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Abstract: The multilevel iterative method consists of the iterative systems associated with different levels, the solution in coarse level is
in essence used as the initial guess of the iterative system in refined level. Since the different iterative targets, one doesn’t guarantee that
an excellent coarse level solution provides better starting point than a badone for the refined level system. To decrease computational
cost a natural idea is to control the iterative times in coarse levels. The objective of this paper is to propose a multilevel iterative method
for nonlinear partial different equations. In which a controlling parameter that can be used to choose the iterative times is introduced
based on multiresolution error analysis, and a strategy of selecting iterative times is also proposed. Finally, an example is illustrated to
show the effectiveness of our method given here
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1 Introduction

As the chief means of providing mathematical models,
partial differential equations (PDE) have numerous
applications in science, engineering and other fields.
Generally these models have to be solved numerically. In
recent years, there has been a growing interest in
developing multilevel numerical solvers for PDEs. The
existing multilevel numerical algorithm can be roughly
classified as either adaptive Galerkin method or adaptive
collocation method, and these methods have been shown
to be very effective for PDEs, especially for linear
PDEs[1,2,3,4,5,6,7,8,9,10,11].

This paper focuses on the multilevel iterative method
(MIM). The MIM method uses an ascending sequence of
nested finite dimensional spaces generated by special
multiscale bases to approximate the target space, and then
uses iterative techniques to solve the systems resulting
from the multilevel discretization of PDEs. Many
researches have shown that this method can provide an
efficient, stable and accurate solver for PDEs, and its
early version can be traced back to 1980s[12,13,14].

Multilevel iterative method that is generally used to
approximate the solution of nonlinear PDEs often
involves high computational cost. How to improve the

computational efficiency of MIM gains much attention in
recent years, not only in the engineering but also in the
mathematics community. A challenging issue for solving
nonlinear PDEs is the treatment of the nonlinear term,
and this problem has long been recognized and discussed
in many researches, see e,g,[15,16,17]. As an example,
consider wavelet-based Galerkin discretization of the
PDEs including the termf(u), wheref(u) is a smooth
but nonlinear function. It requires evaluating quantitiesof
the inner(f(uJ ), ψI), whereI, J are possibly different
index sets. A transformation ofuJ into single scale
representation can completely waste complexity reduction
gained by the sparse approximation in wavelet space, and
a naive application of quadrature to the quantities
(f(uJ ), ψI) would also severely spoil complexity gains,
because some of the quadrature domain are comparable to
the whole domain so that sufficient accuracy would
require a computational expense of the order of the size of
the problem, please see [18,19] for details.

Different from these existing researches, this paper
tries to optimize the multilevel iterative algorithm through
taking full advantage of multilevel approximation
properties. Assume thatXJ is the target space satisfying
the accuracy requirement of the numerical solution, the
solution u∗j in Xj (j < J) is only viewed as the
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approximation of the target solutionu∗J , the iterative

solutionu(sj)j associated with the iterative target solution
u∗j in coarse levelXj is in essence used as the initial
guess of the iterative target solutionu∗j+1 in refined level
Xj+1. Since the different iterative targets in the multilevel
iterative methods, one doesn’t guarantee that an excellent
coarse level solution provides better starting point than a
bad one for the refined level iteration system. To improve
computational efficiency, this paper tries to control the
iterative times of iterative procedure by introducing a
controlling parameter. Based on the related theoretical
analysis, the scheme of the iterative time selection is
proposed.

2 Multilevel iterative framework

To introduce ideas, consider the following operator
equation

Lu+ f(u) = g, (1)

whereL : X ⊂ Y → Y is a densely defined linear
operator, andf : X → Y is a nonlinear operator. Usually
Y is the certain function space equipped with the standard
inner product( · ) which naturally induces an associated
norm ‖ · ‖. And X is a Hilbert space with respect to
another inner product( · )H with a stronger norm‖ · ‖H ,
i.e. there existsc0 > 0 such that

‖u‖ ≤ c0‖u‖H , ∀u ∈ X.

