa = M,

whereLlp, U1, Uz are arbitrary constants.
Case3:

a

_ hrpge
Mo hiio

e — e

3

by=0, =0, 0 = —h?rc™?*, o= o, i = k1,

whereLlp, p1 are arbitrary constants.

Substituting the results in the three cases above int
Eq. (19), and combining with (9) we can obtain the
following exact solutions to Eq. (16).

Family 1:
—a
upa(x,y,t) = Zhr%ﬂL
(4h%rpuZc=2% — 1i2)\/rtanh, (2hc =% /r &) f~0
P11 ’ ’
2hrpyc @
U12(X»y7t) = % 5
L (Anfruge ™ — ) Vircotha (2he V) g
P12 ’ ’
U13(X,y,t) = M"‘
—(4hrufc29 — ud)y/—rtany (2hc ™% /&) F<0
P13 ) ’
2h —a
upa(X,yit) = % ,
+(4h rusc =% — pg)v/—reoty (2he™@/ré) r<0
P14 ’ ’
(20)

where &y, k, ¢, uo, ui are all arbitrary constants with
K, ¢, to # 0, & = kx+iky+ct + &, and

P11 = & — 2uoprhc™ 9 /rtanhy (2hc 9 /ré)

iug\/l— tantf (2hc=2/r &)

P12 = pg — 2popizhc™® /T cothy (2hc % /7 &)
iug\/l —cothf (2hc—a /&)

PL3 = UG + 2HoHihc /T tang (2hc %\ /T€)
43/ 1+ targ (2he-9 /7€)

P14 = & — 2Hopshc™ /=T coty (2hc /T &)
iué\/1+ cot (2hc=a+/—ré)

Family 2:
—a
(X y,t) = 2hru7%c
(4h%ruZc=2% — p2)\/rtanhy (2hc %) | ¢21
+ P21 T >0
Uz 2(X,y,t) = 2hrui%)0
(4hPrpfe ?* — pg)Vreothy (2he @VTE) | 22
+ sz + T2 r>ao0,
u2,3(x7 yt) - %
—(4h?rp2c=29 — u2yy/—rtang (2hc ™% /—T&) | 23
+ 7ap2,3 Tps < o
Upa(x,y.t) = 20HIC —
2. 1,2~—20 2 —a
+(4h rusc —uo)\p/—rcota(th V—r&) +@7 F <0,
2Y4"’I’(1+a) 2.4
—HoC
U 5(X, Y1) = ,r=0,
250 = Rio(E” + @) - pr (L a)} on

where &, w, Uy, k, ¢, u = ui + o are all arbitrary
Sonstants withk, ¢, Up # 0, & = kx+iky+ ct + &, and

P21 = Mg — 2piopzhc /T tanhy (2he % /T€)

+2iuou2hc’°’ﬁ\/1—tankﬁ,(th*“\ﬂE),
P2 = HE — 2pophc @ /T cothy (2hc ™% /TE)
+2iuou2hc*°’\ﬁ\/1 — cothg (2hc=a\/r &),
P23 = Mg + 2Hopahe™ /=T tany (2hc™ /= T¢)
+2popzhe™ /=1 \/ 1+targ (2hc=a/rg),
P24 = Mg — 2Hopahe™ /=T cotg (2nc /=€)
+2HoHzhe /=T /1+ co (24 VFE),
Oo.1 = MG — 2Hopihe™ @ /T tanhy (2hc /1 &)
+2iuou2hc‘°’\ﬂ\/1f tantf, (2hc-a/r&),
G2 = MG — 2Hopshc™ 7 /T cothy (2he % /T€)
+2iokizhe/Fy/1— cotrf (2he-a/FE),
O3 = M + 2Hophc™ v/~ T tany (2hc ™% /=T¢)
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+2Hopizhe /=T 1+ co (2hc-a /=78,
G4 = HE — 2iopthc™ ¥ /=T coty (2hc ™9 /=T &)
+2Hokzhe /T /1+ cofy (2hc-a /7€)
o1 =ic O V/r(—anPrpyppc £ \/ A02r B(uZ — p2) + pge?)
\/l —tanlg (2hc=a/ré),
P22 =ic"TV/r(—4n?rpyppc @ + \/ A02r g (12 — p2) + pgc)
\/1 — cothf (2hc=a /1),
B2 =C O/ (~aPr o™ \ [ AN2r U3 (13 — 1) + i)
\/1+targ (2hc-a y=rg),
$24=C v/ =r(—an’r e £ \/ 4h2r 2 (uz — p2) + pgc®)

\/1+ cotZ (2hc=a+/—ré).

