
Appl. Math. Inf. Sci.7, No. 4, 1333-1340 (2013) 1333

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/070409

Singular solitons and bifurcation analysis of quadratic
nonlinear Klein-Gordon equation

Ming Song1,2, Zhengrong Liu1, Essaid Zerrad3 and Anjan Biswas4,5,∗

1Department of Mathematics, South China University of Technology, Guangzhou-510640, CHINA
2Department of Mathematics, Yuxi Normal University, Yuxi-653100, CHINA
3Department of Physics and Engineering, Delaware State University, Dover, DE 19901-2277, USA
4Department of Mathematical Sciences, Delaware State University, Dover, DE 19901-2277, USA
5Department of Mathematics, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia

Received: 6 Jan. 2013, Revised: 23 Feb. 2013, Accepted: 18 Mar.2013
Published online: 1 Jul. 2013

Abstract: This paper studies the Klein-Gordon equation with quadratic nonlinearity. The ansatz approach is used to first obtain the
singular soliton solution of the equation along with the corresponding domain restriction. The bifurcation analysis is also carried out.
By this analysis, a few more traveling wave solutions are retrieved. The bifurcation phase portraits are also given.

Keywords: Bifurcation method, Klein-Gordon equation (KGE), traveling wave solution

1 Introduction

The Klein-Gordon equation (KGE) is one of the most
important equations that is studied in the area of Quantum
Physics. KGE appears in relativistic Quantum Mechanics.
Therefore this equation is studied globally by several
Physicists and Mathematicians. There are several forms
of nonlinearity that goes with KGE. This paper will
address the quadratic nonlinearity. In the past, various
mathematicians and physicists have considered this
equation in their research study and thus many interesting
and useful results have been reported in several journals.
This paper is going to address this KGE from an
integration point of view.

There are several approaches to integrating any
nonlinear evolution equation (NLEE) [1,2,3,4,5,6,7,8,9,
10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,
27,28]. Some of the familiar techniques that are
commonly visible all across the research board are
variational iteration method, Adomian decomposition
method [1], Lie symmetry approach [4,5], ansatz method
[21,22] and of course numerical simulations [13], just to
name a few. KGE, which falls in the category of NLEE is,
going to be integrated in this paper by using a couple of
approaches. The wave solutions are of interest in this
paper. First, the ansatz approach will be employed to

obtain the singular solitons. This approach will lead to a
domain restriction that will be listed. Continuing on, the
bifurcation analysis will be carried out for this equation
and thus the phase portraits will be exhibited and
analyzed. This will lead to a few more wave solutions to
this equation. Such results will be definitely useful in the
area of Quantum Mechanics.

2 Governing Equation

The KGE with quadratic law nonlinearity that will be
studied in this paper is given by

qtt − k2qxx = aq+bq2
. (1)

In (1), q(x, t) represents the dependent variable or the
wave function while the independent variablesx andt are
the spatial and temporal variables respectively. On the
right hand side, is the quadratic form with constant
real-valued coefficientsa andb.

This equation (1) was studied earlier on several
occasions. The soliton perturbation theory was applied to
it and the adiabatic parameter dynamics was obtained [2,
3,6]. The exact soliton solution was also obtained for the
perturbed KGE with quadratic nonlinearity by the aid of
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ansatz method as well as traveling wave hypothesis [4,8,
12]. Additionally, the semi-inverse variational principle
was utilized to obtain an analytical soliton solution to the
perturbed KGE with quadratic nonlinearity [9,11]. In all
of these occasions, it is the solitary wave that was studied.
In no cases, the singular soliton was taken into
consideration.

2.1 Singular Soliton Solution

The starting hypothesis for the singular soliton solution is
given by

q(x, t) = Acschpτ , (2)

where

τ = B(x− vt). (3)

In (2), the constant parameters areA andB while v is the
velocity of the soliton. Now, substituting (2) into (1) gives
(

v2
− k2) p2AB2cschpτ +

(

v2
− k2) p(p

+ 1)AB2cschp+2τ = aAcschpτ +bA2csch2pτ . (4)

It is well known that the solitons are the outcome of a
delicate balance between dispersion and nonlinearity.
Therefore by the aid of this balancing principle, equating
the exponents 2p andp+2 implies

2p = p+2, (5)

that gives

p = 2, (6)

Now the linearly independent functions in (4) are cschp+ jτ
for j = 0,2. Therefore, setting their respective coefficients
to zero implies

A =
3a
2b

, (7)

and

B =
1
2

√

a
v2− k2 . (8)

Now (8) poses the restriction

a
(

v2
− k2)

> 0. (9)

Hence, finally, the singular 1-soliton solution to (1) is
given by

q(x, t) = Acsch2[B(x− vt)], (10)

where the parametersA and B are given by (7) and (8)
respectively. The domain restriction that is given by (9)
must also hold in order for the singular soliton to exist.

