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Abstract: We present a numerical simulation to compute the evolution of vortex filaments bundle in superfluid helium. We show that
the vortex-antivortex bundles with sinusoidally have stable structures andeach bundle rotates about its common center. Because of they
have circulation in opposing directions, the two vortex bundles move down together parallel to each other. A three dimensional periodic
cube is used. Thus, the vortex filament points move through one side of the periodic volume and re-entering on the other side. The two
bundles move for long time without reconnection. We found that our results are in agreement with the finding of Koplik and Levine
[Phys. Rev. Lett. 71, 1375 (1993)], who used the nonlinear Schrödinger equation (NLSE) model to study the cases of single vortices.
This movement leads to stretching and flexure of vortex lines which causechanges in velocities, radius, number of points and total
length.
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1 Introduction

The turbulent motion of fluids has captured the attention
of observers of nature for most of recorded history.
Quantum turbulence is the turbulent flow of quantized
vortices which occurs in low temperature fluids such as
Helium 3. Quantized vortices appearing in quantum fluids
influence many properties of the systems [1]. Vortices are
appeared in many fields of nature. These are not
well-defined for a typical classical fluid and the
relationship between vortices and turbulence remains
indistinct. The liquid state of4He exists in two phases: a
high temperature phase which called Helium I and a low
temperature phase called Helium II [2]. Both of the two
phases are separated by a transition called the lambda
transition which occurs at the critical temperature
T = Tλ = 2.1768K at saturated vapor pressure [3]. The
relative proportion of normal fluid and superfluid is
determined by the absolute temperatureT . At T = 0,
Helium II is entirely superfluid whereρs/ρ = 1 and
ρn/ρ = 0 with ρs, ρn andρ denote the superfluid density,
normal fluid density and total density, respectively. If the
temperature is increased, the superfluid fraction decreases
and the normal fluid fraction increases untilT = Tλ .
Then, Helium II becomes entirely normal andρs/ρ = 0
andρn/ρ = 1. Most configurations of quantized vortices
which have been investigated in superfluid (Helium II)

can be grouped into two types [4]: ordered vortex arrays
and disordered vortex tangles. The key property of a
superfluid vortex line was discovered by Onsager and
developed by Feynman (see Ref. [5] and references
therein). The circulation around each superfluid vortex
filament is fixed by the condition that

∮

c vs ·dl = Γ , where
c is a circular path around the axis of the vortex,
Γ = h

m = 9.97 × 10−4 cm2/s is the quantum of
circulation,h is Plank’s constant andm is the mass of the
helium atom.

In the early 1940s, experiments on the rotational
motion of He II revealed more surprises. The quantization
of the circulation, predicted by Onsager and Feynman
(see [5]), was first observed by Vinen (see Ref. [6]).
Vinen also performed the first experimental investigations
of quantum turbulence [6].

The dynamics of quantized vortices can be described
by using the model of nonlinear Schrödinger equation
(NLSE), also called the Gross-Pitaevsk (GP) model. This
model is applicable at very low temperatures where
normal fluid is absent. In the present, work we used the
model of Schwarz [7,8] where the vortex points move
according to the Biot-Savart law. So the vortex lines are
numerically discretized by a large variable number of
points depends on the local radius of curvature as we will
see in the next section.
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The paper is planned as follows. In Sec.2 a description
of the numerical simulation is presented. The results are
given and discussed in Sec. 3. The paper is concluded in
Sec. 4.

2 Numerical Simulation

The vortex filament model was pioneered by Schwarz [7]
. In this model, a quantized vortex line is represented as a
curveX = X(ξ , t) in three dimensional space, whereξ is
the arc-length andt is the time [3]. The vectorsX

′
, X

′′

and X
′ ⊗ X

′′
are perpendicular to each other and point

along the tangent, principal normal and binormal
directions, respectively. The prime denotes to the
derivative with respect toξ . The equation of motion of a
point X on a vortex line which moves according to the
Biot-Savart law is given by

UL =
dX
dt

= γX
′ ×X

′′
+

Γ
4π

∫

ℓ
′
(X−Z)×dX

|X−Z|3 , (1)

where

γ =
Γ
4π

ln

(

c
√
ℓiℓi−1

a

)

. (2)

with a is the vortex core radius (typicallya ≈ 10−8 cm)
[9]. The symbolℓ

′
means that some local region about the

pointZ=Xi (through calculating the integration) has been
removed from the integral. We defineℓi and ℓi−1, as the
arc-lengths of the curve betweenXi+1 andXi and between
Xi and Xi−1, respectively. These lengthsℓi and ℓi−1 are
always much larger thana. The size of the local region
about one order of magnitude smaller than the local radius
of curvature. This gives accurate results with a reasonable
number of calculations, see also [5,10,11].

Equation (1) is a nonlinear parabolic partial
differential equation that can be solved numerically by
constructing suitable finite difference equations for the
discrete solutions. In order to solve it numerically, the
parametric representation of the vorticesX(ξ ) at some
time tn is approximated by discrete points

X(ξi, tn) = Xn
i =





x(ξi, tn)
y(ξi, tn)
z(ξi, tn)



 . (3)

The vectorsX
′

and X
′′

are the first and second spatial
derivatives which can be approximated by the central
difference replacement. There are several algorithms to
numerically integrate in time the solution of Eq. (1). A
finite difference method is compatible with the
differential equation as long as the truncation error
disappear as∆ t → 0, where∆ t is the time step size. Our
finite difference scheme is the classical fourth order
Runge-Kutta method which is a well known general
purpose method for ordinary differential equations. This
method is described in more detail in Refs. [5,10]. In our
simulation, we use a Lagrangian grid where the vortex

filament is represented by a series of mesh points
circulated along the centerline of the vortex filament. The
motion of the vortex lines is calculated by moving each of
these mesh points. As mesh points are too close to one
another, our code will remove some points need to be
removed from some sections on the filament. Vice versa,
some points can be added by the code when the vortex
filaments are locally elongated. So the spacing between
the mesh points will be changeable with time. For more
details, we refer to Refs. [12,13,14].