Define a bilinear form onX ×X:

a(u, v) := (Lu, v), u, v ∈ X,

then the weak form of the (1)

a(u, v) + (f(u), v) = (g, v), ∀v ∈ X. (2)

Assume that there exists a nested finite- dimensional
subspace sequenceXj satisfying

Xj ⊂ Xj+1, j ∈ N, (3)

and ∑

j

Xj = X. (4)

Define for eachj ∈ N subspacesWj+1 ⊂ Xj+1 such that

Xj+1 = Xj ⊕Wj+1, (5)

where for subsetsS1 andS2 of X, S1 ⊕ S2 denotes the
direct sum ofS1 andS2 satisfying that for allc ∈ S1 ⊕
S2, there existsa ∈ S1, b ∈ S2 such thatc = a + b.
Thus by settingW0 := X0, we have the multilevel space
decomposition that for anyj ∈ N+

Xj =W0 ⊕W1 ⊕W2 ⊕ · · · ⊕Wj . (6)

In this paper, we letNj andnj denote the dimension
of Xj andWj respectively, andψj,kj

denote the basis of
Wj . Souj ∈ Xj can be written as

uj =

j∑

i=0

ni∑

ki=1

ui, ki
ψi, ki

(x). (7)

Then for anyj ∈ N , we obtain a nonlinear system which
is the approximate form of (2)

a(uj , v) + (f(uj), v) = (g, v), ∀ v ∈ Xj . (8)

Note that this paper doesn’t concerned with the specific
details of (8), and always assume that certain conditions
will ensure the existence and uniqueness of the solution of
(8).

Let u∗ andu∗j respectively denote the exact solutions
of (2) and (8). For eachj, u∗j is an approximate solution
of u∗, and the solutionsu∗j is increasingly good
approximation ofu∗ as j increases. Without loss of
generality, assume thatu∗j is approximated by the
following nonlinear iterative formulation

u
(k+1)
j = Fj(u

(k)
j ), k ∈ N. (9)

Then the multilevel iterative procedure can be described as
follows

Step 1: Starting from an initial guessu(0)0 ∈ X0, the

approximate solutionu(s0)0 of u∗0 is computed from (9)
with iteration timess0.

Step 2: for eachj ∈ N+, let u(0)j = u
(sj−1)
j−1 , the

approximate solutionu(sj)j of u∗j is computed from (9)
with iteration timessj .

The dimension of the spaceXj increases
geometrically while the scalej increase, this leads to that
the computational expense of the nonlinear system (9)
increases geometrically. LetXJ be the target space, then
an important issue is to determine iteration times:
s0, s1, · · · , sJ .

Consider the nonlinear iterative formulation (9). Let

δj = ‖u
(sj)
j − u∗j‖H , (10)

generally, the errorδj decreases while the iterative times
sj increases. It follows from (10) that

‖u
(sj)
j − u∗‖H ≤ δj + ‖u∗j − u∗‖H . (11)

If the u(sj)j is used as the approximate solution ofu∗, a
smallδj is generally preferred. Meanwhile it is easy to see
that

‖u0j+1−u
∗

j+1‖H = ‖u
(sj)
j −u∗j+1‖H ≥ ‖u∗j−u

∗

j+1‖H−δj .
(12)
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Obviously, a smallerδj maybe lead to a larger error
‖u0j+1 − u∗j+1‖H , this is why we try to control the
iterative timess0, s1, · · · , sJ . Our target is to avoid the
unnecessary computation by controlling the iterative
times.

3 Multilevel control iterative method

This section focuses on the choice of the iterative times of
multilevel iteration method. Our scheme is based on two
basic suppositions i.e. the inequalities (13) and (14),
which are typical situations arising in multilevel
numerical method.

Nj = λNj−1, λ > 1, j ∈ N+, (13)

and
‖u∗j − u∗‖H ≤ C1N

−q
j , (14)

whereq is a positive number and can be viewed as the
optimal error bound determined by the properties of
multilevel analysis and equation (1).

As mentioned in the previous section,u(sj)j is used as
the initial guess of the iterative target solutionu∗j+1 and a
small sj is preferred. A naive idea is to control iterative
timessj by the following error inequality

‖u
(sj)
j − u∗j‖H ≤ C1εjN

−q
j , j ∈ N, (15)

whereεj(≥ 1) is called the error controlling parameter.
We expect to chooseεj as big as possible such thatsj is
as small as possible. However, this method would be very
difficult for applications because so many parameters{εj}
need to be evaluated.

