
Appl. Math. Inf. Sci.7, No. 4, 1525-1532 (2013) 1525

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/070436

A Parameter-uniform Method for Two Parameters
Singularly Perturbed Boundary Value Problems via
Asymptotic Expansion

D. Kumar1,∗, A. S. Yadaw2 and M. K. Kadalbajoo3

1Department of Mathematics, B.I.T.S. Pilani, 333031, India
2Department of Pharmacology & Systems Biology Mount Sinai School ofMedicine, New York, NY 10029
3Department of Mathematics& Statistics, I.I.T. Kanpur, 208016, India

Received: 11 Dec. 2012, Revised: 13 Jan. 2013, Accepted: 4 Feb.2013
Published online: 1 Jul. 2013

Abstract: An approximate method for two parameters singularly perturbed boundary value problems having boundary layers at both
end points is given. The method is motivated by the asymptotic behavior of the solution. In the outer region the solution of the problem
is approximated by the zeroth order asymptotic expansion while in the inner region the solution of the problem is obtained by using B-
spline collocation method. The method is iterated on the transition point of the boundary layer region. To demonstrate the applicability
of the method two test examples are considered.
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1. Introduction

The boundary value problems for ordinary differential
equations in which one or more small positive parameters
multiplying the derivatives arise in the field of physics
and applied mathematics. The problems with one small
positive parameter multiplying to highest derivative have
considered by many authors [1]. Motivated by asymptotic
expansion [2,3] a second order boundary value problem
with two small parameters multiplying to the highest and
second highest derivative is considered. This type of
problems arise in chemical reactor theory, engineering,
biology, lubrication theory etc.

Consider the problem

Ly(x) ≡ −ǫy′′(x)− µa(x)y′(x) + b(x)y(x) = f(x), (1)

x ∈ [0, 1], with

y(0) = α, y(1) = β, (2)

where ǫ and µ are small positive parameters satisfying
ǫ/µ2 → 0 asµ → 0. The functionsa(x), b(x) andf(x)
are sufficiently smooth satisfyinga(x) ≥ a∗ > 0,
b(x) ≥ b∗ > 0.

In 1967, Malley gave the asymptotic solution of two
parameters singularly perturbed boundary value problems
and demonstrate the roll ofǫ andµ on the solution. After
three decades, various mathematician [4,5,6] gave the
numerical solution of two parameters problems. Malley
[2,3,7,8,9] examined the nature of asymptotic solution of
the continuous problem where the ratio ofµ2 to ǫ was
identified as significant. In [10,11], the standard upwind
finite difference operator on two different choices of
Shishkin mesh was shown to be parameter-uniform of
first order. In [12] parameter-uniform methods on a
uniform mesh were constructed. Vulanović [13], used the
higher order finite difference scheme on a piecewise
uniform mesh both of Shishkin and Bakhavalov type for
solving quasi-linear boundary value problems with small
parameters.

2. Solution of the problem

2.1. Asymptotic solution

Consider the asymptotic expansion of (1) with (2) of the
form
y(x, ǫ, µ) = (y0 + (ǫ/µ)y1 + (ǫ/µ)2y2 +O((ǫ/µ)3)) (3)
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+(z0 + (ǫ/µ)z1 + (ǫ/µ)2z2 +O((ǫ/µ)3)) (4)

= (y0 + z0) + (ǫ/µ)(y1 + z1) (5)

+(ǫ/µ)2(y2 + z2) +O((ǫ/µ)3) (6)

= W0 + (ǫ/µ)W1 + (ǫ/µ)2W2 +O((ǫ/µ)3), (7)

where the zeroth order asymptotic expansionW0 is given
by W0(x) = y0 + z0, wherey0 is the solution of the
reduced problem

−µa(x)y′0(x) + b(x)y0(x) = f(x), y0(1) = β, (8)

andy1(x) is the solution given by

−ǫy′′1 (x)− µa(x)y′1(x) + b(x)y1(x) = µy′′0 (x), (9)

y1(0) = 0, y1(1) = −(ǫ/µ)−1z0(1), (10)

andz0 is a layer correction given by

−d2z0/dτ
2 − a(0)dz0/dτ = 0,

z0(0) = α− y0(0), z0(∞) = 0, (11)

whereτ = x/(ǫ/µ).
The solution of Eq. (8) is given by

y0(x) = exp

(
∫ 1

x

b(s)

µa(s)
ds

)

(12)

[

β −
∫ 1

x

f(s)

µa(s)
exp

(

−
∫ 1

x

b(s)

µa(s)
d s

)

ds

]

,(13)

and the solution of Eq. (11) is given by

z0(x) = (α− y0(0)) exp(−a(0)x/(ǫ/µ)).

