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Abstract: Many problems in mathematical physics can be formulated as an equation of Lane-Emden type. There are many methods
for the solution of this equation. One of these methods is the Taylor matrix method. The only types of nonlinear equations that this
method has been applied so far are the Riccati and Abel equations. In thisstudy, an algorithm based on the Taylor matrix method is
proposed and applied to the nonlinear Lane-Emden equation with index-n.An example is also given.

Keywords: Lane-Emden equation, the Taylor matrix method, Nonlinear differential equations.

1 Introduction

The nonlinear differential equations are indispensable
tools for modeling many physical phenomenon such as
chemical reactions, spring-mass system and bending of
beams. These equations are also useful in ecology and
economics [1,2,3]. Therefore, the solution methods for
these equations have gained importance for engineers and
scientists. The aim of this paper is to solve the
Lane-Emden equation by making use of the Taylor matrix
method [4,5,6,7,8]. The method is used to solve a wide
class of algebraic, difference and partial differential
equations.
All studies made so far show that the Taylor matrix
method have been used only for the solution of linear
ordinary differential equations, Riccatti differential
equation [9] and Abel equation [10].
In this study Lane-Emden equation [11,12] is solved by
the Taylor matrix method. First we consider the following
equation

y//+
2
x

y/+ yn = 0,0< x < ∞ (1)

under the conditions
y(0) = 1, y/(0) = 0. Wheren > 0 is an integer.

y(0) = 1, y/(0) = 0.Where n > 0 is an integer. (2)

If we rewrite equation (1) as xy// + 2y/ + xyn = 0 and
denote the coefficients of the equation by A, B and C
respectively. Then we have

Ay//+By/+Cyn = 0.

The solution of equation (1) can be expressed

y(x) =
N

∑
n=0

y(n)(c)
n !

(x− c)n, (3)

where, y(x) is the solution of Eq.1, N is the degree of the
Taylor polynomial atx = c andy(n)(c), n = 0, 1, ... ,N are
the coefficients to be determined.

2 Analysis of the Taylor matrix method

We can put the series (3) in the matrix form

[y(x)] = XMY (4)

where
X=

[

1 (x− c) (x− c)2 · · · (x− c)N
]

M=















1
0! 0 0 · · · 0
0 1

1! 0 · · · 0
0 0 1

2! · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
N!















, Y=



















y0(c)
y1(c)
y2(c)
.
.
.

yn(c)



















.
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Now we consider the termAy// of Eq.(1). It can be written
as the truncated Taylor series expansions of degreeN at
x = c in the form

Ay// =
N

∑
n=0

1
n!

[A(x)y(x)](n)x=c (x− c)n. (5)

We can write

[Ay](n)x=c = ∑n
m=0

(

n
m

)

A(n−m)(c)y(m)(c) and if we

substitute it in (5) we get

Ay// =
N

∑
n=0

n

∑
m=0

1
n!

(

n
m

)

A(n−m)(c)y(m)(c)(x− c)(n)

and its matrix form

[

Ay//
]

= XAY (6)

where

A=





















0 0 A(0)(c)
0!0! · · · 0

0 0 A(1)(c)
1!0!

A(0)(c)
0!1! · · · 0

0 0 A(2)(c)
2!0!

A(1)(c)
1!1! · · · 0

...
...

...
. . .

...

0 0 A(N)(c)
N!0!

A(N−1)(c)
(N−1)!1! · · ·

A(2)(c)
2!(N−2)!





















.

By analogy we obtain

B(x)y/(x)=
N

∑
n=0

n

∑
m=0

1
n!

(

n
m

)

B(n−m)(c)y(m+1)(c)(x−c)(n),

(7)

C(x)Y1(x) =
N

∑
n=0

n

∑
m=0

1
n!

(

n
m

)

C(n−m)(c)Y (m)
1 (c)(x− c)(n)

(8)

C(x)Y2(x) =
N

∑
n=0

n

∑
m=0

1
n!

(

n
m

)

C(n−m)(c)Y (m)
2 (c)(x− c)(n)

(9)

.

.

.

C(x)Y (x) =
N

∑
n=0

n

∑
m=0

1
n!

(

n
m

)

C(n−m)(c)Y
(m)

(c)(x− c)(n)

(10)
where

Y1(x) = (y(x))2, Y (m)
1 (c) =

m

∑
i=0

(

m
i

)

y(m−i)(c)y(i)(c)

(11)
Y2(x) = (y(x))3, Y (1)

2 (c) = 3(y(c))2y(1)(c)

for m ≥ 2

Y (m)
2 (c) = 3

m−1

∑
i=0

(

m−1
i

)

y(m−i)(c)Y (i)
1 (c) (12)

Y (x) = (y(x))n, Y
(1)
(c) = n(y(c))n−1y(1)(c)

for m ≥ 2

Y
(m)

(c) = n
m−1

∑
i=0

(

m−1
i

)

y(m−i)(c)Y (i)
n−2(c) (13)

whereY (x) = Yn−1(x). And their matrix representations,
respectively

[

Ay//
]

= XAY (14)

[

By/
]

= XBY (15)

[Cyn] =
[

CY
]

= XCY (16)

where

B=























0
B(0)

1 (c)
0!0! 0 · · · 0

0
B(1)

1 (c)
1!0!

B(0)
1 (c)
0!1! · · · 0

...
...

...
. . .

...

0
B(N−1)

1 (c)
(N−1)!0!

B(N−2)
1 (c)

(N−2)!1! · · ·
B(0)

1 (c)
0!(N−1)!

0
B(N)

1 (c)
N!0!

B(N−1)
1 (c)

(N−1)!1! · · ·
B(1)

1 (c)
1!(N−1)!























