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Abstract: We show that the interaction between a movable mirror with a quantized field that interacts with a two-level atom may be
simplified via a transformation that involves Susskind-Glogower operators (SGO). By using this transformation it is easy to show that
we can cast the Hamiltonian, after a unitary transformation, into a Hamiltonianthat is equivalent to the ion-laser Hamiltonian. We
would like to stress that the transformation in terms of SGO already simplifies enough the Hamiltonian in the sense that, in an exact
way, it “eliminates” one of the three-subsystems, namely the quantized field.
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1. Introduction

Recently, special attention has been devoted to a system
consisting of a cavity field and a movable mirror [1,2].
This is due to the fact that for such a system we can
produce non-classical states [3], particularly the
macroscopic superposition of at least two coherent states,
i.e. Schr̈odinger cat-states. The concept of superposition
of states plays a fundamental role in understanding the
foundations of quantum mechanics, this is why the
generation of non-classical states, such as squeezed states
[4], and the particularly important limit of extreme
squeezing, i.e. Fock or number states [5], has been widely
studied in several systems. It is known that a non-linear
interaction can generate Schrödinger cat-states. The
non-linear interaction used to generate such states is the
one produced by a Kerr medium [6,7] that corresponds to
a quadratic Hamiltonian in the number field operator [8].
Our main motivation to make the field-mirror system
interact with an atom is to look for the possibility to
extract information about the mirror state by later
measuring atomic properties, as it is well known that
several quasiprobability reconstruction techniques [9,10]
for the quantized field [11] or the vibrational motion of an
ion [12,13], rely on the measurement of atomic
properties. It would be possible also to reconstruct the

autocorrelation function for the mirror state in this form
[14]. Therefore, the passage of atoms through such
systems, could give us information, not only about the
states of the mirror or field, but also about their
interaction. This is, the passage of a two-level atom
through a cavity with a movable mirror may give us
information about the entanglement between mirror and
field. The purpose of this contribution is not to study this
possibility, however, but to show how the total system
may be simplified, by several rotations that can produce a
well known Hamiltonian, namely the ion-laser
Hamiltonian, in such a way that knowledge form the
techniques used in this interaction may be borrowed to
produce solutions in the total atom-field-mirror system.

2. Interaction between the cavity and the
mirror

The interaction between an electromagnetic field and a
movable mirror (treated quantum mechanically) has a
relevant Hamiltonian given by [8] (we seth̄= 1)

H f m = ωa†a+νb†b−ga†a(b†+b), (1)
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wherea anda† are the annihilation and creation operators
for the cavity field, respectively. The field frequency isω.
b andb† are the annihilation and creation operators for the
mirror oscillating at a frequencyν and

g=
ω
L

√

h̄
2mν

, (2)

with L andm the length of the cavity and the mass of the
movable mirror.

3. Mirror-Field-Atom interaction

If we pass a two-level atom through a cavity with a
movable mirror as the one described by equation (1), we
have have to add the free Hamiltonian for the atom and
the interaction with the quantized field, so we obtain [15]

Ha f m =
ω0

2
σz+λ

(

aσ++a†σ−
)

+ωa†a+νb†b

− ga†a(b†+b), (3)

whereλ is the atom-field interaction constant,ω0 is the
atomic transition frequency andσ− (σ+) is the lowering
(raising) operator for the atom, with[σ+,σ−] = 2σz. We
will pass from this notation to matrix notation at
convenience. In matrix form the Pauli matrices read

σz =

(

1 0
0 −1

)

, σ− =

(

0 0
1 0

)

, σ+ =

(

0 1
0 0

)

.

(4)
We consider the on-resonant interaction between the

field an the atom, i.e.ω = ω0, and pass to an interaction
picture, taking advantage that the operator
ω(a†a+ 2σz/2) commutes with all the other operators
involved in the Hamiltonian, to obtain

H = νN̂+ χn̂
(

b+b†)+λ
(

aσ++a†σ−
)

. (5)

The quantities ˆn = a†a and N̂ = b†b are the number
operators for the field and mirror, respectively. We will
use the Susskind-Glogower operators [16]

V =
1√

n̂+1
a, V† = a† 1√

n̂+1
, (6)

that satisfy the commutation relation[V,V†] = |0〉〈0| to
transform the above Hamiltonian with the following
matrix operator [17]