Thus the zeroth order asymptotic expansionW0(x) is
obtained.

It is easy to see that the zeroth order asymptotic
expansionW0(x) of the problem (1) with (2) satisfies the
following inequality:

Theorem 1. The zeroth order asymptotic expansion
W0(x) of the solutiony(x) of (1) with (2) satisfies

|y(x)−W0(x)| ≤ C(ǫ/µ),

whereǫ/µ2 → 0 asµ → 0.

Also the solutiony(x) of (1) with (2) and its derivatives
satisfy the following inequality:

Theorem 2. Suppose a(x), b(x) and f(x) are
sufficiently smooth and has derivatives at least of orderk
then we have

|y(i)(x)| ≤ C[1 + µ−i exp(−ν(1− x)/µ) (14)

+ǫ−i exp(−αx/(ǫ/µ))], i = 0, 1, . . . , k, (15)

where b(x)
a(x) ≤ ν.

2.2. Discrete solution

We divide the interval[0, 1] into three non overlapping
subintervals[0, k(ǫ/µ)], (k(ǫ/µ), 1− kµ) and[1− kµ, 1]
wherek be any positive integer such thatkµ ≪ 1. The
original problem is then divided into three equivalent
problems (two inner regions and one outer region
problem). To obtain the boundary conditions at the
transition pointsk(ǫ/µ) and(1 − kµ), we use the zeroth
order asymptotic expansion W0. Thus if
W0(k(ǫ/µ)) = γ1 andW0(1 − kµ) = γ2 then the three
problems are

P1:The left inner region problem(x ∈ [0, k(ǫ/µ)])

−ǫy′′(x)− µa(x)y′(x) + b(x)y(x) = f(x), (16)

y(0) = α, y(k(ǫ/µ)) = γ1. (17)

P2:The outer region problem(x ∈ (k(ǫ/µ), 1− kµ))

−ǫy′′(x)− µa(x)y′(x) + b(x)y(x) = f(x), (18)

y(k(ǫ/µ)) = γ1, y(1− kµ) = γ2. (19)

P3:The right inner region problem(x ∈ [1− kµ, 1])

−ǫy′′(x)− µa(x)y′(x) + b(x)y(x) = f(x), (20)

y(1− kµ) = γ2, y(1) = β. (21)

After solving the inner and outer region problems, we
combine their solutions to obtain an approximate solution
of the problem (1) with (2) in the whole interval[0, 1]. We
change the value ofk until the solution profiles do not
differ much from iteration to iteration. For this we use the
absolute error criteria|y(m+1)(x) − y(m)(x)| ≤ σ, where
σ is prescribed tolerance error bound. We use B-spline
collocation method in the inner region and forP1 we have
x0 = 0, xN = kǫ/µ, h1 = kǫ/µN, xi = x0 + ih1, i =
1, 2, . . . , N and for P3 we havex0 = 1 − kµ, xN =
1, h2 = kµ/N, xi = x0 + ih2, i = 1, 2, . . . , N .

For 0 < l1 < l2 < 1, we defineL2[l1, l2] a vector
space of all the square integrable function on[l1, l2] and
let X be the linear subspace ofL2[l1, l2]. Now define for
i = 0, 1, 2, . . . , N

Bi(x) =
1

h3



































(x− xi−2)
3, xi−2 ≤ x ≤ xi−1,

h3 + 3h2(x− xi−1) + 3h(x− xi−1)
2

−3(x− xi−1)
3, xi−1 ≤ x ≤ xi,

h3 + 3h2(xi+1 − x) + 3h(xi+1 − x)2

−3(xi+1 − x)3, xi ≤ x ≤ xi+1,
(xi+2 − x)3, xi+1 ≤ x ≤ xi+2,
0,otherwise.

