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Abstract: Let C¥ denote the Ces’aro matrix of order k>0, ¥ a; a series with partial sums s,,. Then, with C’,ﬁ = (Z+k) vgl (3:3“‘) ay,
Sherif [5] obtained estimates of the form Y |7, —an| < KY|A (nay)| and ¥ |ty —an| < K'Y 0 |AT,—1], under the assumption that
Y n|AT,_1] is finite where A is the forward diference operator and 7, := Cyy — C’,i_l. The constants K and k" he names absolute Tauberian

constants. In a later paper [6] he obtained analogous results for regular Hausdorff matrices In this paper we obtain results similar to [6]

for the H-J and E-J generalized Hausdorff matrices.
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1. Introduction

Let {A,} be a sequence satisfying
OSAO<AI <"’<A'n“'
such that -
o= =oo. (D

For any sequence {u,}, an H-J generalized Hausdorff
matrix is a lower triangular matrix with entries

hnk = A’k+1 o ')’n[:uk, cee 7”’1]7
where the divided difference is defined by [u,] = .

o [.u'k7"'7,un—1]_[uk+la'”u.un]
e ] = - |

and where it is understood that Ay | --- A, = 1 when k =n.

Hausdorff [2] made this definition for A9 = 0, and
Jakimovski [3] extended it to the cases in which Ag > 0. If
An = n, then the definition reduces to that of an ordinary
Hausdorff matrix. If A, = n + «, then the definition

An infinite matrix A = (a,;) is called conservative if it
maps c into ¢, where ¢ denotes the space of convergent real
or complex sequences. Necessary and sufficient conditions
for this to happen are the well-known Silverman-Toeplitz
conditions:

D) A = Xelan] < o,
(>i1) ay :=lim,, a,, exists for each k,
(iii) ¢ :=lim¢, = lim,, Yy ap; exists.

An infinite matrix A = (a,;) is called regular if it is
limit preserving over c¢. In this case the
Silverman-Toeplitz conditions take the form
@) Al = £ lan] < =,

(i1) ay :=lim, a,;, = 0 for each k,
(i)t = 1.

A conservative H-J matrix has the property that the
moment generating sequence {1, } takes the form

1
L = /O tfndy(t),

where (¢) is a function of bounded variation over [0, 1].
A conservative Hausdorff matrix also has the property

that each of the column limits, except possibly for the
first, has limit zero, and is regular if and only if

reduces to the E-J generalization developed
independently by Endl [1] and Jakimovski [3] in 1958. x(0+)=x(0)=0, x(1)=1.
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If {u,} is totally monotone then the corresponding H-
J matrix enjoys the same properties. (A sequence {{,} is
called totally monotone if [y, ..., U,] > O for each n > 0.)

Let Y a; denote a series with ap = 0 and partial sums
sn, and let H = (h,;) be an H-J matrix. Set

Up = Z S
k=0
and define {b,} by
n
Uy — Z bk.
k=0

Then by = poap =0, and, for n > 0, using the definition
of divided difference, and the fact that ay = 0,

by =ty —uy_q

= ZMH An[Mics - - s Mn] Sk
- Z)Lk-H A=t [Ms - s Mn—1]sk
= Z{()»kﬂ A1)

k=0

()’ _)’k)[ukv 7."Ln]}sk
+Z7Lk An—1[Mks - -, ]Sk
- Z)vkﬂ A1 My - s Hn—1] Sk
= ZMH o At { s s ] = (Mgt - - ]}k
+ Zlk A1 [ My - - s M5k
- Zlkﬂ A1 M 15+ Hn—1]5k
= — ZA,] ..An,l[uj,...,u,,]sj,l

=1

+ Y Ao At [ M- M)k

k=0
= Z),k...),n_l[ub...,un]ak

k=1

—‘y—l()...)vn_l[[i(),...,[in}So

. .An,] [”kw "a.LLn]ak?

