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Abstract: Memristors have been compared to neurons (usually specifically the synapses) since 1976 but no experimental evidence
has been offered for support for this position. Here we highlight that memristors naturally form fast-response, highly reproducible and
repeatable current spikes which can be used in voltage-driven neuromorphic architecture. Ease of fitting current spikes with memristor
theories both suggests that the spikes are part of the memristive effect and provides modeling capability for the design of neuromorphic
circuits.
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1 Introduction

Neuromorphic computing is the concept of using
computer components to mimic biological neural
architectures, primarily the mammalian brain. Although
an area of current and active research, we do not know
exactly how the brain works, however it is believed that
the brain is a neural net. Signals travel along neurons via
voltage spikes known as action potentials which are
caused by the movement of ions across the neuron’s cell
membrane, and the signals pass between neurons via
chemical neurotransmitters (the gap crossed between
neurons is the synapse) [1]. The interaction of these
spikes is thought to be a cause of brain waves, thought,
learning and cognition. The long-term potentiation of
neurons is related to a change in structure of the synaptic
cleft, which is thought to result from the Spike Time
Dependent Plasticity (STDP) of these synapses and result
in Hebbian (associative) learning [2].

The memristor is the 4th fundamental circuit element
as predicted by Leon Chua [3]. First reported
experimentally using this terminology in 2008 [4],
memristors have been an object of scientific study for at
least 200 years [5]. Memristor theory was first
demonstrated in a model of the action of nerve axon

membranes in 1976 [6], which was proposed as an
alternative to the Hodgkin-Huxley circuit model) and this
has led to the suggestion that they would be appropriate
components for a computer built using a neuromorphic
architecture [4]. Several simulations of neural nets
containing memristors have been performed (see for
example [7]). Recently, it was reported that circuits
combining two memristors with two capacitors could
produce self-initiating repeating phenomena similar in
form to brain waves [8].

Perhaps it is not merely the case that memristor
models fit neuron behavior, but that neurons themselves
are memristive. Thus, we would expect that advances in
the study of memristors would explain neurological
phenomena (as happened with computer science and
STDP). A circuit theoretic analysis of an updated version
of Hodgkin-Huxley’s model of the neuron has been
undertaken [9,10]. The Hodgkin-Huxley model is often
used to explain the transmission of voltage spikes along
the neuron. However, this model predicts huge
inductances which are not experimentally observed in
biology and it has been demonstrated [9] that updating the
Hodgkin-Huxley model with memristors avoids this
requirement. A recent paper suggested that memristance
could explain the STDP in neural synapses [2]. The
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authors used memristor equations to adjust simulated
spikes, found a similarity to experimentally measured
biological synapse action [11] and concluded that a
memristive mechanism was behind the biological STDP
phenomenon.

In this paper we will show experimentally that
memristors spike naturally and do not require a spiking
input to cause them to spike in a manner qualitatively
similar to neurons. We shall attempt to quantify the
spikes. We will then demonstrate that these spikes are
also present in theoretical models of memristors and
discuss the cause of them. We think that utilizing these
naturally-occurring spikes will be the most fruitful way to
create neuromorphic memristor architectures.

2 Properties of Memristor Spikes

Memristors come in two flavours, charge-controlled (left)
and flux-controlled (right) as shown below in Equation2
whereq is the charge,ϕ, is the magnetic flux,M is the
memristance andW is the memductance (inverse
memristance) [3]

V(t) = M(q(t))I(t), I(t) = W(ϕ(t))V(t) .

For a charge-controlled memristor we would input a
current,I, and measure the voltage,V. Biological neurons
may be described as charge-controlled because it is the
movement of ions that causes the change in voltage
giving rise to a voltage spike. Our memristors are
flux-controlled and a change in voltage causes a spike in
the current. Thus, creation of a neuromorphic computer
with memristors will be using the complimentary effect to
the one utilized by nature, in that memristors have
voltage-change-caused current spikes and neurons have
current-change-caused voltage spikes. That both types of
spikes have a similar form arises from the similarity in the
underlying electromagnetics, in that circuits can
considered as being constructed with either a voltage
source or a current source.