(22)

Let π = {x0, x1, . . . , xN} be the partition of[l1, l2]. We
introduce four additional knotsx−2 < x−1 < x0 and
xN+2 > xN+1 > xN . It is easy to check that each of the
functionBi(x) is twice continuously differentiable on the
entire real line. Also

Bi(xj) =







4, if i = j,
1, if i− j = ±1,
0, if i− j = ±2,

(23)
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and thatBi(x) = 0 for x ≥ xi+2 andx ≤ xi−2. We can
also see that

B′
i(xj) =















0, if i = j,

± 3
h
, if i− j = ±1,

0, if i− j = ±2,

(24)

and

B′′
i (xj) =















−12
h2 , if i = j,

6
h2 , if i− j = ±1,

0, if i− j = ±2.

(25)

EachBi(x) is also a piecewise cubic atπ andBi(x) ∈
X. Let Π = {B−1, B0, B1, . . . , BN+1} and letΦ3(π) is
span ofΠ. ThenΠ is linearly independent on[l1, l2], thus
Φ3(π) is (N +3)-dimensional. In factΦ3(π) is a subspace
of X. Let L be a linear operator whose domain isX and
whose range is also inX. Now we define

S(x) =

N+1
∑

i=−1

ciBi(x), (26)

where ci are unknown real coefficients. Here we have
introduced two extra cubic B-splines,B−1 andBN+1 to
satisfy the boundary conditions. Thus

LS(xi) = f(xi), 0 ≤ i ≤ N, (27)

and

S(x0) = α, S(xN ) = β. (28)

On solving the collocation equations (27) and putting the
values of B-spline functionsBi and of derivatives at mesh
points, we obtain a system of(N + 1) linear equations in
(N + 3) unknowns

(−6ǫ+ 3µaih+ bih
2)ci−1 + (12ǫ+ 4bih

2)ci

+(−6ǫ− 3µaih+ bih
2)ci+1 = fih

2. (29)

The given boundary conditions become

c−1 + 4c0 + c1 = α, cN−1 + 4cN + cN+1 = β. (30)

Thus the Eqs. (29) and (30) lead to an(N + 3) × (N +
3) system with(N +3) unknownsc−1, c0, . . . , cN , cN+1.
Now eliminatingc−1 from first equation of (29) and from
first equation of (30)

(36ǫ− 12µa0h)c0 + (−6µa0h)c1

= h2f0 − α(−6ǫ+ 3µa0h+ b0h
2). (31)

Similarly, eliminatingcN+1 from the last equation of (29)
and from second equation of (30)

(6µaNh)cN−1 + (36ǫ+ 12µaNh)cN

= h2fN − β(−6ǫ− 3µaNh+ bNh2). (32)

Coupling equations (31) and (32) with the second through
(N − 1)st equations of (29). Thus by the elimination of
c−1 and cN+1, we lead to a systemTxN = dN of

(N + 1) linear equations in(N + 1) unknowns, where
xN = (c0, c1, . . . , cN )t and dN = (h2f0 − α(−6ǫ +
3µa0h + b0h

2), h2f1, . . . , h
2fN−1, h

2fN − β(−6ǫ −
3µaNh + bNh2)). The elementsti,j of the tridiagonal
matrixT are given by

ti,j =























































36ǫ− 12µa0h, i = j = 0,

−6µa0h, i = 0, j = 1,

−6ǫ+ 3µaih+ bih
2, i = j + 1, j = 0(1)N − 2,

12ǫ+ 4bih
2, i = j = 1(1)N − 1,

−6ǫ− 3µaih+ bih
2, i = j − 1, j = 2(1)N,

6µaNh, i = N, j = N − 1,

36ǫ+ 12µaNh, i = j = N,

0, |i− j| > 1.

(33)

It is easy to see that the matrixT is strictly diagonally
dominant and hence nonsingular. SinceT is nonsingular,
we can solve the systemTxN = dN for c0, c1, . . . , cN and
substitute into the boundary conditions (30) to obtainc−1

andcN+1.

Lemma 1. The B-splinesB−1, B0, . . . , BN+1 defined in
equation (22), satisfy the inequality

N+1
∑

i=−1

|Bi(x)| ≤ 10, 0 ≤ x ≤ 1.

Proof. We know that|∑N+1
i=−1 Bi(x)| ≤

∑N+1
i=−1 |Bi(x)|.

At any nodexi, we have

N+1
∑

i=−1

|Bi| = |Bi−1|+ |Bi|+ |Bi+1| = 6 < 10.