Now introduce a controlling parameterγ which
satisfies

1

λq
≤ γ < 1, (16)

and let
ε0 = 1, εj = γλqεj−1, j ∈ N+, (17)

then (14) can be written as

‖u∗j − u∗‖H ≤M0γ
j , (18)

whereM0 = C1N
−q
0 .

Theorem 3.1 Let

µ =
γ

2 + γ
. (19)

If
‖u

(s0)
0 − u∗0‖ ≤M0 (20)

and
‖u

(sj)
j − u∗j‖H ≤ µ‖u

(0)
j − u∗j‖H , (21)

then for anyj ∈ N+

‖u
(sj)
j − u∗j‖H ≤M0γ

j . (22)

Proof. Letej = ‖u
(sj)
j − u∗j‖H , we have from (18) and

(21) that

ej ≤ µ‖u
(0)
j − u∗j‖H

≤ µ[‖u
(sj−1)
j−1 − u∗j−1‖H + ‖u∗j−1 − u∗‖H + ‖u∗j − u∗‖H ]

≤ µ[ej−1 +M0(γ
j−1 + γj)].

If ej−1 ≤M0γ
j−1, we have from (19) that

ej ≤ µM0γ
j−1(2 + γ)

= M0γ
j .

By utilizing the mathematical induction, we have that

ej ≤M0γ
j , ∀j ∈ N.

Thus, the inequality (22) holds, and the proof is completed.
For given the controlling parameterγ ∈ (λ−q, 1), the

µ value in theorem 3.1 is immediately gained from (19).
A key issue for multilevel control iterative method is to
evaluate‖u(sj)j −u∗j‖H and find the iterative timessj such
that (21) holds, heresj should be as small as possible.

Firstly, similar to the proof of Theorem 3.1, we have
the following corollary:

Corollary 3.1 Under the suppositions of theorem 3.1

‖u
(0)
j − u∗j‖H ≤

M0

µ
γj , (23)

wherej ∈ N+ andu(0)j = u
sj−1

j−1 .
Assume the iterative formulation (9) has the p-th

convergence order,i.e, there exists a positive constantα
such that for anyk ∈ N

‖u
(k+1)
j − u∗j‖H ≤ α‖u

(k)
j − u∗j‖

p
H . (24)

It follows from (24) that

‖u
(s)
j − u∗j‖H ≤ α

ps−1

p−1 ‖u
(0)
j − u∗j‖

ps

H , s ∈ N+. (25)

From (23) to (25), we have that

‖u
(s)
j − u∗j‖H ≤ α

ps−1

p−1 ‖u
(0)
j − u∗j‖

ps
−1

H · ‖u
(0)
j − u∗j‖H

≤ α
ps−1

p−1 (
M0

µ
γj)p

s
−1 · ‖u

(0)
j − u∗j‖H .

Thus, we have following theorem

Theorem 3.2 Under the suppositions of theorem 3.1, if
the inequality (24) holds, then

‖u
(s)
j − u∗j‖H ≤ µ̃(j, s)‖u

(0)
j − u∗j‖H , (26)

wheres ∈ N+ and

µ̃(j, s) = α
ps−1

p−1 (
M0

µ
γj)p

s
−1. (27)

From Theorem 3.1 and 3.2, one can determined the
iterative timesj by the following method

sj = min{s ∈ N+| µ̃(j, s) ≤ µ} (28)
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An interesting fact is that̃µ(j, s) is monotonically
decreasing with respect to the variablej, and the limit of
µ̃(j, s) is zero asj approaches∞. From this fact we gain
the following corollary:

Corollary 3.2 Assume thesj , j ∈ N+ are determined
by (28), then

(i) s1 ≥ s2 ≥ s3 · ·· ≥ sj · ··.
(ii) there existsM > 0 such thatsj = 1 for any j >

M .

The key issue of the multilevel control iterative
method is to evaluatẽµ(j, s). In (27), the parametersγ, µ
and p are given, and in generalα, M0 can be
approximately evaluated according to the properties of
the parameters. For example from (20), α, M0 can be
approximated by

α ≈
‖usj − u

(s−1)
j ‖H

‖u
(s)
j − u

(s−2)
j ‖pH

and
M0 ≈ ‖u

(s0)
0 − u

(s0−1)
0 ‖H .