since s9 = ag = 0.
With A the forward difference operator defined by
Aw, = w, — wpy for any sequence {w,}, a

straightforward calculation verifies that

1 n—1
a":_f ZA(),vav) for n>0.
 v=0
Thus
n — Zz'k

n

1
Z Myt -

z; (Avay) )

A1 [y -+ M (

:uka"'aun Z A'Vav

ﬂk 0
n—1
:_ZA )bvav Z )’k+] ‘A'n[“kw"ﬂun]a
v=0 " k=v+1
and
by —a, = ()
n—1 1 n
=Y Aha) o {1= ¥ At Al ol }
v=0 n k=v-+1
n—1
_ ZA()Lvav)i{l—tn
v=0 n
v
Y Ml omlh )
k=0
where
In = ZMH AWy -+ Hn]-

A moment sequence {i,} is called regular if the
corresponding  Hausdorff matrix, or generalized
Hausdorff matrix, is regular.

We shall need the following two lemmas for the proofs
of the theorems of this paper.

Lemma 1.
i[tlk tln] — & [tlk I)L”] _ l[tkkJrl tln]
i sy p . p Sy .

Proof The proof is by induction. Forn = k41,

%[ﬂhﬂkﬂ] - m%(ﬂk — M)
= m(lkﬂk—l D)
- m(l’“ﬁk — Myepat)
= Ay )
* m{(lkflkﬂ)ﬂm}

— &[txk’tllﬂrl] _ lta‘k‘f’l .
t t
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Assume the induction hypothesis.

d ;. A
flk...["*l
dt[ B ]
1 d
:71H_lka([tlk,...,t}“”]—[tl““,...,t%“])
n
1 o, PIR A
= e ) = e e
- Ak{ ¥t = | ]

A 1
= S e e[ ]
1

— Ak Mn
o = Ak){/lk([t -
—[tM, L]

Me—Mr1 2 A
+7t k+l7.”,t n+1
ot —20) }

_; vt .
TRy (1

_ [[Akﬁj . ,tl”“])

A
= Tk[t’lk,...,t’lﬂﬂ]
1
_,_7( —A tkarl’”',tanrl
s — )\ )|
= (st = A )1 P])
:&[tlk tlnﬁ—l]_l[t}LkJrl tln-#l].
t ) b t b )

Lemma 2. Let A =
sequence. Let

(aui) be an infinite matrix, {f,} a

Ay, = Zanvfw
\%

Suppose that
Z |at,y| is bounded.

n
Let

K= sup2|anv\.
Vi on

Then
Y 1A <KY A, 4)

and this constant is the best possible in the sense that (3)
becomes false if K is replaced by any smaller constant.

Lemma 2 is Theorem 5, which appears on page 167 of
[4].
2. Main results
Theorem 1. Let {u,} be a regular moment sequence

generated by the real function of bounded variation ) on
0 <t <1sothat

1
1y = /0 tdy(t)

where {A,} satisfies (1) with Ay > 0, and is such that

2(0+) = %(0)—07 x(1) =1,
/|X dt < oo
and
y [L=h ©)

Let Y a, be a series with partial sums s, and ay = 0.

Then
Y 1bn—an| < (K+M) Y |A(Auan)], (7
where |
K —2L / % (@)
0 t
and

[1—1t,
M =
Y
Proof Applying Lemma 2 to (2), and using the definition
of an H-J matrix,

0, vV >n,

1 \4
Oy = T{l_tn'i'Z)Lk+l--~a'n[.uka"'7un]}a
n k=0
0<v<n.

Since the H-J matrix in this theorem is regular, with
mass function x, the series part of @, can be written in the
form

rl"} ax (7). ®)

1 n
/ Zlk+1"')t‘n |:tkk7"'a
0 k=0

Using Lemma 1,

d v A A
EZA]HJA"[I k,...,t n]

—Zm Mgy e )

t

= ;{M...ln[t%,...,tl"] —lvH...l,,[t’l”H...,t)L”}}.