Also we have |Bi(x)| ≤ 4 and
|Bi−1(x)| ≤ 4, ∀xi−1 ≤ x ≤ xi. Similarly
|Bi−2(x)| ≤ 1 and |Bi+1| ≤ 1, ∀xi−1 ≤ x ≤ xi. Now
for any point xi−1 ≤ x ≤ xi we have
∑N+1

i=−1 |Bi(x)| = |Bi−2|+ |Bi−1|+ |Bi|+ |Bi+1| ≤ 10.

Theorem 3. Let S(x) be the collocation approximation
from the space of cubic splinesΦ3(π) to the solutiony(x)
of the boundary value problem (1)–(2). If f ∈ C2[l1, l2],
then the parameter-uniform error estimate is given by

‖y(x)− S(x)‖∞ ≤ Ch2,

whereC is a positive constant independent ofǫ andN .

Proof. To estimate the error‖y(x) − S(x)‖∞, let Yn be
the unique spline interpolate fromΦ3(π) to the solution
y(x) of our boundary value problem (1)–(2). If f(x) ∈
C2[l1, l2] theny(x) ∈ C4[l1, l2] and it follows from De
Boor-Hall error estimates [14] that

‖Dj(y(x)− Yn)‖∞ ≤ γjh
4−j , j = 0, 1, 2, (34)

whereh is uniform mesh spacing andγ′
js are constants

independent ofh andN . Let

Yn(x) =
N+1
∑

i=−1

piBi(x). (35)
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It follows immediately from the estimates (34) that

|LS(xi)− LYn(xi)| = |f(xi)− LY (xi)

+Ly(xi)− Ly(xi)| ≤ λh2, (36)

whereλ = ǫγ2 + µγ1‖a(x)‖∞h + γ0‖b(x)‖∞h2. Also
LS(xi) = Ly(xi) = f(xi). Let LYn(xi) = f̂n(xi) for
i = 1, 2, . . . , N and
f̂n = (f̂n(x0), f̂n(x1), . . . , f̂n(xN ))t. Now from the
systemTxN = dN and (34), it is clear that theith
coordinate [T (xN − yN )]i of T (xN − yN ), where
yN = (p0, p1, . . . , pN )t, satisfies the inequality

|[T (xN − yN )]i| ≤ λh4. (37)

Since(TxN )i = h2f(xi) and (TyN )i = h2f̂n(xi) for
i = 0, 1, 2, . . . , N . Theith coordinate of[T (xN − yN )] is
theith equation

(−6ǫ+ 3µaih+ bih
2)δi−1 + (12ǫ+ 4bih

2)δi

+(−6ǫ− 3µaih+ bih
2)δi+1 = ξi, 1 ≤ i ≤ N − 1,(38)

where δi = pi − qi, −1 ≤ i ≤ N + 1 and
ξi = h2(f(xi) − f̂n(xi)), 1 ≤ i ≤ N − 1. Clearly
|ξi| ≤ λh4. Let ξ = max

1≤i≤N−1
|ξi|. Also consider

δ = (δ−1, δ0, . . . , δN+1)
t, then we defineei = |δi| and

ẽ = max
1≤i≤N

|ei|. Now equation (38) becomes

(12ǫ+ 4bih
2)δiξi ≤ ξi + (6ǫ− bih

2)(δi−1 + δi+1)

+3µaih(δi+1 − δi−1), 1 ≤ i ≤ N − 1. (39)

Taking absolute values with sufficiently smallh, we obtain

(12ǫ+ 4bih
2)ei ≤ ξ + 2ẽ(6ǫ+ 3µaih− bih

2). (40)

Since0 < a∗ ≤ a(x) and0 < b∗ ≤ b(x), we get

(12ǫ+ 4b∗h2)ei ≤ ξ + 2ẽ(6ǫ+ 3µa∗h− b∗h2) (41)

≤ ξ + 2ẽ(6ǫ+ 3µa∗h+ b∗h2). (42)

In particular

(12ǫ+ 4b∗h2)ẽ ≤ ξ + 2ẽ(6ǫ+ 3µa∗h+ b∗h2). (43)

Solving for ẽ, we obtain(2b∗h2 − 6µa∗h)ẽ ≤ ξ ≤ λh4 or

ẽ ≤ λh3

2b∗h− 6µa∗
. (44)