M =

(

V 0
0 1

)

, M† =

(

V† 0
0 1

)

, (7)

such that we can rewrite the interaction Hamiltonian as

H = MHVM† (8)

where

HV =

(

νN̂+ χ(n̂−1)
(

b+b†
)

λ
√

n̂
λ
√

n̂ νN̂+ χn̂
(

b+b†
)

)

. (9)

AlthoughV†V = 1−|0〉〈0|, that makesM†M 6= 1, i.e.
M a nonunitary matrix, it is not difficult to show that

Hk = MHk
VM†, (10)

allowing us to write the evolution operator as

U (t) = e−iHt = Me−iHV tM†. (11)

We then have achieved the following: it has been
eliminated from Hamiltonian (9) the noncommuting field
operators, such that this Hamiltonian may be viewed as a
two-subsystems Hamiltonian, instead of the
three-subsystems one with which we started, i.e.
Hamiltonian (4). Therefore realizing a relevant
simplification as the field operators (just number
operators) may be treated from now on as classical
numbers. Therefore, we have effectively and exactly
eliminated one sub-system, namely the field, from the
initial problem.

We now transform the HamiltonianHV with

D =

(

Db
[ χ

ν (n̂−1)
]

0
0 Db

( χ
ν n̂
)

)

, (12)

with

Db(εn̂) = eε n̂(b†−b), (13)

such thatH̃ = D†HVD is written as

H̃ =

(

νN̂− χ2(n̂−1)2

ν λ
√

n̂Db(χ/ν)
λ
√

n̂D†
b(χ/ν) νN̂− χ2n̂2

ν

)

, (14)

that may be further written as

H̃ =

(

νN̂+ χ2(n̂−1/2)
ν λ

√
n̂Db(χ/ν)

λ
√

n̂D†
b(χ/ν) νN̂− χ2(n̂−1/2)

ν

)

+ F(n̂)12×2, (15)

with F(n̂) = χ2

2ν (2n̂2 − 2n̂+ 1) and 12×2 the 2× 2 unity
matrix.

The above Hamiltonian is equivalent to ion-laser
interaction Hamiltonian

Hion =

(

νt n̂+ δ
2 Ω D̂(iη)

Ω D̂† (iη) νt n̂− δ
2

)

(16)

except for the termF(n̂)12×2, that represents an overall
phase. In the above Hamiltonian,νt is the (ion) trap
frequency,δ is the detuning between the laser field and
the ion transition frequencies andΩ is the Rabi
frequency. The number operator ˆn represent the harmonic
oscillator Hamiltonian (the ion free oscillation) of the ion,
and D is the displacement operator in the vibrational
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variables. Both Hamiltonians are equivalent simply by
identifying

ν → νt ,
N̂ → n̂,
2χ2(n̂−1/2)

ν → δ
λ
√

n̂→ Ω ,

and

Db(χ/ν)→ D(iη).

Hamiltonian (15) being similar to (5), means that both,
mirror-atom-field and ion-laser interactions are
equivalent, and therefore methods of solution and
generations of non-classical states from one interaction
may be borrowed by the other interaction.

4. Exact eigenstates

Let us return now to the Hamiltonian in equation (15). We
can construct anansatzthat allows the determination of
exact eigenstates of this system, provided certain relations
are satisfied between the parametersν ,χ andλ . In order
to motivate our general solution, let us consider first the
possibility of finding a state of the form (we consider
simply the mirror and atom states as the field state simply
multiplies the eigenstate)

|ψ〉 = |e〉(c0 |0〉+c1 |1〉)+ |g〉 |φ〉 (17)

≡
(

c0 |0〉+c1 |1〉
|φ〉

)

,

for each eigenstate of the mirror operator,N̂|n〉 = n|n〉.
We have used in the above equation a notation where the
atomic elements are written out explicitly (e.g.,|e〉 =
(1

0

)

). Let us now see whether the eigenvalue equation

H̃ |ψ〉= E |ψ〉 , (18)

can be satisfied. Equation (17) shows that it is required|φ〉
be of the form

|φ〉= D†
b (χ)(d0 |0〉+d1 |1〉) = d0 |−χ〉+d1 |−χ ;1〉 ,

(19)
where|−χ〉 is a coherent state and|β ;k〉 ≡ D̂(β ) |k〉 is a
displaced number state [18]. We thus require

