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Abstract: In this paper, a new fractional Riccati equation rational expansion method is proposed to establish new exact solutions
for fractional differential equations. For illustrating the validity of this method, we apply it to the nonlinear fractional Sharma-Tasso-
Olever (STO) equation, the nonlinear time fractional biological population model and the nonlinear fractional foam drainage equation.
Compared with the existing results in the literature, more exact solutions are obtained by the proposed method. We also illustrate the
application of the established exact solutions.
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1 Introduction

Fractional differential equations are generalizations of
classical differential equations of integer order. In recent
decades, fractional differential equations have gained
much attention as they are widely used to describe
various complex phenomena in many fields such as the
fluid flow, signal processing, control theory, systems
identification, biology and other areas. Many articles have
investigated some aspects of fractional differential
equations, such as the existence and uniqueness of
solutions to Cauchy type problems, the methods for
explicit and numerical solutions, and the stability of
solutions [1,2,3,4,5,6,7,8]. Among the investigations for
fractional differential equations, research for seeking
exact solutions and numerical solutions of fractional
differential equations is an important topic, which can
also provide valuable reference for other related research.
Many powerful and efficient methods have been proposed
to obtain numerical solutions and exact solutions of
fractional differential equations so far. For example, these
methods include the Adomian decomposition method [9,
10], the variational iterative method [11,12,13], the
homotopy perturbation method [14,15], the differential
transformation method [16], the finite difference method
[17], the finite element method [18] and so on. Based on

these methods, a variety of fractional differential
equations have been investigated and solved.

Recently, Zhang et al. [19] first proposed a new direct
algebraic method named fractional sub-equation method
based on the homogeneous balance principle, modified
Riemann-liouville derivative by Jumarie [20], and the
fractional Riccati equation. The main idea of this method
lies in that the solutions of certain fractional differential

equations are supposed to have the formu(ξ ) =
n
∑

i=0
aiφ i,

whereφ = φ(ξ ) satisfies the fractional Riccati equation
Dα

ξ φ = σ + φ2. With the aid of mathematical software,
the authors established successfully new exact solutions
for some fractional differential equations. Then in [21,
22], the authors improved this method to be suitable for
more general cases, in which the solutions of certain
fractional differential equations are supposed to have the

forms u(ξ ) =
n
∑

i=−n
aiφ i, u(ξ ) = a0 +

n
∑

i=1
ai(

−σB+Dφ
D+Bφ )i

respectively, whereφ = φ(ξ ) satisfies the fractional
Riccati equationDα

ξ φ = σ +φ2.

Motivated by the works above, in this paper, by
introducing a new ansatz with more general form, we
propose a new fractional Riccati equation rational
expansion method for solving fractional differential
equations, in which the solutionsu(ξ ) of certain
fractional differential equations are supposed to have the
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form

u(ξ ) = a0+
m

∑
i=1

φ i−1(aiφ +bi

√
Dα

ξ φ)

(µ0+µ1φ +µ2

√
Dα

ξ φ)i
,

whereφ = φ(ξ ) satisfies the fractional Riccati equation
Dα

ξ φ = σ + φ2. We organize the rest of this paper as
follows. In Section 2, we give some definitions and
properties of Jumarie’s modified Riemann-liouville
derivative and the description of the fractional Riccati
equation rational expansion method. Then in Section 3 we
apply the method to solve the nonlinear fractional
Sharma-Tasso-Olever (STO) equation, the nonlinear time
fractional biological population model, and the nonlinear
fractional foam drainage equation. Some conclusions are
presented at the end of the paper.

2 Jumarie’s modified Riemann-liouville
derivative and description of the fractional
Riccati equation rational expansion method

The Jumarie’s modified Riemann-Liouville derivative of
orderα is defined by the following expression [20]:

Dα
t f (t) =





1
Γ (1−α)

d
dt

∫ t
0(t −ξ )−α ( f (ξ )− f (0))dξ ,

0< α < 1,
( f (n)(t))(α−n), n ≤ α < n+1, n ≥ 1.

We list some important properties for the modified
Riemann-Liouville derivative as follows (see [20,
(3.10)-(3.13)]:

Dα
t tr =

Γ (1+ r)
Γ (1+ r−α)

tr−α
, (1)

Dα
t ( f (t)g(t)) = g(t)Dα

t f (t)+ f (t)Dα
t g(t), (2)

Dα
t f [g(t)] = f ′g[g(t)]D

α
t g(t) = Dα

g f [g(t)](g′(t))α
. (3)

Suppose that a fractional partial differential equation,
say in two or three independent variablesx,y, t, is given by

P(u,ut ,ux,uy,D
α
t u,Dα

x u,Dα
y u...) = 0, (4)

where u = u(x,y, t) is an unknown function,P is a
polynomial in u = u(x,y, t) and its various partial
derivatives, in which the highest order derivative and
nonlinear term are involved.