Now to estimatee−1, e0, eN and eN+1, we observe that
the first and last equation of the the systemT (xN −yN ) =

h2(f̄n − f̂n) wheref̄n = (f0, f1, . . . , fN ), gives

e0 ≤ 2λb∗h5

(36ǫ− 12a∗hµ)(2b∗h− 6µa∗)
, (45)

and

eN ≤ 2λb∗h5

(36ǫ+ 12a∗hµ)(2b∗h− 6µa∗)
. (46)

Now e−1 and eN+1 can be evaluated using boundary
conditionsδ−1 = (4δ0 − δ1) andδN+1 = (4δN − δN−1)

e−1 ≤ λh3

(2b∗h− 6µa∗)

(

2b∗h2 + 9ǫ− 3a∗hµ

9ǫ+ 3a∗hµ

)

, (47)

and

eN+1 ≤ λh3

(2b∗h− 6µa∗)

(

2b∗h2 + 9ǫ− 3a∗hµ

9ǫ+ 3a∗hµ

)

. (48)

Using valueλ = ǫγ2+µγ1‖b(x)‖∞h+γ0‖b(x)‖∞h2 and
since there exists a constantC such that

e = max
−1≤i≤N+1

{ei} ≤ Ch2. (49)

The above inequality enables us to estimate
‖S(x) − Yn(x)‖∞, and therefore‖y(x) − S(x)‖∞. In
particular

S(x)− Yn(x) =

N+1
∑

i=−1

(qi − pi)Bi(x). (50)

Thus

|S(x)− Yn(x)| ≤ max |qi − pi|
N+1
∑

i=−1

|Bi(x)|. (51)

Combining equations (49), (51) and using Lemma1 we
obtain

‖S − Yn‖∞ ≤ Ch2.

Since‖y−YN‖∞ ≤ γ0h
4 and‖y−S‖∞ ≤ ‖y−YN‖∞+

‖YN − S‖∞, we obtain

‖y − S‖∞ ≤ Ch2.

Combining the results we get the required estimate.

3. Test examples and numerical results

To demonstrate the efficiency of the method, two
numerical examples are considered. Since the exact
solution of the considered problems are given so the
maximum absolute errors are estimated by using
EN,ǫ = max

0≤i≤N
| yNi − SN

i |, whereyNi is the exact

solution andSN
i is the computed solution. If the exact

solution is not known then the maximum absolute errors
can be obtained by using the double mesh principle.

Example 1. Consider the boundary value problem

−ǫy′′(x)− µy′(x) + y(x) = x, y(0) = 1, y(1) = 0.

The exact solution of the problem is given by

y(x) =
(1 + µ) + (1− µ)em2

em2 − em1

em1x (52)

+
(1 + µ) + (1− µ)em1

em1 − em2

em2x + x+ µ, (53)
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Table 1: Maximum absolute error at nodal points for Example1 for ǫ = 10
−6 andµ = 10