Integrating (8) by parts we have

1 v
/ Z)‘k+l"'ﬂ‘ntk
0 =0
\%
- Z)LkH...An[tlk,...,ﬂn]x(;)(
k=0

_/OI{AO,..)L,,[W,...J’I"]

_l\/+l "'An[tlv+l7"'7tln]}wd[
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It then follows that

ZZ’/H»I ‘U.k, nu'n]
n= V+l k=
=1
< Moo Dt e
nz\;%l)L { [ ]
— Avti ...A,,[z’lvﬂ,...,t’l"]}@’

=

<[{X+

n=v+1

. n[tkoa"wtln]

T M Y N}
n= v+1
X / ‘x—‘dt
0 t
Let H = (h,) denote the H-J Cesédro matrix of order
one. Then |
hnn::ﬂﬂ4*1’
h P
n+l,n = )
e (14—Aw)( 4_Aw+l)
and, by induction,
o= M1 M
IR+ 1)
Thus
20/ Z Ma[th, .. 1) |dt
n= v+l

|
:Xv: ), nO )

Ayt Ag[tver P dr

[ |
L X

n=v+1

- % hn,V+1 )
n=v+1 77
and both expressions are finite by condition (4). Condition
(6) now follows by using M.
For the E-J generalized Hausdorff matrices one has the
following result.

Corollary 1. Let {u,} be a regular moment sequence
generated by the real function of bounded variation X on
0 <t <1 so that

1
/.Ln:/ "%y (t) forsome a>0,
0

/1 |7€(f)|dt<o<>
o I ’

and

Let Y a, be a series with partial sums s, and ay = 0.
Then

Y 16w —an < (K+M) Y |A((n+ a)an),

where
1
K:Z/ 2Ol 4,
0 t
and
[1—1,]
M= .
Z n+o

Proof For the E-J matrices, (7) becomes

Therefore, integrating by parts,

[ () tago

Z:. ( +Z> k+a(1_t)n7kx(t)‘l

=0 0

01 <n+a )t“l(l—t)"

<n+a ) e _t)"*"*l}x(t)dt
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Consequently

Lr,

(" e i
A (A e (RO
S{/Ol i <n+(:lg

n=v+1
n Z <n+(X >tv+a+l(1_t)nvldt}x

n= v+1 -

1
)t“(l —t)"dt+

Hx(@)l

But

and
i (n-l—OC— 1>tv+(x+l(1 _t)nfvfl
v \n—v—1

:tv+a+1 i (V+i+a>(l_t)i

i=0 t

)V+Ol+1

~ (=5

With A, =n+«,

o Ayt A
n=v+1 H?:v+l (li =+ 1)
> (vHa+1)---
n:;H(v"’OH'Z)'”
. v+o—+1) B
B Z (n+a)(n+a+1)

(n+a—1)
(n+o+1)

n=v+1

and (4) is automatically satisfied.

Corollary 2. Let {u,} be a regular moment sequence
generated by the real function of bounded variation ) on
0 <t <1 sothat

1
Ly :/0 tfndy (),

where {A,} satisfies (1) with Ay =0,
x(0+)=%(0)=0, x(1)=1,

condition (3) is satisfied, and

[l .
0 t

Let Y ay, be a series with partial sums s,. Then

Z|bn*an| SKZM(M%)L

where '
kon [ B0,
0 t
and where L satisfies (4).

Proof For the H-J matrices with A¢ = 0, each row sum 1,
is equal to yy. For a regular H-J matrix, yy = 1. Therefore,
from condition (5) of Theorem 1, M = 0.

For ordinary Hausdorff matrices we have the following.