Step 1. Suppose that

u(x,y, t) =U(ξ ), ξ = ξ (x,y, t), (5)

and then Eq. (4) can be turned into the following fractional
ordinary differential equation with respect to the variable
ξ :

P̃(U, U ′
,U ′′

,Dα
ξ U, ...) = 0. (6)

Step 2. Suppose that the solution of (6) can be
expressed inφ as follows:

U(ξ ) = a0+
m

∑
i=1

φ i−1(aiφ +bi

√
Dα

ξ φ)

(µ0+µ1φ +µ2

√
Dα

ξ φ)i
, (7)

whereφ = φ(ξ ) satisfies the following fractional Riccati
equation:

Dα
ξ φ = σ +φ2

, (8)

and a0, ai, bi, ci, i = 1,2, ...,m, µ0, µ1, µ2 are all
constants to be determined later. The positive integerm
can be determined by considering the homogeneous
balance between the highest order derivative and
nonlinear term appearing in (6).

In [23], by using the generalized Exp-function method,
Zhang et al. first obtained the following solutions of Eq.
(8):

φ(ξ ) =





−
√
−σ tanhα(

√
−σξ ), σ < 0,

−
√
−σ cothα(

√
−σξ ), σ < 0,√

σ tanα(
√

σξ ), σ > 0,
−√

σ cotα(
√

σξ ), σ > 0,

−Γ (1+α)
ξ α +ω , ω is a constant, σ = 0,

(9)

where the generalized hyperbolic and trigonometric
functions are defined as

sinα(ξ ) =
Eα(iξ α)−Eα(−iξ α)

2i
,

cosα(ξ ) =
Eα(iξ α)+Eα(−iξ α)

2
,

sinhα(ξ ) =
Eα(ξ α)−Eα(−ξ α)

2
,

coshα(ξ ) =
Eα(ξ α)+Eα(−ξ α)

2
,

tanα(ξ ) =
sinα(ξ )
cosα(ξ )

, cotα(ξ ) =
cosα(ξ )
sinα(ξ )

,

tanhα(ξ ) =
sinhα(ξ )
coshα(ξ )

, cothα(ξ ) =
coshα(ξ )
sinhα(ξ )

,

where Eα(ξ ) =
∞
∑

k=0

ξ k

Γ (1+ kα)
, α > 0 is the

Mittag-Leffler function.
Step 3. Substituting (7) into (6) and using (8), the

left-hand side of (6) is converted to another polynomial in
φ j(

√
σ +φ2)i after eliminating the denominator.

Equating each coefficient of this polynomial to zero,
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yields a set of algebraic equations fora0, ai, bi, ci, i = 1,
2, ...,m, µ0, µ1, µ2.

Step 4. Solving the equations system in Step 3, and by
using the solutions of Eq. (8), we can construct a variety
of exact solutions of Eq. (4).

3 Applications

In this section, we will apply the described method in
Section 2 to some fractional differential equations.

3.1 nonlinear fractional Sharma-Tasso-Olever
(STO) equation

We consider the nonlinear fractional Sharma-Tasso-Olever
(STO) equation with space- and time-fractional derivatives
of the form

Dα
t u+3a(Dα

x u)2+3au2Dα
x u+3auD2α

x u+aD3α
x u = 0,

0< α ≤ 1, (10)

which is the variation of the following nonlinear fractional
Sharma-Tasso-Olever (STO) equation [24,25] with time-
fractional derivative of the form

Dα
t u+3au2

x +3au2ux +3auuxx +auxxx = 0.