3 Bifurcation Analysis

In this section, the aim is to study the traveling wave
solutions and their relations for (1) by using the
bifurcation method and qualitative theory of dynamical
systems[15,16,17,18,19,20]. Through some special
phase orbits, we obtain many smooth periodic wave
solutions and periodic blow-up solutions. Their limits
contain singular solitary wave solutions, periodic singular
wave solutions and solitary wave solutions.

3.1 Phase Portraits and Qualitative Analysis

We assume that the traveling wave solutions of (1) is of the
form

q(x, t) = ϕ(ξ ), ξ = x− ct, (11)

we have

(c2
− k2)ϕ ′′ = aϕ +bϕ2

. (12)

Letting ϕ ′ = y, then we get the following planar system
{

dϕ
dξ = y,
dy
dξ = a

c2−k2 ϕ + b
c2−k2 ϕ2.

(13)

Obviously, the above system (13) is a Hamiltonian system
with Hamiltonian function

H(ϕ,y) = y2
−

a
c2− k2 ϕ2

−
2b

3(c2− k2)
ϕ3

. (14)

In order to investigate the phase portrait of (13), set

f (ϕ) =
a

c2− k2 ϕ +
b

c2− k2 ϕ2
. (15)

Obviously, f (ϕ) has two zero points,ϕ0 andϕ1, which are
given as follows

ϕ0 = 0, ϕ1 =−
a
b
. (16)

Letting(ϕi,0) be one of the singular points of system (13),
then the characteristic values of the linearized system of
system (13) at the singular points(ϕi,0) are

λ± =±

√

f ′(ϕi). (17)

From the qualitative theory of dynamical systems, we
know that

(I) If f ′(ϕi)> 0, (ϕi,0) is a saddle point.
(II) If f ′(ϕi)< 0, (ϕi,0) is a center point.
(III) If f ′(ϕi) = 0, (ϕi,0) is a degenerate saddle point.

Therefore, we obtain the phase portraits of system (13) in
Fig. 1.
Let

H(ϕ,y) = h, (18)

whereh is Hamiltonian.
Next, we consider the relations between the orbits of (13)
and the Hamiltonianh.
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Fig. 1: The Bifurcation phase portraits of system (13), (I) c2
−

k2 > 0, (II) c2
− k2 < 0

Set

h∗ = H(ϕ1,0) =−
a3

3b2(c2− k2)
. (19)

According to Fig.1, we get the following propositions.
Proposition 1. Suppose thata > 0, b > 0 andc2

− k2 > 0,
we have

(I) When h > 0 or h < h∗, system (13) does not any
closed orbit.

(II) When h = 0, system (13) has a homoclinic orbit
Γ1.

(III) When h∗ < h < 0, system (13) has a periodic orbit
Γ2 and a special orbitΓ3.

(IV) When h = h∗, system (13) has a special orbitΓ4.
Proposition 2. Suppose thata < 0, b > 0 andc2

− k2 > 0,
we have

(I) When h < 0 or h > h∗, system (13) does not any
closed orbit.

(II) When h = h∗, system (13) has a homoclinic orbit
Γ5.

(III) When 0< h < h∗, system (13) has a periodic orbit
Γ6 and a special orbitΓ7.

(IV) When h = 0, system (13) has a special orbitΓ8.
From the qualitative theory of dynamical systems, we
know that a smooth solitary wave solution of a partial
differential system corresponds to a smooth homoclinic
orbit of a traveling wave equation. Similarly, a periodic
orbit of a traveling wave equation corresponds to a
periodic traveling wave solution of a partial differential
system. According to above analysis, we have the
following propositions.
Proposition 3. If a > 0, b > 0 andc2

− k2 > 0, we have
(I)Whenh = 0, (1) has a solitary wave solution and a

singular solitary solution (corresponding to the homoclinic
orbit Γ1 in Fig. 1).

(II) Whenh∗ < h < 0, (1) has a periodic wave solution
and a singular wave solution(corresponding to the periodic
orbit Γ2 and the special orbitΓ3 in Fig. 1).