Corollary 3. Let {i,} be a regular moment sequence
generated by the real function of bounded variation ) on
0 <t <1 sothat

1
Uy = /0 t"dy(t),

[, ..
0 t

Let Y a, be a series with partial sums s,. Then

Z|bn—an| SKZ|A(7Lnan)|,

M x @)
K_/o fdt.

Proof This result follows from Corollary 1 by setting
o =0.

where

where

Corollary 3 is the sufficiency part of Theorem 2.1 of [6].
Results for the E-J matrices.

Theorem 2. Let {u,} be a regular moment sequence
generated by the mass function ) such that x(t)/t is also
of bounded variation on 0 <t < 1 and so that

1
“n:/ tn+ad75(t)a
0

for some o« > 0. If, in addition,

[t
Z n+Oc

n=v

is satisfied, then

1 n—1

Ylbi—al <AY|a (m‘;(\z—ka)av)

)
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where

-y 'n+a /Olr-lwx(mm/olt\(@)

n=v

Proof Define

Wﬂ: 1

_ (v+a)ay, n>1,
n+a-+1 Vv

0, =0
n
=1

and let ¢, = —Aw,—1 = w, —w,_ forn > 1. Then

(n+a)a,=n+a+ 1w, — (n+a)w,—;
= (n+a)(Wn—Wn,1)+Wn

=(n+a)p,+ Z oy
v=l
Note that
n n
Z Z —Wy_1) =Wy — Wo = Wy
v=1 v=1

Hence

1 n
ap = Z¢V+¢n~

n—l—ocv:l

Using the expression for b, in the proof of Corollary 1, and
using the fact that ay = 0,

v=1 k=v
_ nJlroc v; Py (tn —~ ZZ; (’;JFZ)A” kuk)
n
B n—t:oc v=1¢v
_ nia Vé ¢v/01 :i; <Zt‘z>¢k+“(1 )" kdy (1)

dy 1 ¢ (nta) i, —k
cit{n—l—az’(n—k)t (1=’ }

k=0

1 I nta
_ k atkﬂ*ﬂ!*l l_t n—k
n—|—akzz)<n—k>[( +a) ( )
(I’l k)tk+ot(l t)n k l]
1 v—1 n+ao .
— k t+0€ 1 1 tnfk
n—l—Ot,;)(n—k)( +a) ( )
1 & nta X
_ kt"r(X 1 tn k—1
n—l—a,;)(n—k)(n ) ( )
1 v—1
_ (n+a) (k_’_a)thr(xfl(l _t)nfk
n+a /= n—k
1 n+o . .
— —jH+ Dt =i
n+a.zl<n—j+l>(n i+ (1-1)
]7
1
_ <”+“>atal(1 )"
n+ao n
_<n+a l)tvﬂxl(l t)nfv
n—yv
since
1 <n+a><k+a) IF'n+oa+1)(k+o)
n+oa\n—k (n+a)(n—k)C(k+o+1)
_ I'ndoa) n+a—1
(=) (k+a)
and

n+o\n—j+1 n—j)I'(j+oa)

_(nto—1
= .y .

1 (n+a >(n_j+1):( F.(n—i—(?t)

Integrating by parts,

1 I (n+a) ki K
1—1)""
el T () rea—tan

L (n+a) ki ko !
= t 1—-0)"
n+a,;)<n—k) ( ) x<t>0

<n+a1> (] gy v%()
)