Especially from the geometric meaning of the
inequality (21), µ̃(j, s) can be immediately approximated
by

µ̃(j, s) ≈
‖usj − us−1

j ‖H
s∑

k=1

‖ukj − uk−1
j ‖H

. (29)

4 Numerical example

In this section, we demonstrate the performance of the
proposed multilevel control iterative method by solving
the following problem
{
−∆u+ u2 = g(x, y), x ∈ Ω,
u(x) = 0, x ∈ ∂Ω,

Ω = [0, 1]× [0, 1],

(30)
where∆ is the 2th order Laplace operator, and g(x,y) is
determined such that the (30) admits
u∗(x, y) = sin(πx)sin(πy) as the exact solution.

(30) will be solved by using the multilevel analysis of
the spaceH1

0 (Ω). Consider quadrangular mesh partition
of Ω with equidistant interval1/2j+1. Let Vj denote the
inner knots of the partition andψp be the bilinear finite
element basic function on thep point,thenVj ⊂ Vj+1. Let

Xj = span{ψp : p ∈ Vj}, (31)

then {Xj} is a nested finite-dimensional subspace
sequence i.e.

X0 ⊂ X1 ⊂ · · · ⊂ Xj ⊂ · · · ⊂ H1
0 (Ω). (32)

Further let

Wj = span{ψp : p ∈ Vj \ Vj−1}, (33)

we have that

Xj =W0 ⊕W1 ⊕W2 ⊕ · · · ⊕Wj , (34)

Thus, we gain a multilevel analysis of the spaceH1
0 (Ω),

in which the basic function ofW0 is as

ψ0(x, y) =





4xy, (x, y) ∈ [0, 1/2]× [0.1/2],
4(1− x)y, (x, y) ∈ [1/2, 1]× [0.1/2],
4(1− x)(1− y), (x, y) ∈ [1/2, 1]× [1/2, 1],
4x(1− y), (x, y) ∈ [0, 1/2]× [1/2, 1].

Similar to the classical wavelet analysis, the basis
functions ofWj(j > 0) are obtained by the dilation and
translation ofψ0(x, y). Figure 1 gives the schematic
diagram of basis functions ofW1.

Thus for givenj ∈ N , the nonlinear system associated
with (30) is obtained from the discrete scheme presented
in section 2. The classical Newton iterative formulation is
employed to solve these nonlinear systems, the program is
run under Matlab 7.6.

Figure 1: The schematic diagram of basis functions ofW1.

With the initial guessu(0)1 = 0, we start the iterative

procedure until‖u(s)1 − u
(s−1)
1 ‖H ≤ 1.0E − 04. We have

that
‖u

(6)
1 − u

(5)
1 ‖H ∼= 2.0573E − 06,

where‖ · ‖H is theH1(Ω) norm. Note that hereX1 is
viewed as the initial spaceW0.

In what follows, start withu(0)2 = u
(6)
1 , the multilevel

iterative procedures are respectively performed in three
different control levelsγ = 0.95, γ = 0.7 andγ = 0.5.
Note thatsj+1 = 1 woul be immediately chosen when
sj = 2, and the error is computed from

Error =
‖u

(s)
j − u∗‖H

‖u∗‖H
,

whereu(s)j andu∗ are the approximate solution and exact
solution of (30), respectively. The results are shown in
Table1.

From Table 1, there doesn’t exist significant
difference in errors of three control levels. However, the
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computational cost atγ = 0.95 or 0.7 is much less than at
γ = 0.5. This shows the efficiency of the proposed
method.

Table 1: The relative results when the multilevel iteration scheme
with different controlling levels applied to (30).

γ µ Iter. Num. Error Time(s)
0.95 0.322 s2=4,s3=3,

s4=2,s5=1
1.713E-04 128

0.70 0.259 s2=5,s3=3,
s4=2,s5=1

1.313E-04 135

0.50 0.20 s2=6,s3=4,
s4=3,s5=2

7.325E-05 239
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