Our memristors are flexible sol-gel titanium dioxide
gel layers sandwiched between aluminium electrodes [12,
13] and they show a distinctive large spike that occurs
when the voltage is changed. The experiments reported
here were carried out with a Keithley 2400 sourcemeter
sourcing voltage. There are no spikes in the voltage
profiles, (see Figure2) and no current spikes are seen
when the same experiment is done across a resistor. It has
been suggested that these spikes are capacitance; however
the timescale is too long. The spikes have been reported
by other groups in their memristors (see for example,
[14]), however they are usually overlooked or attributed
to artefacts arising from the experimental set-up or not
reported at all (many researchers only report theI − V
curves to demonstrate that they have a memristor).
However, the current spike is an equilibrating process that
is responsible for the frequency dependence of theI − V
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Fig. 1: Current spikes recorded from a memristor subjected to
the voltage square wave in Figure2. The spike heights are highly
repeatable and qualitatively resemble neuronal spikes.
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Fig. 2: Voltage square wave that the memristor measured in
Figure1 was subjected to.

curves. In Figure2 each voltage step had 40 timesteps (≈
3.3s) to equilibrate. If the voltage is scanned quicker than
this, the current has not equilibrated and thus current is
higher than the equilbration current. Thus, a faster
switching time increases the hysteresis of theI − V loop.
This effect increases with frequency until it reaches the
limit where the voltage frequency is too fast for the
memristor to relax at all and theI − V curve just traces
out the maximal spike currents for each voltage.

These current spikes can be seen whenever a voltage
change occurs across the memristor. Unlike some
neuronal spikes, the voltage does not need to spike. The
current spikes are highly reproducible. For the experiment
shown in Figure1 (10 pairs of positive to negative
switches), the standard deviation was 0.0729% of the
mean for the negative voltages (wheren = 10) and
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0.1192% of the positive voltages (wheren = 9, due to
incomplete recording of the first spike)). For the repeated
spikes in Figure3 (3 repeats each of both positive and
negative ramps, as shown in Figure4) the largest
difference between the spike current repeats was only
3.06×10−9A and only 2.33×10−10A for the equilibrated
current - both taken from the positive side as it has a
larger hysteresis than the negative side.

The direction of the current spikes is related to the
change in voltage, not its sign, so a change from a positive
voltage to zero (turning the voltage source off) gives a
negative spike and vice versa for a negative voltage to
zero. The spike current still flows for a short while after
the voltage source has been turned off. This lag is a
general thing and has been recorded in several different
devices. In different devices the spikes are the same shape
and seem to be following similar dynamics. The spike
current is proportional to the equilibrated current.
Intriguingly, spike shape closely resembles that of Bi and
Poo’s experimentally observed STDP function [11] and
thus could be used to perform a similar function.

Fig. 3: The spikes for 5 successive runs up and then down the
voltage staircase shown in Figure4. The runs are coloured and
overlap. The spikes are highly reproducible on successive runs

3 A Mathematical Description of the Spikes

Figure 6 shows theI − t response of a single spike to a
voltage step like that shown in Figure5. The current
spikes are roughly the same shape, and thus we can make
some statements about the nature of the current spikes in
memristors, which should also relate to the voltage spike
in neurons. As shown in Figure6, there is a steady-state
current,i∞, a spike currenti0 and a transition between the
two which is a time-dependent transienti(t). We don’t
currently know if thei(t) is dependent oni0 or not. We do

0 5 10 15 20 25 30 35
−1

−0.5

0

0.5

1

Time / s

V
ol

ta
ge

 / 
V

Fig. 4: Voltage ramps for Figure3. 5 sets of positive voltage
ramps-negative voltage ramps were run, to give the spike
response in Figure3.
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Fig. 5: An example of a voltage step as applied to a memristor.

know that i0 is related to i∞. Until a thorough
experimental study is undertaken, we shall assume that
i(t) is not dependent oni0 as this is what the experimental
evidence seems to suggest.