To begin with, we supposeu(x, t) =U(ξ ), whereξ = kx+
ct +ξ0. Then by use of Eq. (3), Eq. (10) can be turned into

cα Dα
ξ U +3ak2α(Dα

ξ U)2+3aU2kα Dα
ξ U

+3ak2αUD2α
ξ U +ak3α D3α

ξ U = 0. (11)

Suppose that the solution of Eq. (11) can be expressed
by a polynomial inφ as follows:

U(ξ ) = a0+
m

∑
i=1

φ i−1(aiφ +bi

√
Dα

ξ φ)

(µ0+µ1φ +µ2

√
Dα

ξ φ)i
, (12)

whereφ = φ(ξ ) satisfies Eq. (8).
Balancing the order between the highest order

derivative term and nonlinear term in Eq. (11), we can
obtainm = 1. So we have

U(ξ ) = a0+
a1φ +b1

√
Dα

ξ φ

µ0+µ1φ +µ2

√
Dα

ξ φ
, (13)

Substituting (13) into (11) and collecting all the terms
with the same power ofφ j(

√
σ +φ2)i together, equating

each coefficient to zero, yields a set of algebraic equations.
Solving these equations, yields:

Case 1:

a0 = 0, a1 =−µ0kα
, b1 = 0, σ =

cα k−3α

a
,

µ1 = 0, µ2 = 0, µ0 = µ0,

whereµ0 is an arbitrary constant.
Case 2:

a0 = 0, a1 =−2µ0kα
, b1 = 0, σ =

4cα k−3α

a
,

µ1 = 0, µ2 = 0, µ0 = µ0,

whereµ0 is an arbitrary constant.
Case 3:

a0 = 0, a1 =−µ0kα
, b1 = 0, σ =

4cα k−3α

a
,

µ1 = 0, µ2 = 0, µ0 = µ0,

whereµ0 is an arbitrary constant.
Case 4:

a0 = 0, a1 =−2µ0kα
, b1 = 0, σ =

cα k−3α

a
,

µ1 = 0, µ2 = 0, µ0 = µ0,

whereµ0 is an arbitrary constant.
Case 5:

a0 = 0, a1 =−µ0kα
, b1 =±µ0

2
kα

, σ =
cα k−3α

a
,

µ1 = 0, µ2 = 0, µ0 = µ0,

whereµ0 is an arbitrary constant.
Case 6:

a0 = 0, a1 =−µ0kα
, b1 =±µ0kα

, σ =
cα k−3α

a
,

µ1 = 0, µ2 = 0, µ0 = µ0,

whereµ0 is an arbitrary constant.
Case 7:

a0 = 0, a1 =−µ0

2
kα

, b1 =±µ0

2
kα

, σ =
cα k−3α

a
,

µ1 = 0, µ2 = 0, µ0 = µ0,

whereµ0 is an arbitrary constant.
Case 8:

a0 = 0, a1 =−µ0

2
kα

, b1 =±µ0kα
, σ =

cα k−3α

a
,

µ1 = 0, µ2 = 0, µ0 = µ0,

whereµ0 is an arbitrary constant.
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Case 9:

a0 = 0, a1 =−µ0kα
, b1 =±µ0

2
kα

, σ =
4cα k−3α

a
,

µ1 = 0, µ2 = 0, µ0 = µ0,

whereµ0 is an arbitrary constant.
Case 10:

a0 = 0, a1 =−µ0kα
, b1 =±µ0kα

, σ =
4cα k−3α

a
,

µ1 = 0, µ2 = 0, µ0 = µ0,

whereµ0 is an arbitrary constant.
Case 11:

a0 = 0, a1 =−µ0

2
kα

, b1 =±µ0

2
kα

, σ =
4cα k−3α

a
,

µ1 = 0, µ2 = 0, µ0 = µ0,

whereµ0 is an arbitrary constant.
Case 12:

a0 = 0, a1 =−µ0

2
kα

, b1 =±µ0kα
, σ =

4cα k−3α

a
,

µ1 = 0, µ2 = 0, µ0 = µ0,

whereµ0 is an arbitrary constant.
Substituting the results above into Eq. (13), and

combining with the solutions of Eq. (8) as denoted in (9)
we can obtain a rich variety of exact solutions to the
nonlinear fractional Sharma-Tasso-Olever (STO) equation
with space- and time-fractional derivatives.

From Cases 1-4 we have the following generalized
exact solutions for Eq. (10)





u1,1(x, t) = m
√

− cα k−α
a tanhα [n

√
− cα k−3α

a (kx+ ct +ξ0)],

cα k−α
a < 0,

u1,2(x, t) = m
√

− cα k−α
a cothα [n

√
− cα k−3α

a (kx+ ct +ξ0)],

cα k−α
a < 0,

u1,3(x, t) =−m
√

cα k−α
a tanα [n

√
cα k−3α

a (kx+ ct +ξ0)],

cα k−α
a > 0,

u1,4(x, t) = m
√

cα k−α
a cotα [n

√
cα k−3α

a (kx+ ct +ξ0)],

cα k−α
a > 0,

(14)
wherem = 1, n = 1 or m = 4, n = 2 or m = 2, n = 2 or
m = 2, n = 1.