(n+a—1 ”xE)
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Therefore Thus
b b
a
tn i‘f’ T ot &
= v n 1
a 1
n—+ v=1 +Z’(PV/ |:(n+a+ >ta(1t)n
S Lr/n+a—1Y 4 = Jo n
+Z¢v/0[ “T - e 0
v=1 _( )tv+a(1 t)n V:| dt—‘r(Pn
nto—1\ 4 nv] X(0) n-v
_nvt(l—t)}dt b 1 1
- vtv+a+ 1 tn v
e3a ("5 o
n+a—1 v+a n—v x(t)
- (v a)¥ (1 —1) } dt
n—yv
&)
- (PV_(Pn
n+o ;=
1 & /n+a _ th—1 & 4 Trin+o—1
D= k+ a)A"* _ [ ar]_ gy
n+ak21<n_k>(+) P n+av;¢v+v;¢v/o ( . >t (1—1)
U lLin+ta _ o—1
Y v [ (150 ) o rax (M D wa ey
v=1 0 n—v n—yv
o—1 t
+ <n+ )(n_ v)tv+a+l(1 _t)nfvfl} X( )dt
n—y t
Applying Lemma 2,
v >n,
r1
d(<n+0{>tv+a(l t)n v) n+lx [(n—&-OC >a(l 1"
dt \\n—v n+oc
nta \ (V+o+ D)1 -
_ v+o—1 n—v V= 77
(2T ety =4 e e t)nlegt)dt, .
n—+ao . tn—l l n u
(U)ot et (e
+(n+a+l)t”+°‘} (”dt v=n
o . For v <n,
Using integration by parts,
o—1\ r!
_<n+ >/ [(v+a+l)tv+a(l_t)n7v
n—v 0

- n+a v+a }’l—Vl
n+ag v+a ¢V{ )(n—v>t o1 —1) .

n—+
+/(
0 n—yv
/' n+o
0 n—yv

:¢n+

> (n o V)tv+a+1(1 _t)nfvfl @dl
) (v + o)+ (1 — t)"*V@dt}

n

) {(v+oc)¢v><

n+av=1

y /01 [(Z-q_-(‘)}z> (n— V)V +orl(p — vl
- (”+ O‘) (v o) (1 =] @d;}

n—yv

o (ni V)tv+a+1(1 7t)n—v—l} @d[

_ n+o—1 /1 |:tv+a+1(17t)n_vm‘l
n—yv 0 t 10
n+o—1 ! V4ol nev [ X(t)
+< o >/0t (1-1) d(T).
Therefore, for v < n,
tp—1 Frintoa—1Y 4, x(1)
y = 1—1)" 1
oy n+a+/0[( ’ )z( i E S 10)

(00 freasoa(6E),
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1 t
/(n+a+1)t”+°‘—x5)dr pra+1 X ’
0

/ n+a+1d( f)
so that
o _tn_1+/l|: n+o—
zzn—n+a 0 n
_/ltn+a+1d<7((t)>
0 t /)

Consequently, the conditions of Lemma 2 are satisfied
with

1);“(1 )"X( Jar ()

A= sup VIV’
\4

n=v
o |t — 1
<
- Z n+ao

t
—‘dr

_1>ta(1_t)n X( )

<I’l + Ol; l)tv+a+1(1 _t)nfvd

n—

v+a+l‘<&) ‘

t

+
h

<n+ (X; 1)tv+a+l(l _t)nfv _

(j"_v—’ja_l)tiLOhL](l_t)j
J

_ z‘erOhLl {[1 _ (1 _t)]f(v+oc) _ 1}
=t(1—1""%).

Therefore we can choose

Corollary 4. Let {u,} be a moment sequence for a
regular Hausdorff matrix generated by a mass function
x(t) such that x(t)/t is also of bounded variation on
0<r<1.

Then (8) is satisfied with

A:/01z*]|x(t)|dt+/olt‘(@)
Proof

The proof follows from Theorem 2 by observing that, for
any regular Hausdorff matrix, each ¢, = 1.

Corollary 4 is an improvement on condition (3.1) of
Theorem 3.1 of [6], since it is independent of v.

3. Conclusion

Any sequence {4} in the
n< Ay < (n+1[log(n+1)])P , for any B > 0, satisfies
condition (1). Therefore the set of all regular H-J matrices
is a significant generalization of both the ordinary
Hausdorff matrices and the E-J generalized Hausdorff
matrices. Consequently, Theorem 1 of this paper provides
a substantial generalization of the corresponding result in

[6].

range
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