Thus, the time-dependent current response,I(t) is
assumed to be of the form:

I(t) = i∞ + i(t)

wherei0 < i(t) < 0.
The current response to the voltage is thus:

∆I =
V

R(T )

The time taken to get toi(t) = 0 the equilibration
lifetime which we shall callτ, and this lifetime is the
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Fig. 6: An example Spike. Red dashed line:τ50; orange dotted
line τ90; green dot-dashedτ95; blue dottedτ99. Horizonal purple
dot-dashed line isi∞ and the spike height isi0.
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Fig. 7: The resistance profile for the memristor subjected to the
voltage in Figure5. Note that the ‘zero’ resistance is due to
zero measured resistance as no voltage is applied, not a true zero
resistance.

short-term memory of the memristor and relates to its
dynamical properties; from longer time spike studies with
our devices, we know thatτ is approximately 3.3s. We
shall define the concept of the equilibration frequency as
the ‘frequency’ associated with changing a descretised
triangular voltage waveform such that each voltage stepn
lasts forτ seconds.

We know that

qe =

∫

I(t)dt.

thus, the total measured charge in a memristor spike is

∆qspike=

∫ τ

t=0
= i(t)dt + i∞τ.

This number includes all the charge carrying species in
the system. Knowledge of this number may help us
elucidate the mechanism of the spikes. For our example
system shown in Figures6, we have ani0 of 1.37×10−8A,
ani∞ of 2.40× 10−10A, with theτ50 of 0.56s and anτ90 of
0.84s, which shows how quick the fall off is (andτ95 of
1.13s andτ99 of 2.34s, as drawn in Figure6). The
resistance profile for the memristor subject to a voltage
step as shown in Figure5 is shown in Figure7. This is
approximately a straight-line which is interesting as it is
not required to be by memristor theory and tells us that
the spike current response depends on a quantity in the
system that is varying with linearly time.

4 The Mem-Con Theory as Applied to
Memristor Spikes

The mem-con model of memristance [16] is a recently
announced theoretical model that relates real worldq and
ϕ to Chua’s constitutive equations and has been
successful in modeling our memristors [17]. The
mem-con theory has the concept of a memory property,
the physical or chemical attribute of the device that holds
the memory of the device. In titanium dioxide (and many
others) it is related to the number of the oxygen
vacancies. The presence of oxygen vacancies allows the
creation of a doped form of titanium dioxide TiO2−x

which is more conducting than the undoped (TiO2) form.
The mem-con theory requires that we calculate the
memristance from the point of view of the memory
property, i.e. the ions.

Theoretically, the voltage step is a discontinuous
function and the voltage changes from voltage A,VA to
voltage B,VB in an infinitesimal, i.e.∆V = VB→VA

t , t → δt.
Experimentally this is not the case of course, but the
response timescale of the memristor is long enough that
we needn’t worry about this approximation.

Thus to elucidate what happens to the memristor
during a current spike, and how the final currenti∞ is
determined, we take differences of the mem-con theory.
We shall assume our device is a TiO2 memristor, with
oxygen vacancies acting as the memory property [16].

As a reaction to the voltage step, we get a current spike,
∆i, which can be expressed as a volume current within the
device as∆J as given by:

∆J = {∆qvµvL
vol

,0,0}

for vacancies moving in the+x direction whereqv is
the charge in that volume due to the vacancies,µv is the
ion mobility of vacancies andL is the average electric
field causing the movement of the vacancies andvol is the
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volume full of moving ions. The change in the magnetic
field at pointp, ∆B(p) would then be:

∆B(p) =
µ0

4π

∫

∆JdĴ×r̂
r2

dτ (1)

whereµ0 is the permittivity of a vacuum, d̂J and d̂r
are the unit vectors forJ and r wherer is the vector of
lengthr from the volume infinitesimal dτ to point p, given
by r = {rx ı̂, ry ̂, rzk̂}.