H̃ |ψ〉= (20)
(

(β1 |0〉+β2 |1〉)
(β3 |−χ〉+β4 |−χ ;1〉)

)

.

with
(

β1 = c0
χ2(n̂−1/2)

ν +λ
√

n̂d0

)

β2 = λ
√

n̂d1+c1

(

ν + χ2(n̂−1/2)
ν

)

β3 = c0λ
√

n̂+d0

(

ν n̂− χ2(n̂−1/2)
ν

)

and

β4 = c1λ
√

n̂++d1

(

ν n̂− χ2(n̂−1/2)
ν

)

.

Now, by using the well-known fact that
D†

b (β )bDb (β ) = a + β [19], it is easy to show that
displaced number states satisfy the recursion relation

N̂ |β ;k〉 = (|β |2+k) |β ;k〉+β
√

k+1|β ;k+1〉
+ β ∗√k|β ;k−1〉 . (21)

Substituting then equations (17) and (21) into equation
(18) gives the following eigenstate conditions:

d1 = 0; c0 =
λ
√

n̂
ν

; c1 =
χν

λ
√

n̂

E = ν +
χ2(n̂−1/2)

ν
, (22)

which hold howeveronly if the parametersλ ,ν ,χ satisfy
the additional constraint

(

λ
√

n̂
ν

)2

+ χ2/ν2 = 1+
χ2(n̂−1/2)

ν2 . (23)

Under these conditions the state

∣

∣ψ+
ion

〉

= |e〉
(

λ
√

n̂
ν

|0〉+ χν
λ
√

n̂
|1〉
)

+ |g〉 |−χ〉 . (24)

is an (unnormalised) eigenstate of̃H with eigenvalue

ν + χ2(n̂−1/2)
ν . Condition (23) means that theansatzin eq.

(17) does not always succeed, as only two of the three
parametersλ

√
n̂,ν ,χ can be chosen independently.

Nevertheless, the existence of solutions satisfying
equation (17) leads us naturally to seek for other solutions
using similar or slightly generalisedeigenstates.

4.1. More general eigenstates

One can easily generalize Eq. (24) to obtain a more general
eigenstate for̃H. It can be written as

|ψ〉= λ
√

n̂
ν

m+1

∑
n=0

cn |n〉 |e〉+
m

∑
n=0

dn |−χ ,n〉 |g〉 ,

where

cn =

{

1
m+1−ndn;0≤ n≤ m

χ ν2

λ 2n̂

√
n+1dn;n= m+1

and thedn coefficients satisfy
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εm −χν
χν εm−1 −χν

√
2

χν
√

2
...

...
.. . ε2 −χν

√
m−1

χν
√

m−1 ε1

















×













d0

...

dm













= 0

where

εm = ν
(

m+1− χ/ν2)+
χ2(n̂−1/2)

ν
− λ 2n̂

(m+1)ν
.

The corresponding eigenvalue is(m+1)ν + χ2(n̂−1/2)
ν .

Note that the vector of coefficients(d0, ...,dm) is an
eigenvector of this tridiagonal matrix with zero
eigenvalue. This is only possible if detM = 0, which
imposes a constraint onλ

√
n̂,χ ,ν . This is the

generalisation of equation (23).

5. Conclusions

We have shown that the Hamiltonian of a quantized field
interacting simultaneously with a two-level atom and a
movable mirror is equivalent to the ion-laser Hamiltonian.
In order to produce this equivalency we have used a set of
transformations, the main one, being a transformation that
involves Susskind-Glogower operators, equation (7). This
transformation, besides the fact that does not involve
approximations, allows us to simplify the problem by
“eliminating” the field operators to leave an effective
interaction between atom and mirror. The Hamiltonian
then may be further unitarily transformed to obtain an
ion-laser-like interaction. It is important to note that these
kind of systems now may be modelled in optical lattices
[20,21] and quasiprobability distribution functions may
be reconstructed in optical physics [22].

References

[1] M. Bhattacharya and P. Meystre. Trapping and cooling a
mirror to its quantum mechanical ground state. Phys. Rev.
Lett. 99, 073601 (2007).