From Cases 5-12 we have the following generalized
exact solutions for Eq. (10)




u2,1(x, t) = m
√

− cα k−α
a tanhα [p

√
− cα k−3α

a (kx+ ct +ξ0)]

±n

√
cα k−α

a {1− tanh2α [p
√
− cα k−3α

a (kx+ ct +ξ0)]},
cα k−α

a < 0,

u2,2(x, t) = m
√

− cα k−α
a cothα [p

√
− cα k−3α

a (kx+ ct +ξ0)]

±n

√
cα k−α

a {1−coth2
α [p

√
− cα k−3α

a (kx+ ct +ξ0)]},
cα k−α

a < 0,

u2,3(x, t) =−m
√

cα k−α
a tanα [p

√
cα k−3α

a (kx+ ct +ξ0)]

±n

√
cα k−α

a {1+ tan2
α [p

√
− cα k−3α

a (kx+ ct +ξ0)]},
cα k−α

a > 0,

u2,4(x, t) = m
√

cα k−α
a cotα [p

√
cα k−3α

a (kx+ ct +ξ0)]

±n

√
cα k−α

a {1+cot2α [p
√
− cα k−3α

a (kx+ ct +ξ0)]},
cα k−α

a > 0,
(15)

wherem = 1, n = 1
2 or m = 1, n = 1 or m = 1

2, n = 1
2 or

m = 1
2, n = 1, andp is determined byp = 1 or p = 2.

3.2 nonlinear time fractional biological
population model

We consider the nonlinear time fractional biological
population model [19,22]:

Dα
t u = (u2)xx +(u2)yy +h(u2− r), 0< α ≤ 1, (16)

whereh, r are constants.
Similar as in [19,22], we supposeu(x,y, t) = U(ξ ),

whereξ = kx + iky + ct + ξ0, k, c, ξ0 are all constants
with k, c 6= 0, and i is the unit of imaginary numbers.
Then by use of Eq. (3), Eq. (16) can be turned into

cα Dα
ξ U = h(U2− r). (17)

Suppose that the solution of Eq. (17) can be expressed by
a polynomial inφ as follows:

U(ξ ) = a0+
m

∑
i=1

φ i−1(aiφ +bi

√
Dα

ξ φ)

(µ0+µ1φ +µ2

√
Dα

ξ φ)i
, (18)

whereφ = φ(ξ ) satisfies Eq. (8).
Balancing the order between the highest order

derivative term and nonlinear term in Eq. (17), we can
obtainm = 1. So we have

U(ξ ) = a0+
a1φ +b1

√
Dα

ξ φ

µ0+µ1φ +µ2

√
Dα

ξ φ
, (19)
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Substituting (19) into (17) and collecting all the terms
with the same power ofφ j(

√
σ +φ2)i together, equating

each coefficient to zero, yields a set of algebraic equations.
Solving these equations, yields

Case 1:

a0 =
2hrµ1c−α

µ0
, a1 =−4h2rµ2

1c−α −µ2
0cα

2hµ0
,

b1= 0, µ2=± µ0cα

h
√
−4r

, σ =−4h2rc−2α
, µ0= µ0, µ1= µ1,

whereµ0, µ1 are arbitrary constants.
Case 2:

a0 =
2hrµ1c−α

µ0
, a1 =−4h2rµ2

1c−α −µ2
0cα

2hµ0
,

b1 =
−4h2rµ1µ2c−α ±

√
4h2rµ2

0(µ2
2 −µ2

1)+µ4
0c2α

2hµ0
,

µ2 = µ2, σ =−4h2rc−2α
, µ0 = µ0, µ1 = µ1,

whereµ0, µ1, µ2 are arbitrary constants.
Case 3:

a0 =
hrµ1c−α

µ0
, a1 =−h2rµ2

1c−α −µ2
0cα

hµ0
,

b1 = 0, µ2 = 0, σ =−h2rc−2α
, µ0 = µ0, µ1 = µ1,

whereµ0, µ1 are arbitrary constants.
Substituting the results in the three cases above into

Eq. (19), and combining with (9) we can obtain the
following exact solutions to Eq. (16).