Thus, to get a measure of the effect of the spikes, we
need to solve this integral over a time-interval covering
from the start of the spike to the tail-off of the memristor’s
response. The voltage input is non-integrable, but we can
integrate from the start of the step, which we shall take as
t(n) wheren is the number of the voltage step, which is
zero for this case if it is understood that this is not the zero
at the start of an experiment with many steps (i.e. we are
considering a case as in Figure6) to when the memristor
has responded, which we shall take asT . Depending on the
situationT can be one of many values, for a staircase we
would presumably wantT = t(n + 1) wheret(n + 1) is the
time that the voltage step is input. For a response to a single
step function we could take the integral out to∞ (which
is what we shall do here). For experimental purposes we
might be more interested in integrating toτ or τ90.

Solving the integral gives:

∆B(p) =
µ0

4π
Lµv∆q{0,−xzPy, xyPz}

with

Py =
F

2
(

∆w2 + E2 + F2
)

3
2

− 1
2∆wEF

(

∆wE
(

F2
(

E2 + F2
)2
+ a + b

)

)

c

+F arctan




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

∆wE

F
√
∆w2 + E2 + F2













,

and

Pz =
E

2
(
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)

3
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2∆wEF
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∆wF
(

E2
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where
a = ∆w4

(

2E2 + F2
)

b = ∆w2
(

2E4 + 5E2F2 + 2F4
)

c =
(

∆w2 + F2
) (

E2 + F2
) (

∆w2 + E2 + F2
)

3
2
.

Where the effect on the magnetic field is due to both
the influx of charge and the resulting movement of the
boundary between doped and undoped TiO2.

To calculate the change in magnetic flux through a
surface associated with this field,ϕ, we need to take the
surface integral

∆ϕ =

∫

∆B·dA

where dA is the normal vector from the surface
infinitesimal dA.

As it is a surface integral, to calculate the magnetic flux
we need to pick a surface to evaluate over. It makes sense
to choose a surface that correlates to one of the surfaces
of the device. Picking the surface just above the device
(0 < x < D, 0 < y < E, z = F), we use the surface normal
area infinitesimal,dA, which is given bydA = {0,0, ı̂ ̂}.
As is standard in electromagnetism, we integrate over the
entire area. The limits of the surface are taken to be the
dimensions of the device.

Thus we derive the general form of the magnetic flux
passing through a surfacei- j: where, becauseϕ is entirely
dependent onq, which is time-varying, we can include the
time varying effects by taking the differentials thus

δϕ =
µ0

4π
Lµvi jPkδqv , (2)

And, as in mem-con theory [20], by using Chua’s
constitutive relation for the memristor, we can then arrive
at the change in the Chua memristance as experienced by
the ions:

∆Mq
(

∆qv (t)
)

= UXµv∆Pk
(

∆qv (t)
)

, (3)

where we have gathered up the constants and explicitly
includedPk’s dependence onqv.

Equation3 can be considered as three separate parts:

1.U, the universal constants:µ0

4π .
2.X, the experimental constants:DEL.
3.the material variable:µvPk, this includes the physical

dimensions of the doped part of the device and the drift
speed of the dopants.

Writing out the differences explicitly of equation3 we
end up with:

M(B) = M(A) + UXµv[Pk(qB) − Pk(qA)],

which allows us to calculate how the final Chua
memristance from knowledge of the peak and final
currents. The Chua memristance is written for the
vacancy charge, so to put it into the standard format for
the electronic current we need to scale it thus:

RM = CM M,

whereRM is the electronic resistance of the doped part of
the memristor andCM is a fitting coefficient.
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4.1 Conservation function

The memory part of the function only describes the effect
of the memristance change on the doped part of the
memristor. To cover the other one we use the conservation
function, this is most easily expressed in terms ofw(t),
but w(t) is related toq(t) by

w(t) =
µvLq(t)
EFvd

.

Thus, the difference in conservation function,∆Rcon,
written as a difference equation is:

Rcon(B) = Rcon(A) +
(

D − [w(B) − w(A)]
)

ρOff

EF

which based on the definition of resistivity and where
ρoff is the resistivity of the undoped part of TiO2.