3 Results and Discussion

According to Schwarz [7], when two quantized vortices
approach, the long- range interactions tend to drive the
cores together so to be antiparallel at the point of closest
approach with some oscillation along the core [15]. We
refer to this case as 1800. It is known, that when the
vortices have equal circulation as shown in Fig. (1), the
vortices will move in opposite directions and circle
around the mid-point between them [16]. While, if the
vortices have circulation in opposing directions, as shown
in Fig. (2), the vortices will move parallel to each other in
a straight line (see Refs. [17,18,19] for details).

Fig. 1: Velocities of the flow around two vortices with equal
circulation in one plane. Green arrow represents motion.

In this work, we study the behavior of two bundles
(with sinusoidally) each one of them contains 5 of
(initially) parallel vortex strands, set at 1800 and one of
them against the other (vortex with antivortex bundles).
The distance between the closest point is approximately
4δ , where δ = 0.0155804 cm is the radius of each
bundle. In this case, we place four vortices at the corner
of a square lie on a circle and one vortex in the middle.
Where a cubic periodic box−µ ≤ x,y,z ≤ µ , with
µ = 0.707107 cm is considered, vortex bundles with
sinusoidally are found to be stable structures. In addition,
each bundle rotates about its common center, because
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Fig. 2: Velocities of the flow around two vortices with opposite
circulation (anti-parallel vortices) in one plane. Green arrow
represents motion.

Fig. 3: Motion of vortex bundle and antivortex bundle (with
sinusoidally) each one consist of 5 vortices: upper-left panel,
t = 0 s; upper-right panel,t = 50 s; middle-left panel:t = 97.74 s;
middle-right panel,t = 147.74 s; lower-left panel,t = 197.97 s;
lower-right panel,t = 247.84 s.

each one contains 5 parallel vortices. Because of they
have circulation in opposing directions, the two vortex
bundles move down together parallel to each other in a
semi-straight line as shown in Fig. (3).

In the present work, we have used a three dimensional
periodic cube. This method as a matter of fact only ensures
that vortex filament points moving through one side of the
periodic volume and re-entering on the other side (see Fig
(4)). It is clear from Fig. (5), that the two bundles move

Fig. 4: vortex bundle and antivortex bundle move down together
through one side of the periodic volume and re-entering on the
other side: upper-left panel,t = 272.86 s; upper-right panel,t =
322.91 s; lower-left panel,t = 372.96 s; lower-right panel,t =
568.18 s.

for long time without reconnection untilT = 568.18 s. But
there is a potentiality to occurring of reconnection but need
long time to bring the bundles close enough together for
quantum mechanics to act and cause reconnection [15]. It
has been shown in [20], that when the distance between
the two vortex bundles is less than 2δ , the reconnection
takes place in a short time. These results are in agreement
with the finding of Koplik and Levine [15], who used the
NLSE model to study the cases of single vortices.

As a result, each bundle rotates about its center (in
different direction) and at the same time the bundles move
parallel together. We note, that this movement leads to
stretching and flexure of vortex lines. This makes the total
lengthL increases in the upper-left panel of Fig. (5). The
upper-right panel of Fig. (5) shows the average inverse
radius of curvature,< 1/R >, obtained by computing
|X′′ | at each discretization pointX j ( j = 1,2, ...,N) and
then averaging over all discretization points. As a result
of the increase inL and the decrease of< R >, the
number of discretization points (initiallyN = 1999)
grows with time up toN = 2450 when we stop this
particular calculation as shown in the lower-left panel of
Fig. (5). The lower-right panel of Fig. (5) shows, that the
decrease of< R > causes the increase in the average
velocity of vortex points.

4 Conclusion

The dynamics of quantized vortices is investigated by
using the Schwarz model [7] where the vortex points
move according to the Biot-Savart law. It has shown that
the vortex-antivortex bundles with sinusoidally are stable
structures. Each bundle rotates about its common center

c© 2013 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


1498 S. Z. Alamri: Study the Behavior of Vortex-Antivortex...

Fig. 5: Corresponding to the evolution shown in Figs. (3) and (4):
upper-left panel, total vortex lengthL versus timet; upper-right
panel, average inverse radius of curvature< 1/R > versus timet;
lower-left panel, number of discretization pointsN versus timet;
lower-right panel, average velocity of vortex points< v > versus
time t.

because each one contains 5 parallel vortices. Since the
two vortex bundles have circulation in opposing
directions, they move down together parallel to each
other. In this work, we used a three dimensional periodic
cube. So the vortex bundles move through one side of the
periodic volume and re-entering on the other side. They
move for long time without reconnection. This movement
leads to stretching and flexure of vortex lines which cause
change in velocities, radius, number of points and total
length. The results of this work are in agreement with the
finding of Koplik and Levine [15], who used the NLSE
model to study the case of single vortices.
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