Family 1:





u1,1(x,y, t) =
2hrµ1c−α

µ0
+

(4h2rµ2
1c−2α −µ2

0)
√

r tanhα (2hc−α√rξ )
p1,1

, r > 0,

u12(x,y, t) =
2hrµ1c−α

µ0

+
(4h2rµ2

1c−2α −µ2
0)
√

r cothα (2hc−α√rξ )
p1,2

, r > 0,

u13(x,y, t) =
2hrµ1c−α

µ0
+

−(4h2rµ2
1c−2α −µ2

0)
√
−r tanα (2hc−α√rξ )

p1,3
, r < 0,

u1,4(x,y, t) =
2hrµ1c−α

µ0

+
(4h2rµ2

1c−2α −µ2
0)
√
−r cotα (2hc−α√rξ )

p1,4
, r < 0,

(20)
where ξ0, k, c, µ0, µ1 are all arbitrary constants with
k, c, µ0 6= 0, ξ = kx+ iky+ ct +ξ0, and

p1,1 = µ2
0 −2µ0µ1hc−α√r tanhα(2hc−α√rξ )

±µ2
0

√
1− tanh2

α(2hc−α√rξ )

p1,2 = µ2
0 −2µ0µ1hc−α√r cothα(2hc−α√rξ )

±µ2
0

√
1−coth2

α(2hc−α√rξ )

p1,3 = µ2
0 +2µ0µ1hc−α√−r tanα(2hc−α√rξ )

±µ2
0

√
1+ tan2

α(2hc−α
√
−rξ )

p1,4 = µ2
0 −2µ0µ1hc−α√−r cotα(2hc−α√rξ )

±µ2
0

√
1+cot2α(2hc−α

√
−rξ )

Family 2:





u2,1(x,y, t) =
2hrµ1c−α

µ0

+
(4h2rµ2

1c−2α −µ2
0)
√

r tanhα (2hc−α√rξ )
p2,1

+
ϕ2,1
q2,1

, r > 0,

u2,2(x,y, t) =
2hrµ1c−α

µ0

+
(4h2rµ2

1c−2α −µ2
0)
√

r cothα (2hc−α√rξ )
p2,2

+
ϕ2,2
q2,2

, r > 0,

u2,3(x,y, t) =
2hrµ1c−α

µ0

+
−(4h2rµ2

1c−2α −µ2
0)
√
−r tanα (2hc−α√−rξ )

p2,3
+

ϕ2,3
q2,3

, r < 0,

u2,4(x,y, t) =
2hrµ1c−α

µ0

+
(4h2rµ2

1c−2α −µ2
0)
√
−r cotα (2hc−α√−rξ )

p2,4
+

ϕ2,4
q2,4

, r < 0,

u2,5(x,y, t) =
−µ0cαΓ (1+α)

h{µ0(ξ α +ω)−µΓ (1+α)} , r = 0,

(21)
where ξ0, ω, µ0, k, c, µ = µ1 ± µ2 are all arbitrary
constants withk, c, µ0 6= 0, ξ = kx+ iky+ ct +ξ0, and

p2,1 = µ2
0 −2µ0µ1hc−α√r tanhα(2hc−α√rξ )

+2iµ0µ2hc−α√r
√

1− tanh2
α(2hc−α√rξ ),

p2,2 = µ2
0 −2µ0µ1hc−α√r cothα(2hc−α√rξ )

+2iµ0µ2hc−α√r
√

1−coth2
α(2hc−α√rξ ),

p2,3 = µ2
0 +2µ0µ1hc−α√−r tanα(2hc−α√−rξ )

+2µ0µ2hc−α√−r
√

1+ tan2
α(2hc−α√rξ ),

p2,4 = µ2
0 −2µ0µ1hc−α√−r cotα(2hc−α√−rξ )

+2µ0µ2hc−α√−r
√

1+cot2α(2hc−α√rξ ),

q2,1 = µ2
0 −2µ0µ1hc−α√r tanhα(2hc−α√rξ )

+2iµ0µ2hc−α√r
√

1− tanh2
α(2hc−α√rξ ),

q2,2 = µ2
0 −2µ0µ1hc−α√r cothα(2hc−α√rξ )

+2iµ0µ2hc−α√r
√

1−coth2
α(2hc−α√rξ ),

q2,3 = µ2
0 +2µ0µ1hc−α√−r tanα(2hc−α√−rξ )
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+2µ0µ2hc−α√−r
√

1+cot2α(2hc−α
√
−rξ ),

q2,4 = µ2
0 −2µ0µ1hc−α√−r cotα(2hc−α√−rξ )