(III) When h = h∗, (1) has a periodic singular wave
solution (corresponding to the special orbitΓ4 in Fig. 1).
Proposition 4. If a < 0 andb > 0, we have

(I) Whenh = h∗, (1) has a solitary wave solution and a
singular solitary solution (corresponding to the homoclinic
orbit Γ5 in Fig. 1).

(II) When 0< h < h∗, (1) has a periodic wave solution
and a singular wave solution(corresponding to the periodic
orbit Γ6 and the special orbitΓ7 in Fig. 1).

(III) When h = 0, (1) has a periodic singular wave
solution (corresponding to the special orbitΓ8 in Fig. 1).

3.2 Traveling Wave Solutions and Their
Relations

Firstly, we will obtain the explicit expressions of traveling
wave solutions for the (1) whena > 0, b > 0 andc2

−k2 >

0.
(I) From the phase portrait, we note that there is a
homoclinic orbit Γ1 passing the point (0,0). In
(ϕ,y)-plane the expressions of the orbits are given as

y =±

√

2b
3(c2− k2)

ϕ2(ϕ −ϕ2), (20)

whereϕ2 =−
3a
2b .
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Substituting (20) into dϕ
dξ = y and integrating them along

Γ1,we have

±

∫ ϕ

ϕ2

1
√

s2(s−ϕ2)
ds =

√

2b
3(c2− k2)

∫ ξ

0
ds, (21)

±

∫ ∞

ϕ

1
√

s2(s−ϕ2)
ds =

√

2b
3(c2− k2)

∫ ξ

0
ds. (22)

Completing above integrals we obtain

ϕ =−
3a
2b

(

sech
1
2

√

a
c2− k2 ξ

)2

, (23)

ϕ =
3a
2b

(

csch
1
2

√

a
c2− k2 ξ

)2

. (24)

Noting that (11), we get the following solitary wave
solution

q1(x, t) =−
3a
2b

(

sech
1
2

√

a
c2− k2 (x− ct)

)2

, (25)

and singular solitary solution

q2(x, t) =−
3a
2b

(

csch
1
2

√

a
c2− k2 (x− ct)

)2

. (26)

(II) From the phase portrait, we note that there are a
periodic orbitΓ2 and a special orbitΓ3 passing the points
(ϕ3,0), (ϕ4,0) and(ϕ5,0). In (ϕ,y)-plane the expressions
of the orbits are given as

y = ±

√

a
c2− k2 ϕ2+

2b
3(c2− k2)

ϕ3+h

= ±

√

2b(ϕ −ϕ3)(ϕ −ϕ4)(ϕ −ϕ5)

3(c2− k2)
, (27)

whereϕ3 < ϕ4 < ϕ5.
Substituting (27) into dϕ

dξ = y and integrating them along
the two orbitsΓ2 andΓ3, it follows that

±

∫ ϕ

ϕ3

1
√

(s−ϕ3)(s−ϕ4)(s−ϕ5)
ds

=

√

2b
3(c2− k2)

∫ ξ

0
ds, (28)

±

∫ +∞

ϕ

1
√

(s−ϕ3)(s−ϕ4)(s−ϕ5)
ds

=

√

2b
3(c2− k2)

∫ ξ

0
ds. (29)

Completing above integrals we obtain

ϕ = ϕ3+(ϕ4

− ϕ3)

(

sn

(

1
2

√

2b(ϕ5−ϕ3)

3(c2− k2)
ξ ,
√

ϕ4−ϕ3

ϕ5−ϕ3

))2

, (30)

ϕ = ϕ3+
(ϕ5−ϕ3)

(

sn
(

1
2

√

2b(ϕ5−ϕ3)
3(c2−k2)

ξ ,
√

ϕ4−ϕ3
ϕ5−ϕ3

))2 . (31)

Noting that (11), we get the following periodic wave
solution

q3(x, t) = ϕ3+(ϕ4−ϕ3)

(

sn

(

1
2

√

2b(ϕ5−ϕ3)

3(c2− k2)
(x− ct),

√

ϕ4−ϕ3

ϕ5−ϕ3

))2

, (32)

and singular wave solution

q4(x, t) = ϕ3

+
(ϕ5−ϕ3)

(

sn
(

1
2

√

2b(ϕ5−ϕ3)
3(c2−k2)

(x− ct),
√

ϕ4−ϕ3
ϕ5−ϕ3

))2 .(33)

(III)From the phase portrait, we note that there is a special
orbit Γ4, which has the same hamiltonian with that of the
center point(ϕ1,0). In (ϕ,y)-plane the expressions of the
heterclinic orbits are given as

y =±

√

2b
3(c2− k2)

(ϕ −ϕ1)2(ϕ −ϕ6). (34)

whereϕ6 =
3a
2b .