Family 3:

hruc @

U371(X,y, )_ I_,lo

| (WPrufe = p§)Ftanty (he * i)
UG — Hophe™®/Ttanhy (he™ @ /r€)
_ hrpc™®

us2(X,y,t) = o

+(h ruZc2% — p2)\/r cothy (hc ™% \/r &)
HG — Hopahe™“ VI cothy (he™ 7 v/TE)

Uz a(X,y,t) = hrj

Ilo
(h? rulc 20— pd)v/~rtang(hc 9/=r&)

r>0,

, >0,

_ ,r<0,
IJo+HOIthC @V/—rtang(hc@v/=rg) ’ '
oy = M
Jr( rulzc’za u3)v/—r coty (hc™%/—r &) <o
HG — Hopahc™ “\rﬁ(l cofa)(hc IV-rg)
—LloC +a
HasYY) = Rio@ + @)~ il (15 @)} o)

where &y, k, ¢, Up, u1 are all arbitrary constants with

k, ¢, up # 0, andé = kx+ iky+ ct + &.

Remark 1. If we setug =D, u1 =B, k=1, c= A, then

The foam drainage equation is a model of the flow of
liquid through channels and nodes (intersection of four
channels) between the bubbles, driven by gravity and
capillarity [29].

First we supposa(x,y,t) =U (&), where§ = kx+ct +
&o. Then by use of Eq. (3), Eg. (23) can be turned into

c’DJU = %kZ“DngU — 2U%k“DgU +K**(DFU)%.
(24)
Suppose that the solution of Eq. (24) can be expressed
by a polynomial ing as follows:

m @ ‘(ag+bi,/Dig)
U(E) =20ty T (25
=1 (Mo + a9+ 2, /DF @)'

wherep = @(&) satisfies Eq. (8).

Balancing the order between the highest order
derivative term and nonlinear term in Eq. (24), we can
obtainm= 1. So we have

a1p+ba, /D@
U() =a0+ : (26)
Ho+ K19+ H2,/DF @

Substituting (26) into (24) and collecting all the terms
with the same power ap! (/o + ¢?)' together, equating
each coefficient to zero, yields a set of algebraic equations
Solving these equations, yields

Case 1:
a—2a -2a 21,0
aO:_Zulc k ,a1:4k ulc + gk by=0
Ho 2o
“0 -9 ap—3a
Mo ==+ k2 c 2z, 0=4c’k ™, o= Ho, th = M1,
,A/\threuo, Uy are arbitrary constants.
Case 2:
ka
a0 =0, a = ”02 :
by =+ “O o =0, 0=4c"K 3, o= po, ph1 =0

the solutions in (22) reduce to the solutions established in
[22, Egs. (36)-(40)]. If we set; = 0, then the solutions Whereglp is an arbitrary constant.

in (22) reduce to the solutions established in [19, Egs.

(16)-(20).

3.3 nonlinear fractional foam drainage
equation

Case 3:

ulcak—Za - k—2a“fca+“§ka
- ; Al — )

Ho Ho

b]_:O, U2:07 UZCC{k?Saa Ho = Ho, M1 = M1,

We consider the nonlinear foam drainage equation withwherepo, p1 are arbitrary constants.

time and space-fractional derivative[26,27]:

u
Dfu= EDQDQu—2u2D§u+(Dfu)27 O<a<1l (23)

Substituting the results in the three cases above into
Eq. (26), and combining with (9) we can obtain the
following exact solutions to Eqg. (23).
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Family 1:
_ 2[,l1Cak_2a
up1(xt) = “7
(AP 2 4 pd) \/fc“k a tanhy (2v/—cak- 305
l11
c9k % <0,
_ 2[chak72a
Up2(X,t) = ==
(A3 G2 1 12)\/—CTk T cothy (2y/—cTk 398)
h [12 '
c9k % <0,
Zulcakiza
upa(xt) = T
LS 3 2o +u0)\/cf’k a tany (2v/cak— 3“6
I3
c9k? > 0,
Zulcak—m
Uga(xt) = T
(k302 +uo)\/cak a coty (2v/ ¢k~ 30’5
l14
c9kY >0,

(27)
where &y, k, ¢, Ho, U1 are all arbitrary constants with
k, ¢, tp#0,& =kx+ct+ &, and

|11 = 1Z — 240t v/ —ck3 tanky (2y/—cak 39 ¢€)
L Bek %\ /1 tankR (2v/_cak 34 ¢),

l1o= u§ — 2oV —ck—3a cothy (ZWE)
+p3cik 3 \/1 — cothg (2y/—cak-3a§),

l1.3 = pg + 2LouyV/CTk 34 tany (2v/cok 39 §)
+pgcT K3 \/ 1+targ (2Vcok—3a§),

1.4 = pE — 2pop1V/c7k 30 coty (2v/crk—39¢E)

2K/ 1+ co (2V/erk 8,
Family 2:

uz1(x,t) = —/—cTk—tanhy (2v/—cOk—30 )
ii\/fcakfa{lftanfﬁ(Z\/WE)}, Ik <0,
Up2(Xt) = —v/—c9k—7 cothy (2v/—cOk=30 &)
ii\/—cak—a{l—cotré(z\/mf)}y Ik <0,
Up3(x,t) = vcTk 9 tang (2v/c0k—30§)
iy /07K {1+ tard (2v/cTk ) }, Tk > 0
Up4(X,t) = —V/CTk~ coty (2V/cak—30¢E)