+2µ0µ2hc−α√−r
√

1+cot2α(2hc−α
√
−rξ )

ϕ2,1 = ic−α√r(−4h2rµ1µ2c−α ±
√

4h2rµ2
0(µ

2
2 −µ2

1)+µ4
0c2α )

√
1− tanh2

α(2hc−α√rξ ),

ϕ2,2 = ic−α√r(−4h2rµ1µ2c−α ±
√

4h2rµ2
0(µ

2
2 −µ2

1)+µ4
0c2α )

√
1−coth2

α(2hc−α√rξ ),

ϕ2,3= c−α√−r(−4h2rµ1µ2c−α ±
√

4h2rµ2
0(µ

2
2 −µ2

1)+µ4
0c2α )

√
1+ tan2

α(2hc−α
√
−rξ ),

ϕ2,4= c−α√−r(−4h2rµ1µ2c−α ±
√

4h2rµ2
0(µ

2
2 −µ2

1)+µ4
0c2α )

√
1+cot2α(2hc−α

√
−rξ ).

Family 3:





u3,1(x,y, t) =
hrµ1c−α

µ0

+
(h2rµ2

1c−2α −µ2
0)
√

r tanhα (hc−α√rξ )
µ2

0 −µ0µ1hc−α√r tanhα (hc−α√rξ )
, r > 0,

u3,2(x,y, t) =
hrµ1c−α

µ0

+
(h2rµ2

1c−2α −µ2
0)
√

r cothα (hc−α√rξ )
µ2

0 −µ0µ1hc−α√r cothα (hc−α√rξ )
, r > 0,

u3,3(x,y, t) =
hrµ1c−α

µ0

− (h2rµ2
1c−2α −µ2

0)
√
−r tanα (hc−α√−rξ )

µ2
0 +µ0µ1hc−α√−r tanα (hc−α√−rξ )

, r < 0,

u3,4(x,y, t) =
hrµ1c−α

µ0

+
(h2rµ2

1c−2α −µ2
0)
√
−r cotα (hc−α√−rξ )

µ2
0 −µ0µ1hc−α√−r cotα (hc−α√−rξ )

, r < 0,

u3,5(x,y, t) =
−µ0cαΓ (1+α)

h{µ0(ξ α +ω)−µ1Γ (1+α)} , r = 0,

(22)
where ξ0, k, c, µ0, µ1 are all arbitrary constants with
k, c, µ0 6= 0, andξ = kx+ iky+ ct +ξ0.

Remark 1. If we setµ0 = D, µ1 = B, k = 1, c = λ , then
the solutions in (22) reduce to the solutions established in
[22, Eqs. (36)-(40)]. If we setµ1 = 0, then the solutions
in (22) reduce to the solutions established in [19, Eqs.
(16)-(20)].

3.3 nonlinear fractional foam drainage
equation

We consider the nonlinear foam drainage equation with
time and space-fractional derivatives [22,26,27]:

Dα
t u =

u
2

Dα
x Dα

x u−2u2Dα
x u+(Dα

x u)2
, 0< α ≤ 1. (23)

The foam drainage equation is a model of the flow of
liquid through channels and nodes (intersection of four
channels) between the bubbles, driven by gravity and
capillarity [28].

First we supposeu(x,y, t) =U(ξ ), whereξ = kx+ct+
ξ0. Then by use of Eq. (3), Eq. (23) can be turned into

cα Dα
ξ U =

U
2

k2α Dα
ξ Dα

ξ U −2U2kα Dα
ξ U + k2α(Dα

ξ U)2
.

(24)
Suppose that the solution of Eq. (24) can be expressed

by a polynomial inφ as follows:

U(ξ ) = a0+
m

∑
i=1

φ i−1(aiφ +bi

√
Dα

ξ φ)

(µ0+µ1φ +µ2

√
Dα

ξ φ)i
, (25)

whereφ = φ(ξ ) satisfies Eq. (8).
Balancing the order between the highest order

derivative term and nonlinear term in Eq. (24), we can
obtainm = 1. So we have

U(ξ ) = a0+
a1φ +b1

√
Dα

ξ φ

µ0+µ1φ +µ2

√
Dα

ξ φ
, (26)

Substituting (26) into (24) and collecting all the terms
with the same power ofφ j(

√
σ +φ2)i together, equating

each coefficient to zero, yields a set of algebraic equations.
Solving these equations, yields