Substituting (34) into dϕ
dξ = y and integrating them along

the special orbitΓ4 , it follows that

±

∫ +∞

ϕ

1

(s−ϕ1)
√

(s−ϕ6)
ds =

√

2b
3(c2− k2)

∫ ξ

0
ds. (35)

Completing above integral we obtain

ϕ =
a
2b

(

1+3

(

cot
1
2

√

a
c2− k2 ξ

)2
)

. (36)

Noting that (11), we get the following periodic singular
wave solution

q5(x, t) =
a
2b

(

1+3

(

cot
1
2

√

a
c2− k2 (x− ct)

)2
)

. (37)

Secondly, we will obtain the explicit expressions of
traveling wave solutions for the (1) whena < 0, b > 0 and
c2

− k2 > 0.
(I) From the phase portrait, we note that there is a
homoclinic orbit Γ5 passing the point (ϕ1,0). In
(ϕ,y)-plane the expressions of the orbits are given as

y =±

√

2b
3(c2− k2)

(ϕ −ϕ1)2(ϕ −ϕ7), (38)

whereϕ7 =
3a
2b .

Substituting (38) into dϕ
dξ = y and integrating them along

Γ5, we have

±

∫ ϕ

ϕ7

1
√

(s−ϕ1)2(s−ϕ7)
ds =

√

2b
3(c2− k2)

∫ ξ

0
ds, (39)
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±

∫ ∞

ϕ

1
√

(s−ϕ1)2(s−ϕ7)
ds =

√

2b
3(c2− k2)

∫ ξ

0
ds. (40)

Completing above integrals we obtain

ϕ =
a
2b

(

1−3

(

tanh
1
2

√

−
a

c2− k2 ξ
)2
)

, (41)

ϕ =
a
2b

(

1−3

(

coth
1
2

√

−
a

c2− k2 ξ
)2
)

. (42)

Noting that (11), we get the following solitary wave
solution

q6(x, t) =
a
2b

(

1−3

(

tanh
1
2

√

−
a

c2− k2 (x− ct)

)2
)

,(43)

and singular solitary wave solution

q7(x, t) =
a
2b

(

1−3

(

coth
1
2

√

−
a

c2− k2 (x− ct)

)2
)

.(44)

(II) From the phase portrait, we note that there are a
periodic orbitΓ6 and a special orbitΓ7 passing the points
(ϕ8,0), (ϕ9,0) and (ϕ10,0). In (ϕ,y)-plane the
expressions of the orbits are given as

y = ±

√

a
c2− k2 ϕ2+

2b
3(c2− k2)

ϕ3+h

= ±

√

2b(ϕ −ϕ8)(ϕ −ϕ9)(ϕ −ϕ10)

3(c2− k2)
, (45)

whereϕ8 < ϕ9 < ϕ10.
Substituting (45) into dϕ

dξ = y and integrating them along
the two orbitsΓ6 andΓ7, it follows that

±

∫ ϕ

ϕ8

1
√

(s−ϕ8)(s−ϕ9)(s−ϕ10)
ds

=

√

2b
3(c2− k2)

∫ ξ

0
ds, (46)

±

∫ +∞

ϕ

1
√

(s−ϕ8)(s−ϕ9)(s−ϕ10)
ds

=

√

2b
3(c2− k2)

∫ ξ

0
ds. (47)

Completing above integrals we obtain

ϕ = ϕ8+(ϕ9

− ϕ8)

(

sn

(

1
2

√

2b(ϕ10−ϕ8)

3(c2− k2)
ξ ,
√

ϕ9−ϕ8

ϕ10−ϕ8

))2

,(48)

ϕ = ϕ8+
(ϕ10−ϕ8)

(

sn
(

1
2

√

2b(ϕ10−ϕ8)
3(c2−k2)

ξ ,
√

ϕ9−ϕ8
ϕ10−ϕ8

))2 . (49)

Noting that (11), we get the following periodic wave
solution

q8(x, t) = ϕ8+(ϕ9−ϕ8)

(

sn

(

1
2

√

2b(ϕ10−ϕ8)

3(c2− k2)
(x− ct),

√

ϕ9−ϕ8

ϕ10−ϕ8

))2

. (50)

and singular wave solution

q9(x, t) = ϕ8

+
(ϕ10−ϕ8)

(

sn
(

1
2

√

2b(ϕ10−ϕ8)
3(c2−k2)

(x− ct),
√

ϕ9−ϕ8
ϕ10−ϕ8

))2 . (51)

(III)From the phase portrait, we note that there is a special
orbit Γ8, which has the same hamiltonian with that of the
center point(0,0). In (ϕ,y)-plane the expressions of the
special orbit are given as

y =±

√

2b
3(c2− k2)

ϕ2(ϕ −ϕ11), (52)

whereϕ11 =−
3a
2b .