, Y=











y(0)

y(1)

...
y(N)











,

C=





















C(0)(c)
0!0! 0 0 · · · 0

C(1)(c)
1!0!

C(0)(c)
0!1! 0 · · · 0

C(2)(c)
2!0!

C(1)(c)
1!1!

C(0)(c)
0!2! · · · 0

...
...

...
. . .

...
C(N)(c)

N!0!
C(N−1)(c)
(N−1)!1!

C(N−2)(c)
(N−2)!2! · · · C(0)(c)

0!N!





















,

Y=













Y (0)
1

Y (1)
1
...

Y (N)
1













.

Substituting the matrix forms (6)-(13) into the equation
Ay//+By/+Cyn = 0, then we have the matrix equation

(A+B)Y+ CY = O . (17)

The matrix Equation (17) is fundamental relation for Lane-
Emden equation (1).
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3 Solution by the Taylor matrix method

Consider

(A+B)Y+ CY = O (18)

and let

A+B = U =[ui j],C = [ci j], i, j = 0, 1, ..., N. (19)

The augmented matrix of Equation (19) becomes

Q = [U;C;O] (20)

where

U=









u00 u01 · · · u0N
u10 u11 · · · u1N

...
...

...
...

uN0 uN1 · · · uNN









, C=









c00 c01 · · · c0N
c10 c11 · · · c1N
...

...
...

...
cN0 cN1 · · · cNN









,

O=









0
0
...
0









.

In order to find the unknown Taylor coefficients,
replacing last two rows of matrices U, C and O with the
proper rows is necessary to satisfy the initial conditions
given by Eq.(2). Then, we have matrices

U∗=

















u00 u01 . . . u0N
u10 u11 . . . u1N

...
...

...
...

uN−20 uN−21 uN−22 uN−2N
1 0 . . . 0
0 1 . . . 0

















,

C∗=

















c00 c01 . . . c0N
c10 c11 . . . c1N
...

...
...

...
cN−20 cN−21 cN−22 cN−2N

0 0 . . . 0
0 0 . . . 0

















, O∗=

















0
0
...
0
1
0

















.

Then, the corresponding matrix equation is

U∗Y + C∗Y = O∗ (21)

From the system (21), the unknown Taylor coefficients
y(n)(c) (n = 0, 1, · · · , N) can be determined. If they
substituted in (3) we get the Taylor polynomial solution.
The accuracy of this solution can be checked as follows
[9]:

If the solutiony(x) and its derivatives are substituted
in Eq. (1), the resulting equation must be satisfied
approximately; that is, forx = xr ∈ [a,b]

E(xr) = |A(xr)y′′(xr)+B(xr)y′(xr)+C(xr)yn(xr)| ∼= 0
or

E(xr)≤ 10−l , (lr is any positive integer).
If max(10−lr) = 10−l is prescribed, than the truncation
limit N is increased until the difference|E(xr)| at each of
the points becomes smaller than 10−l .

4 Numerical example

Considerxy// + 2y/ + xy5 = 0, over [0,1] with y(0)=1,
y/(0) = 0.

The exact solution of this problem isy = (1+ x2

3 )
− 1

2 . If we
approximate the solutiony(x) by the Taylor Matrix method
with N=5 we find that

A =















0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1

2 0
0 0 0 0 0 1

6
0 0 0 0 0 0















B =















0 2 0 0 0 0
0 0 2 0 0 0
0 0 0 1 0 0
0 0 0 0 1

3 0
0 0 0 0 0 1

12
0 0 0 0 0 0















C =















0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1

2 0 0 0
0 0 0 1

6 0 0
0 0 0 0 1

24 0















WhereO=















0
0
0
0
0
0















, Y=

















y(0)(0)
y(1)(0)
y(2)(0)
y(3)(0)
y(4)(0)
y(5)(0)

















andY=





















Y (0)
1 (0)

Y (1)
1 (0)

Y (2)
1 (0)

Y (3)
1 (0)

Y (4)
1 (0)

Y (5)
1 (0)





















.

Then, the matrix equationU∗Y +C∗Y = Q∗ becomes














0 2 0 0 0 0
0 0 3 0 0 0
0 0 0 2 0 0
0 0 0 0 5

6 0
1 0 0 0 0 0
0 1 0 0 0 0































y(0)(0)
y(1)(0)
y(2)(0)
y(3)(0)
y(4)(0)
y(5)(0)

















+















0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1

2 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0































Y (0)(0)
Y (1)(0)
Y (2)(0)
Y (3)(0)
Y (4)(0)
Y (5)(0)

















=















0
0
0
0
1
0















.

From the system obtained above, the coefficientsy(n)(0)
(n = 0, 1, 2, 3, 4,5) are found asy(2)(0) = −1

3, y(3)(0) =
0, y(4)(0) = 1, y(5)(0) = 0. Therefore the solution is

y = 1−
1
6

x2+
1
24

x4.

Numerical results obtained forxy// + 2y/ + xy5 = 0 is
given in the following table.

xi Taylor MatrixMethod Exact Solution Absolute Error
0.0 1 1 0
0.2 0.9934 0.99339 7.3E-07
0.4 0.9744 0.97435 4.5E-05
0.6 0.9454 0.94491 0.00049
0.8 0.9104 0.90784 0.00256
1.0 0.8750 0.86602 0.00897
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5 Conclusion

In this paper we have presented a formula given by (11),
(12) and (13) from which one can compute mth order
derivative of yn. The Taylor matrix method avoids the
difficulties and massive computational work by
determining the analytic approximate solution and
provides a reliable technique that requires less work and
highly accurate results if compared with the traditional
techniques and existing numerical methods. A
considerable advantage of the method is also that the
Taylor coefficients of the solution are found very easily
by using the computer programs.
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