Case 1:

a0 =−2µ1cα k−2α

µ0
, a1 =

4k−2α µ2
1cα +µ2

0kα

2µ0
, b1 = 0

µ2 =±µ0

2
k

3
2α c−

α
2 , σ = 4cα k−3α

, µ0 = µ0, µ1 = µ1,

whereµ0, µ1 are arbitrary constants.
Case 2:

a0 = 0, a1 =
µ0kα

2
,

b1 =±µ0kα

2
, µ2 = 0, σ = 4cα k−3α

, µ0 = µ0, µ1 = 0,

whereµ0 is an arbitrary constant.
Case 3:

a0 =−µ1cα k−2α

µ0
, a1 =

k−2α µ2
1cα +µ2

0kα

µ0
,

b1 = 0, µ2 = 0, σ = cα k−3α
, µ0 = µ0, µ1 = µ1,

whereµ0, µ1 are arbitrary constants.
Substituting the results in the three cases above into

Eq. (26), and combining with (9) we can obtain the
following exact solutions to Eq. (23).
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Family 1:





u1,1(x, t) =
2µ1cα k−2α

µ0

− (4k−3α µ2
1cα +µ2

0)
√
−cα k−α tanhα (2

√
−cα k−3α ξ )

l1,1
,

cα k−α < 0,

u1,2(x, t) =
2µ1cα k−2α

µ0

− (4k−3α µ2
1cα +µ2

0)
√
−cα k−α cothα (2

√
−cα k−3α ξ )

l1,2
,

cα k−α < 0,

u1,3(x, t) =
2µ1cα k−2α

µ0

+
(4k−3α µ2

1cα +µ2
0)
√

cα k−α tanα (2
√

cα k−3α ξ )
l1,3

,

cα kα > 0,

u1,4(x, t) =
2µ1cα k−2α

µ0

− (4k−3α µ2
1cα +µ2

0)
√

cα k−α cotα (2
√

cα k−3α ξ )
l1,4

,

cα kα > 0,
(27)

where ξ0, k, c, µ0, µ1 are all arbitrary constants with
k, c, µ0 6= 0, ξ = kx+ ct +ξ0, and

l1,1 = µ2
0 −2µ0µ1

√
−cα k−3α tanhα(2

√
−cα k−3α ξ )

±µ2
0cα k−3α

√
1− tanh2

α(2
√

−cα k−3α ξ ),

l1,2 = µ2
0 −2µ0µ1

√
−cα k−3α cothα(2

√
−cα k−3α ξ )

±µ2
0cα k−3α

√
1−coth2

α(2
√

−cα k−3α ξ ),

l1,3 = µ2
0 +2µ0µ1

√
cα k−3α tanα(2

√
cα k−3α ξ )

±µ2
0cα k−3α

√
1+ tan2

α(2
√

cα k−3α ξ ),

l1,4 = µ2
0 −2µ0µ1

√
cα k−3α cotα(2

√
cα k−3α ξ )

±µ2
0cα k−3α

√
1+cot2α(2

√
cα k−3α ξ ),

Family 2:





u2,1(x, t) =−
√
−cα k−α tanhα (2

√
−cα k−3α ξ )

±i
√
−cα k−α{1− tanh2α (2

√
−cα k−3α ξ )}, cα k−α < 0,

u2,2(x, t) =−
√
−cα k−α cothα (2

√
−cα k−3α ξ )

±i
√
−cα k−α{1−coth2

α (2
√
−cα k−3α ξ )}, cα k−α < 0,

u2,3(x, t) =
√

cα k−α tanα (2
√

cα k−3α ξ )

±i
√

cα k−α{1+ tan2
α (2

√
cα k−3α ξ )}, cα k−α > 0,

u2,4(x, t) =−
√

cα k−α cotα (2
√

cα k−3α ξ )

±i
√

cα k−α{1+cot2α (2
√

cα k−3α ξ )}, cα k−α > 0,
(28)

where ξ0, k, c, µ0 are all arbitrary constants with
k, c, µ0 6= 0, andξ = kx+ ct +ξ0.