The mem-con model describes a memristor by being
the sum of the memory and conservation functions (both
written for the electrons) and this then gives us the
following expression for the change in time-varying
resistance, R(t), as measured after a change from
VA → VB as:

∆R(t) = cmM(A) + Rcon(A) +
ρoffD
EF

+cMUXµv[pk(qB(t)) − pk(qA(tT ))]

−Lρoffµv[qB(t) − qA(tT )]
E2F2vd

,

where we have substituted forw. This equation has two
parts:

1.S , the time-invarient part, which is:
cmM(A) + Rcon(A) + ρoffD

EF
2.Y, the time variant part:

cMUXµv[pk(qB(t)) − pk(qA(tT ))]
− Lρoffµv[qB(t)−qA(tT )]

E2F2vd
,

the last two terms which are both dependent onq
(rememberpk is dependent onw but can also be written
in terms ofq)

In the above equation4 highlights a few subtleties of
the model.pk andq are time-dependent and thus change
after the voltage step fromVA → VB. If we ask the
question of what the difference will be between the
equilibrated current atVA and that atVB, ∆RA∞→B∞
equation4 collapses to:

∆R = cmM(A) + Rcon(A) +
ρoffD
EF

+cMUXµv[pk(qB(τ)) − pk(qA(τ))]

−Lρoffµv[qB(τ) − qA(τ)]
E2F2vd

,

which is time invariant and allows us to predict the value
of the equilibrated current after a voltage step from the
equilibrated current from the step before.

What if there was previous step in which the device
did not equilibrate toi∞? This would happen if the
voltage was changed quicker thanτ, i.e. T whereT < τ.
TheqA(tT ) is notqA(τ) and thus needs to be shifted by its
value as a proportion ofτ. As an example, if we sped the
voltage ramps up to 90% of the equilibration frequency,
qA would beqA(τ90) and the length of a time step would
be τ90. At first glance it might appear that this would
merely modulate the starting point forqB(t), which, at
times undert < τ, this would be time dependent. But
there is the interaction betweenqB(t) and qA(tT ), the
memristor hasn’t finished responding toVA and that
response should be mixed in withVB, further
complicating predictive efforts.

5 Modeling Memristor Spikes

The mem-con model consists of sum of two components:
the memory function,Me, and Conservation function,Rc.
The memory function has a fitting parametercm within
the model to account for the conversion between the
material’s resistance as for an oxygen vacancy and as for
an electron. The conservation function has the fitting
parametercc which accounts for the resistivity of the
undoped material,ρoff , which may not be the same as the
bulk titanium dioxide.Ron is the final fitting parameter
and relates to the resistivity of the doped material, which
is the memristor in the equilibrated state and any
resistance in the wires. The fitted equation is

I(t) =
V

Ron
− V

ccRc(t) − cmMe(t)
.

As Figures8 and 9 shows, the mem-con model fits
these spikes quite well and much better than an
exponential fit. For the positive spike,cM − 3.83 × 106’
should be ’cM = 3.83× 106’ , similarly, ’cM − 1.06× 106’
should be ’cM = 1.06 × 106, cc = 1.76 × 106 and
V/Ron = 2.97× 10−9, with a summed square of residuals
of 1.61×10−17. For the negative spike,cM − 1.06 × 106,
cc = 1.86 × 10−6 and V/Ron = −3.16 × 10−9, with a
summed square of residuals of 1.63×10−17. For the
exponential fit,I(t) = Aeλt, andA = 3.96,λ = −19.5 with
a summed square of residuals of 2.43×10−15. The
exponential fit could be fit to either the short time spike or
the long time tail but not both, the short term spike fit
goes erroneously to zero and the long-term spike fit
grossly over-estimates the size of the spike. Furthermore,
there is no experimental justification for using an
exponential fit, unlike the mem-con fit. This model can be
utilized to perform simulations of memristor spiking
networks to test out possible neuromorphic architectures.
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Fig. 8: A longer-term spike response fit by the mem-con
theory. The mem-con theory fits the experimental data well, the
best result fitting the data with an exponential is added as a
comparison. Blue dots: experimental data, red line: mem-con fit,
green line: exponential fit to the spike.
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Fig. 9: A longer-term negative spike, demonstrating that the
negative spikes are fit equally well by the mem-con theory. Blue
dots: experimental data, red line: mem-con fit.