Substituting (52) into dϕ
dξ = y and integrating them along

the special orbitΓ8, it follows that

±

∫ +∞

ϕ

1

s
√

(s−ϕ11)
ds =

√

2b
3(c2− k2)

∫ ξ

0
ds. (53)

Completing above integral we obtain

ϕ =−
3a
2b

(

1+

(

cot
1
2

√

−
a

c2− k2 ξ
)2
)

. (54)

Noting that (11), we get the following periodic singular
wave solution

q10(x, t) =−
3a
2b

(

1+

(

cot
1
2

√

−
a

c2− k2 (x− ct)

)2
)

.(55)

Thirdly, we will give that relations of the traveling wave
solutions.

(1) Letting h → 0−, it follows that ϕ3 → −
3a
2b ,

ϕ4 → 0, ϕ5 → 0, ϕ4−ϕ3
ϕ5−ϕ3

→ 1 and

sn(1
2

√

a
c2−k2 (x − ct),1) = tanh1

2

√

a
c2−k2 (x − ct).

Therefore, we obtain q3(x, t) → q1(x, t) and
q4(x, t)→ q2(x, t).

(2) Letting h → h∗+, it follows that ϕ3 → −
a
b ,

ϕ4 → −
a
b , ϕ5 →

a
2b , ϕ4−ϕ3

ϕ5−ϕ3
→ 0 and

sn(1
2

√

a
c2−k2 (x − ct),1) = sin1

2

√

a
c2−k2 (x − ct).

Therefore, we obtainq4(x, t)→ q5(x, t).
(3) Letting h → h∗−, it follows that ϕ8 →

a
2b ,

ϕ9 → −
a
b , ϕ10 → −

a
b , ϕ9−ϕ8

ϕ10−ϕ8
→ 1 and

sn(1
2

√

−
a

c2−k2 (x − ct),1) = tanh1
2

√

−
a

c2−k2 (x − ct).

Therefore, we obtain q8(x, t) → q6(x, t) and
q9(x, t)→ q7(x, t).
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(4) Letting h → 0+, it follows that ϕ8 → 0, ϕ9 → 0,
ϕ10 → −

3a
2b , ϕ9−ϕ8

ϕ10−ϕ8
→ 0 and

sn(1
2

√

−
a

c2−k2 (x − ct),1) = sin1
2

√

−
a

c2−k2 (x − ct).

Therefore, we obtainq9(x, t)→ q10(x, t).
Finally, we will show that the periodic wave solution
q3(x, t) evolute into the solitary wave solutionq1(x, t)
when the Hamiltonianh → 0− (corresponding to the
changes of phase orbits of Fig.1 as h varies). We take
some suitable choices of the parameters, such as

a = 2, b = 1, c = 2, k = 1, (56)

as an illustrative sample and draw their plots (see Fig.2).
Remark: One may find that we only consider two cases
whena > 0,b > 0,c2

−k2 > 0 anda < 0,b > 0,c2
−k2 > 0

in Propositions 1-4. In fact, we may get exactly the similar
conclusions in the other cases.

4 Conclusions

This paper studied the KGE with quadratic law
nonlinearity. The singular solitary wave solution was first
obtained directly by the ansatz method. Subsequently, the
bifurcation analysis of the dynamical system was carried
out, where the dynamical system of the KGE was
obtained from the traveling wave hypothesis. This
bifurcation analysis additionally obtained the phase
portraits of the dynamical system. Furthermore, several
nonlinear wave solutions were extracted from this
analysis. These are the solitary wave solutions,
topological solitons, cnoidal wave solutions, singular
periodic waves and others. These solutions are going to be
extremely useful in carrying out further investigation for
this equation. For example, in future, the perturbed KGE
with quadratic nonlinearity will be investigated. There are
various other approaches that will be implemented to
integrate these proposed extended models. The results of
those researches will be published elsewhere.
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