−2

k

Nodes 1 10 20 25

0.0000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

1.0000E-05 5.38960E-04 3.87545E-07 3.04298E-06 4.75461E-06

2.0000E-05 1.02676E-03 6.64424E-07 5.50136E-06 8.59576E-06

3.0000E-05 1.46829E-03 8.48286E-07 7.45937E-06 1.16551E-05

4.0000E-05 1.86802E-03 9.54410E-07 8.99046E-06 1.40473E-05

5.0000E-05 2.22993E-03 9.95999E-07 1.01586E-05 1.58724E-05

6.0000E-05 2.55767E-03 9.84435E-07 1.10193E-05 1.72172E-05

7.0000E-05 2.85450E-03 9.29511E-07 1.16210E-05 1.81572E-05

8.0000E-05 3.12340E-03 8.39627E-07 1.20054E-05 1.87577E-05

9.0000E-05 3.36704E-03 7.21971E-07 1.22087E-05 1.90753E-05

1.0000E-04 3.58785E-03 5.82670E-07 1.22622E-05 1.91588E-05

2.0000E-04 — 1.17851E-06 8.93357E-06 1.39570E-05

3.0000E-04 — 2.55479E-06 4.88174E-06 7.62567E-06

4.0000E-04 — 3.33986E-06 2.37164E-06 3.70349E-06

5.0000E-04 — 3.74546E-06 1.08063E-06 1.68623E-06

6.0000E-04 — 3.95320E-06 4.73167E-07 7.37044E-07

7.0000E-04 — 4.06733E-06 2.01927E-07 3.13214E-07

8.0000E-04 — 4.13967E-06 8.49324E-08 1.30390E-07

9.0000E-04 — 4.19415E-06 3.56951E-08 5.34361E-08

1.0000E-03 — 4.24135E-06 1.53545E-08 2.16320E-08

1.5000E-03 — — 1.72512E-09 2.17642E-10

2.0000E-03 — — 1.67393E-09 1.19676E-11

2.5000E-03 — — — 1.07341E-11

Omax 3.62474E-03 4.2801E-06 3.7031E-10 3.85780E-12

7.5000E-01 — — — 4.91700E-04

8.0000E-01 — — 2.53277E-09 2.58682E-14

8.5000E-01 — — 1.68565E-12 2.64777E-12

9.0000E-01 — 4.67764E-06 1.59341E-10 2.49347E-10

9.1000E-01 — 9.63063E-11 3.86025E-10 6.04063E-10

9.2000E-01 — 2.30447E-10 9.23640E-10 1.44533E-09

9.3000E-01 — 5.42783E-10 2.17545E-09 3.40416E-09

9.4000E-01 — 1.25234E-09 5.01926E-09 7.85416E-09

9.5000E-01 — 2.80917E-09 1.12589E-08 1.76179E-08

9.6000E-01 — 6.04931E-09 2.42449E-08 3.79386E-08

9.7000E-01 — 1.22125E-08 4.89462E-08 7.65912E-08

9.8000E-01 — 2.19154E-08 8.78343E-08 1.37443E-07

9.9000E-01 3.30908E-03 2.94955E-08 1.18214E-07 1.84982E-07

9.9100E-01 1.49558E-07 2.93090E-08 1.17467E-07 1.83813E-07

9.9200E-01 2.93511E-10 2.87642E-08 1.15284E-07 1.80396E-07

9.9300E-01 2.77633E-10 2.77885E-08 1.11373E-07 1.74277E-07

9.9400E-01 2.62739E-10 2.62979E-08 1.05399E-07 1.64929E-07

9.9500E-01 2.41754E-10 2.41960E-08 9.69747E-08 1.51746E-07

9.9600E-01 2.13540E-10 2.13716E-08 8.56549E-08 1.34033E-07

9.9700E-01 1.76838E-10 1.76971E-08 7.09279E-08 1.10988E-07

9.9900E-01 7.18654E-11 7.19099E-09 2.88206E-08 4.50986E-08

1.0000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
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Table 2: Maximum absolute error at nodal points for Example2 for ǫ = 10
−6 andµ = 10