6 What is the Mechanism?

The memory property of these memristors is the oxygen
ions, usually viewed as positive holes in a
semi-conducting material. We suspect that the motion of
these ions is behind both the spikes and the memristance
as we postulate that the two are the same phenomena. The
current that flows att = 0s may be the ionic current,
which would have a greater inertia, and thus takes longer
to stop compared to the electrons, which may explain the
cause of the devices hysteresis. This current flow can also

explain the open-loop memristors (suggested by Pershin
and di Ventra [18] to explain experimental results such
as [19] which are similar to ones seen in our labs and
others’). The spike shape would then be the result of the
equilibrating of the ionic current to a change in voltage.
We expect that the timescale and dynamics of the spikes
will relate to the frequency effects seen in memristors.
However, there is much further experimental work to be
done to prove this mechanism.

7 Comparison between memristors and
neurons

Chua’s definitions of his two types of memristors, flux
and charge controlled, was given above. The mem-con
model has the concept of a two-level system where we
have two charge carriers,q, our memory property ande−

the electronic current which is what is measured in an
experiment. Level 0 is the relationship between the
vacancy charge,q and vacancy flux, ϕ. This is
experienced at level 1 by resistance changes (R(t)) which
effect the electronic current,Ie− . The circuit measurables
are the voltage,V and the total currentI where
I = dq

dt + Ie− .
For our memristors, driven by a voltage, the right

hand side of Figure10summarizes the operation. There is
a change in voltage, which acts on the electrons and the
vacancies, causing a change in the number of charge
carriers (∆e− and∆q. The change inq causes a change in
the magnetic flux associated withq and thus a change in
the Chua memristance. This, due to the conservation of
space, causes a change in the amount of material
described by the conservation functionRc, which then
changes the total resistance∆R. This change in resistance
will draw more current,e− and thus the change in the
number of electrons is influenced by both the change in
voltage and the change in resistance that change has
caused. The change in total current is due to both the
electrons and the vacancies.

A neuron is the opposite way round, see the left hand
side side of Figure10. The cell is always pumping ions
back and forth, so we have a change current due to an
influx of charge carrier. This causes a change in magnetic
flux and affects the total resistance (the values of the
memory and conservation functions for this system have
not yet been worked out). This change in resistance
causes a voltage spike. Thus, similarities can been seen
between neuronal voltage spikes and memristive current
spikes, in that they are the opposite way round with
respect to the circuit measurables, in that the memristor as
operated here is a current response to a voltage-sourced
circuit, and the neuron is a voltage response to a
current-sourced circuit. Essentially the shape of the
circuit variable, i.e. that which is being measured, is
qualitatively similar.
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Fig. 10: Scheme
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It has been suggested since 1976 that neurons are
memristive, but experimental evidence for neuron-like
spiking in memristors had not been collated or analyzed
in this way before. If this spiking behavior is an integral
result of memristance then it is evidence for the
suggestion that neurons may be memristive in action and
further understanding of memristor theory may further
the neurological understanding.

This work shows that to make neuromorphic
computers that compute with spikes memristors are an
obvious choice for this task as they spike naturally.
Interruption to the equilibrating current curves as shown
in Figure 1, by, for example, changing voltage, would
potentiate the connection by modifying the memristance
and could thus be used to do STDP with memristors
without requiring CMOS neurons to generate the spikes.

9 Conclusion

Memristors, when subject to a change in voltage, undergo
a current spike. This spike has been shown to be
reproducible and repeatable. The mem-con theory have
been shown to fit the time-dependent current behaviour
with only two fitting parameters (which come from the
missing material values in the theory) suggesting that this
I − t spike behaviour is an aspect of memristance.
Rewriting the mem-con theory as a difference equation
allows the formulation of a predictive equation to related
the equilibrated currents at different (and successive)
voltages. Application of the equilibration lifetime (τ) to
this equation highlights where the time-responsive
interactions might arise in a memristor switched faster
than the equilibration frequency.
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