+i \/cak*“{lJr coy (2V/c0k30 &)}, ¢k >0,
(28)

where &y, k, ¢, Mo are all arbitrary constants with
K, ¢, tp# 0, andé = kx+ct + &.
Family 3:

G —20
ug1(x,t) = —u
_(k—3“ufc . p2) v/~ tanhy (v/—ck-39¢)

1g — Hop v/ —cak—3 tanhy (/ —cak—30 &)
c9k % <0,

I

a—2a
U372(X7t) — _&

Ho
(k3 et 4 @)/~ ek cothy (v/—cTk—39¢&)

1 — popy v/ —ck—3 cothy (/' —cok-30¢)
9k 9 <0,

ak72a
usa(x t) = —HC S —

o
+(k*S‘Jch + 1) Ve k= tany (v/cok—39¢)

13+ Hok1 V/ ek 3 tany (v/cTk-30 &)
k=% >0,

ak72a
Uz a(x,t) = L

.
(k 3";12(: + 8)VcTk=A coty (v cTk—30E)

13 — Hopa V/cTk=37 cotg (V ek 30 &)
9k 9 >0,

(29)
where &y, Kk, ¢, Ho, U1 are all arbitrary constants with
K, ¢, tp# 0, andé = kx+ct + &.

Remark 2. If we setup =D, U1 =B, k=1, c= A, then
the solutionsuzs(x,t), usa(x,t) reduce to the solutions
established in [22, Eq. (31)].

4 |llustration of the presented results

In this section, we will illustrate the application of the
results established above.

The nonlinear fractional Sharma-Tasso-Olever (STO)
equation (10) is a KdV-like equation, and play an
important role in describing the nonlinear wave pheno-
mena. Exact solutions for it with different forms can
describe different nonlinear waves. For the established
exact solutionsig1(X,t), uiz(X,t), upa(Xt), Uzz(x,t) with
hyperbolic functions forms in (14)-(15), solitary wave
phenomenon can be demonstrated by them, while for the
established exact solutiongz(x,t), Uia(X,t), U2s(x,t),
up4(x,t) with periodic functions forms in (14)-(15),
periodic wave phenomenon can be demonstrated. For the
better understanding the solitary wave phenomenon and
periodic wave phenomenon, we take;(X,t), uiz(x,t)
for example, and show them in Figs. 1-4 with some given
parameters, in which the value of the variablepresents
wave velocity.

From Figs. 1-2 one can see, with the increasing of the
order a of the fractional derivative, the time and space
coordinates at which the solitary wave appears get
smaller, which implies the existing period of the solitary
wave gets shorter. From Figs. 3-4 one can see, with the
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Fig. 3 The solution u,, (X, t) in (14) with

Fig. 1 The solution u,, (x, #) in (14) with 13(
0=1/10,a=-1,m=n=c=k=1,€=0, a=1/10, a=1, m=n=c=k=1, § =0,

160~
140
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L 00—
.4+ g
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Fig. 2 The solution u,  (x, 1) in (14) with Fig. 4 The solution U (%, t) in (14) with

a=4/5a=-1,m=n=c=k=1,E~0, o=4/5 a=1, m=n=c=k=1, &0:0,

increasing of the ordeor of the fractional derivative, it solutions spread faster than the classical solutions and
gets more frequent that the periodic wave reaches its locahay exhibit asymmetry. For the sake of illustrating the
climax. variation trend of the population density, we take the
In the nonlinear time fractional biological population Solution ugz(x,y,t) in (22) for example, and show it in

model (16), the functiom denotes the population density Fig. 5.

and h(u? —r) represents the population supply due to  The nonlinear fractional foam drainage equation (23)
births and deaths. The reason of using fractionaland the established solutions (27)-(29) for it play a
differential equations to modeling biological populatisn  fundamental role in describing the foam drainage process,
that fractional differential equations are naturally teth  where the variableg andt represent scaled position and
to systems with memory which exists in most biological time coordinates respectively. Foaming occurs in many
systems. Also they are closely related to fractals whichdistillation and absorption processes. Recent research in
are abundant in biological systems. The resultingfoams has centered on three topics which are often treated
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10
Fig. 5 The solution u, (x, t) in (22) with
o=1/2,h=py=p, =c=k=1,§=0,r=-4

(x, t) in (29) with
a=1/3, p.OZZ, ulzc:k:L &0:0

Fig. 6 The solution Usy

describing the foam drainage process, we take the solitary
wave solutiorusa(x,t) in (29) for example, and show it in
Fig. 6, in which the value of the variable represents
wave velocity.

5 Conclusions

We have proposed a new fractional Riccati equation
rational expansion method for solving fractional
differential equations, and applied it to find exact
solutions of the nonlinear fractional Sharma-Tasso-Qleve
(STO) equation, the nonlinear time fractional biological
population model and the nonlinear fractional foam
drainage equation. As a result, some generalized and new
exact solutions for them have been successfully found.
Being concise and powerful, this method can also be
applied to solve other fractional differential equatioiss a
long as the homogeneous balance principle is satisfied.
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