−2

k

Nodes 1 10 20 25

0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

1.00000E-05 1.37308E-04 1.38923E-06 5.55763E-06 8.68492E-06

2.00000E-05 2.50032E-04 2.27032E-06 9.08228E-06 1.41928E-05

3.00000E-05 3.42622E-04 2.78266E-06 1.11317E-05 1.73952E-05

4.00000E-05 4.18724E-04 3.03167E-06 1.21276E-05 1.89514E-05

5.00000E-05 4.81323E-04 3.09652E-06 1.23868E-05 1.93563E-05

6.00000E-05 5.32863E-04 3.03626E-06 1.21455E-05 1.89791E-05

7.00000E-05 5.75346E-04 2.89448E-06 1.15781E-05 1.80923E-05

8.00000E-05 6.10414E-04 2.70301E-06 1.08120E-05 1.68950E-05

9.00000E-05 6.39408E-04 2.48477E-06 9.93878E-06 1.55304E-05

1.00000E-04 6.63430E-04 2.25595E-06 9.02331E-06 1.40998E-05

2.00000E-04 — 5.98898E-07 2.39413E-06 3.74076E-06

3.00000E-04 — 1.19486E-07 4.76420E-07 7.44336E-07

4.00000E-04 — 2.14468E-08 8.42716E-08 1.31651E-07

5.00000E-04 — 3.87671E-09 1.39749E-08 2.18296E-08

6.00000E-04 — 9.46114E-10 2.22496E-09 3.47457E-09

7.00000E-04 — 4.83770E-10 3.44543E-10 5.37378E-10

8.00000E-04 — 4.18796E-10 5.23901E-11 8.11162E-11

9.00000E-04 — 4.15949E-10 7.94195E-12 1.17553E-11

1.00000E-03 — 4.22711E-10 1.26660E-12 1.38656E-12

1.50000E-03 — — 4.82947E-14 3.89855E-13

2.00000E-03 — — 0.00000E+00 2.11442E-13

2.50000E-03 — — — 0.00000E+00

Omax 6.63451E-04 9.25778E-11 0.00000E+00 0.00000E+00

7.5000E-01 — — — 0.00000E+00

8.0000E-01 — — 0.00000E+00 7.77156E-16

8.5000E-01 — — 3.33067E-16 8.88178E-16

9.0000E-01 — 1.88076E-09 4.74065E-14 7.39964E-14

9.1000E-01 — 7.89369E-14 3.11196E-13 4.88609E-13

9.2000E-01 — 4.99378E-13 2.00612E-12 3.15242E-12

9.3000E-01 — 3.15709E-12 1.27205E-11 1.99918E-11

9.4000E-01 — 1.95986E-11 7.90040E-11 1.24165E-10

9.5000E-01 — 1.18328E-10 4.77026E-10 7.49711E-10

9.6000E-01 — 6.85878E-10 2.76507E-09 4.34568E-09

9.7000E-01 — 3.72718E-09 1.50259E-08 2.36153E-08

9.8000E-01 — 1.80037E-08 7.25809E-08 1.14071E-07

9.9000E-01 2.01006E-03 6.52235E-08 2.62945E-07 4.13255E-07

9.9100E-01 7.16987E-10 7.15573E-08 2.88480E-07 4.53386E-07

9.9200E-01 7.73468E-10 7.75369E-08 3.12586E-07 4.91273E-07

9.9300E-01 8.24999E-10 8.27035E-08 3.33415E-07 5.24009E-07

9.9400E-01 8.62005E-10 8.64140E-08 3.48374E-07 5.47519E-07

9.9500E-01 8.75659E-10 8.77830E-08 3.53893E-07 5.56192E-07

9.9600E-01 8.53941E-10 8.56066E-08 3.45119E-07 5.42403E-07

9.9700E-01 7.80726E-10 7.82665E-08 3.15528E-07 4.95896E-07

9.9800E-01 6.34468E-10 6.36051E-08 2.56421E-07 4.03002E-07

9.9900E-01 3.86719E-10 3.87676E-08 1.56290E-07 2.45632E-07

1.0000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
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wherem1 =
−µ−

√
µ2+4ǫ

2ǫ , m2 =
−µ+

√
µ2+4ǫ

2ǫ .
For this problem the zeroth order asymptotic

expansionW0 is given by

W0(x) = x− exp((x− 1)/µ) (54)

+ (1− exp(−1/µ)) exp(−x/(ǫ/µ)). (55)

Example 2. Consider the boundary value problem

−ǫy′′(x)− 2µy′(x) + 4y(x) = 1, y(0) = 0, y(1) = 1.

The exact solution of the problem is given by

y(x) =
3 + em2

4(em1 − em2)
em1x − 3 + em1

4(em1 − em2)
em2x +

1

4

wherem1 =
−µ−

√
µ2+4ǫ

ǫ
, m2 =

−µ+
√

µ2+4ǫ

ǫ
.

For this example the zeroth order asymptotic
expansionW0 is given by

W0(x) = (1/4)[1− exp(−2x/(ǫ/µ))] (56)

+ (3/4)[exp(2x/µ)− exp(−2x/(ǫ/µ))] exp(−2/µ).(57)

4. Conclusion

In this paper, we present an approximate method based on
asymptotic expansion for two parameters singularly
perturbed boundary value problems. The B-spline method
is used in the inner region and for rest of the region we
use the zeroth order asymptotic expansion approximation.
To demonstrate the applicability of the method two
numerical examples have been considered. For inner
regions the absolute errors at nodal points are presented in
the tables while for the outer region the maximum
absolute error denoted byOmax is presented at the
middle of the table. It can be seen from the tables that the
numerical solutions are very closed to exact solutions.
The solution profiles for the considered examples for a fix
µ and different values ofǫ are given in Figures1 and2.
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Figure 1: Solution profile for Example1 for µ = 10
−4 using

N = 32.
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Figure 2: Solution profile for Example2 for µ = 10
−4 using

N = 32.
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