Family 3:





u3,1(x, t) =−µ1cα k−2α

µ0

− (k−3α µ2
1cα +µ2

0)
√
−cα k−α tanhα (

√
−cα k−3α ξ )

µ2
0 −µ0µ1

√
−cα k−3α tanhα (

√
−cα k−3α ξ )

,

cα k−α < 0,

u3,2(x, t) =−µ1cα k−2α

µ0

− (k−3α µ2
1cα +µ2

0)
√
−cα k−α cothα (

√
−cα k−3α ξ )

µ2
0 −µ0µ1

√
−cα k−3α cothα (

√
−cα k−3α ξ )

,

cα k−α < 0,

u3,3(x, t) =−µ1cα k−2α

µ0

+
(k−3α µ2

1cα +µ2
0)
√

cα k−α tanα (
√

cα k−3α ξ )
µ2

0 +µ0µ1

√
cα k−3α tanα (

√
cα k−3α ξ )

,

cα k−α > 0,

u3,4(x, t) =−µ1cα k−2α

µ0

− (k−3α µ2
1cα +µ2

0)
√

cα k−α cotα (
√

cα k−3α ξ )
µ2

0 −µ0µ1

√
cα k−3α cotα (

√
cα k−3α ξ )

,

cα k−α > 0,
(29)

where ξ0, k, c, µ0, µ1 are all arbitrary constants with
k, c, µ0 6= 0, andξ = kx+ ct +ξ0.

Remark 2. If we setµ0 = D, µ1 = B, k = 1, c = λ , then
the solutionsu33(x, t), u34(x, t) reduce to the solutions
established in [22, Eq. (31)].

4 Illustration of the presented results

In this section, we will illustrate the application of the
results established above.

The nonlinear fractional Sharma-Tasso-Olever (STO)
equation (10) is a KdV-like equation, and play an
important role in describing the nonlinear wave pheno-
mena. Exact solutions for it with different forms can
describe different nonlinear waves. For the established
exact solutionsu11(x, t), u12(x, t), u21(x, t), u22(x, t) with
hyperbolic functions forms in (14)-(15), solitary wave
phenomenon can be demonstrated by them, while for the
established exact solutionsu13(x, t), u14(x, t), u23(x, t),
u24(x, t) with periodic functions forms in (14)-(15),
periodic wave phenomenon can be demonstrated. For the
better understanding the solitary wave phenomenon and
periodic wave phenomenon, we takeu11(x, t), u13(x, t)
for example, and show them in Figs. 1-4 with some given
parameters, in which the value of the variablec represents
wave velocity.

From Figs. 1-2 one can see, with the increasing of the
order α of the fractional derivative, the time and space
coordinates at which the solitary wave appears get
smaller, which implies the existing period of the solitary
wave gets shorter. From Figs. 3-4 one can see, with the
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increasing of the orderα of the fractional derivative, it
gets more frequent that the periodic wave reaches its local
climax.

In the nonlinear time fractional biological population
model (16), the functionu denotes the population density
and h(u2 − r) represents the population supply due to
births and deaths. The reason of using fractional
differential equations to modeling biological populationis
that fractional differential equations are naturally related
to systems with memory which exists in most biological
systems. Also they are closely related to fractals which
are abundant in biological systems. The resulting

solutions spread faster than the classical solutions and
may exhibit asymmetry. For the sake of illustrating the
variation trend of the population density, we take the
solution u33(x,y, t) in (22) for example, and show it in
Fig. 5.

The nonlinear fractional foam drainage equation (23)
and the established solutions (27)-(29) for it play a
fundamental role in describing the foam drainage process,
where the variablesx andt represent scaled position and
time coordinates respectively. Foaming occurs in many
distillation and absorption processes. Recent research in
foams has centered on three topics which are often treated
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separately, but are in fact interdependent: drainage,
coarsening, and rheology. Drainage plays an important
role in foam stability: indeed, when a foam dries, its
structure becomes more fragile; the liquid films between
adjacent bubbles being thinner, then can break, leading to
foam collapse. The drainage of liquid foams involves the
interplay of gravity, surface tension, and viscous forces.
Forced foam drainage may well be the best prototype for
certain general phenomena described by nonlinear
differential equations, particularly the type of solitary
wave which is most familiar in tidal bores. For better
understanding the function of the solutions (27)-(29) in

describing the foam drainage process, we take the solitary
wave solutionu34(x, t) in (29) for example, and show it in
Fig. 6, in which the value of the variablec represents
wave velocity.

5 Conclusions

We have proposed a new fractional Riccati equation
rational expansion method for solving fractional
differential equations, and applied it to find exact
solutions of the nonlinear fractional Sharma-Tasso-Olever
(STO) equation, the nonlinear time fractional biological
population model and the nonlinear fractional foam
drainage equation. As a result, some generalized and new
exact solutions for them have been successfully found.
Being concise and powerful, this method can also be
applied to solve other fractional differential equations as
long as the homogeneous balance principle is satisfied.
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