[2] Yong Li, Lian-Ao Wu, and Z. D. Wang. Fast ground-
state cooling of mechanical resonators with time-dependent
optical cavities. Phys. Rev. A83, 043804 (2011).

[3] S. Bose, K. Jacobs and P.L. Knight. Preparation of
nonclassical states in cavities with a moving mirror. Phys.
Rev. A56, 4175-4186 (1997).

[4] R. Loudon and P.L. Knight, Squeezed light. J. of Mod.
Optics34, 709-759 (1987).

[5] J. Krause, M.O. Scully, T. Walther, and H. Walther.
Preparation of a pure number state and measurement of the
photon statistics in a high-Q micromaser. Phys. Rev. A39,
1915-1921 (1989).

[6] G. S. Agarwal, R. R. Puri, R. P. Singh. Atomic Schrodinger
cat states. Phys. Rev. A56, 2249-2254 (1997)

[7] R. Tanas and D. Stoler. Generating quantum mechanical
superpositions of macroscopically distinguishable states via
amplitude dispersion. Phys. Rev. Lett.57, 13-16 (1986).

[8] S. Mancini, V.I. Man’ko and P. Tombesi. Ponderomotive
control of quantum macroscopic coherence. Phys. Rev. A
55, 3042-3050 (1997).

[9] H. Moya-Cessa, J.A. Roversi, S.M. Dutra, and A. Vidiella-
Barranco. Recovering coherence from decoherence: A
method of quantum-state reconstruction. Phys. Rev. A60,
4029-4033 (1999).

[10] H. Moya-Cessa, S.M. Dutra, J.A. Roversi, and A. Vidiella-
Barranco. Quantum state reconstruction in the presence of
dissipation . J. of Mod. Optics46, 555-558 (1999).

[11] L.G. Lutterbach and L. Davidovich. Method for Direct
Measurement of the Wigner Function in Cavity QED and
Ion Traps. Phys. Rev. Lett.78, 2547-2550 (1997).

[12] H. Moya-Cessa and P. Tombesi. Filtering number states of
the vibrational motion of an ion . Phys. Rev. A61, 025401
(2000).

[13] H. Moya-Cessa, D. Jonathan and P.L. Knight. A Family of
exact eigenstates for a single trapped ion interacting with a
laser field. J. of Mod. Optics50, 265 (2003).

[14] H. Eleuch, Quantum Trajectories and Autocorrelation
Function in Semiconductor Microcavity, Appl. Math. Inf.
Sci.3, 185 (2009).

[15] Z.-J. Qu, S.-D- Liu, C.-L. Yang, and X.-G. Ma. A two-level
atom in a cavity with a moving mirror. Acta Physica Sinica
55, 3393-3395 (2006).

[16] R. Lynch. The quantum phase problem: a critical review .
Phys. Rep.256, (1995) 368-436.

[17] A.B. Klimov and S.M. Chumakov, A Group-Theoretical
Approach to Quantum Optics (Wiley-VCH 2009).

[18] F.A.M. de Oliveira, M.S. Kim, P.L. Knight and V. Buzek,
Properties of displaced number states, Phys. Rev. A41,
2645 (1990).

[19] R.J. Glauber, Coherent and Incoherent States of the
Radiation Field, Phys. Rev.131, 2766 (1963).

[20] R. Keil, A. Perez-Leija, F. Dreisow, M. Heinrich, H. Moya-
Cessa, S. Nolte, D. N. Christodoulides, and A. Szameit.
Classical Analogue of Displaced Fock States and Quantum
Correlations in Glauber-Fock Photonic Lattices. Phys. Rev.
Lett. 107, 103601 (2011).

[21] 3. A. Perez-Leija, R. Keil, A. Szameit, A. Abouraddy,
H. Moya-Cessa and D.N. Christodoulides, Tailoring the
correlation and anti-correlation behavior of path-entangled
photons in Glauber-Fock oscillator lattices. Phys. Rev. A 85,
013848 (2012).

[22] J.R. Moya-Cessa, L.R. Berriel-Valdos and H. Moya-Cessa.
Optical production of the Husimi function of two Gaussian
functions. Appl. Math. Inf. Sci.2, 309-316 (2008).

c© 2013 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.7, No. 4, 1311-1315 (2013) /www.naturalspublishing.com/Journals.asp 1315
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