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Abstract: A modified wavelet-based adaptive-grid scheme is proposed for simulating elastic wave 

propagation in media with sharp transition of physical properties. The solution grid is adapted by 

interpolation wavelet; the wavelet transform is used as a tool to detect high-gradient zones. The cubic 

smoothing spline is employed as a postprocessor to remove spurious oscillations developed in the 

numerical solution of second order hyperbolic systems. The filtering procedure is directly done in the 

non-uniform grid, an ill-posed problem. Smoothing splines are indeed a kind of Tikhonov 

regulization method; hence the smoothing results are stable and reliable. This smoothing method 

works satisfactory in irregular grid points. Finally some 2D wave propagation problems are simulated 

to demonstrate the efficiency of the proposed method. 
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1 Introduction 

Grid-based adaptive wavelet methods have 

successfully been developed for Partial Differential 

Equations (PDEs) solutions which contain steep 

moving fronts or sharp transitions in small zones, 

e.g. [1-4]. In these methods, the wavelet transforms 

are used to detect highly non-uniform spatial 

behaviors and corresponding zones. The wavelet 

transforms act actually as a mathematical 

microscope, investigating a data locally in different 

resolutions. Wavelets can adequately resolve 

different scales. They use high resolutions only near 

sharp transition regions, while moderate resolutions 

are applied in the regions with smooth and slow 

varying behaviors. These schemes have mostly been 

improved for elliptic and parabolic PDEs [1-3]. The 

hyperbolic PDEs, on the other hand, could not be 

simulated by common adaptive procedures, i.e., 

incorporating wavelet-based grid adaptation 

procedure with other common numerical schemes 

for solving PDEs (e.g., common finite-difference or 
collocation method). In comparison with the elliptic 

and parabolic cases, the hyperbolic systems show 

no inherent dissipation. This feature ends to develop 

non-physical oscillations and instability in the both 

solution and corresponding adaptation procedure. 

Regarding second order hyperbolic PDEs, some 

common approaches used to remedy above 

mentioned drawbacks, are: 1) dissipative time 

integration schemes [5]; 2) spatial smoothing (or 

spectral filtering). However, using such approaches 

do not necessarily lead to the smoothest possible 

solutions, essential for proper adaptation procedure. 

Here a post-processing approach is comprised with 

common wavelet-based grid adaptation procedure 

to remove spurious oscillations. The smoothing 

method is the cubic smoothing spline, a kind of 

Tikhonov regularization method [6]. The method is 

stable, fast [7] and not sensitive to noise ratio [8]. 

This scheme of smoothing can directly be used in 

irregular grid points. Smoothing spline of 

2 1m − degree has continuous derivations up to 

2 2m −
th [6]. 

 Regarding smoothness and error in estimation, 

one of the common numerical approaches, the 

generalized-α  dissipative time integration scheme, 
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is compared with the proposed method by a bench-

mark problem. It is a wave propagation problem 

containing nearly discontinuous propagating front. 

There, the trade-off between smoothness and error 

in estimation is visually studied by the L-curve 

method [9]. 

Here, the spatial derivatives are directly 

approximated in the irregular grid points. The 

interpolation is locally done by five point based 

Lagrange polynomial. Anti-symmetric end padding 

method is used to reduce edge effects from the 

derivatives in 2D simulations [4]. This modification 
leads to zero second derivatives at the end points. 

Hence, the moving fronts propagate with constant 

speed. 

Finally some wave equations are simulated; 

especially problems include abrupt transition in 

material properties. 

 

 

2 Multiresolution-based Grid Adaptation  

2-1 Dubuc-Deslauriers Interpolating Wavelets 

Here, Dubuc-Deslauriers (D-D) interpolating 

wavelets are used for grid adaptation [1,2,10]. 

Using such family leads to a simple and 

straightforward algorithm (having physical 

meaning) for wavelet coefficient calculation. Also 

for reconstruct a function of constant accuracy; this 

family uses minimal grid points. This is a preferable 

feature in grid adaptation, since in adaptation a data, 

it is assumed that grid points in level resolution j  

(points with spatial distance 1/ 2 j to each other) are 

locally correlated; this assumption may not be true 

for points of large distance from each other.  

In the following this family of interpolating 

wavelet is reviewed. In general, if 0 ( )xφ  is a 

compact support orthonormal scaling function, then 

its autocorrelation, ( )xφ  is an interpolating scaling 

function [10]; Thereby, properties of function ( )xφ  

are inherent from 
0
( )xφ . For example, auto-

correlations of Haar scaling function and 

Daubechies scaling function of order M  (having 

M  vanishing moments) lead to interpolating 

Schauder scaling function and the D-D scaling 

function of order 2 1M − , respectively; the latter one 

has the support size: ( ) [ 2 1,2 1]Supp M Mφ = − + −  

[10]. 

To obtain a perfect reconstruction, Donoho [11] 

defines the D-D wavelet function as 

( ) (2 1)x xψ φ= − . This wavelet, hence, satisfies the 

interpolation feature [10]. 
 

2-2 Multiresolution Analysis and Adaptation of 1D 

Grid 

Several points are assumed in a dyadic grid and 
mentioned as follows: 

{ : / 2 }; ; {0,1, ,2 }
, ,

j j
V x R x k j Z kj j k j k

= ∈ = ∈ ∈ L     (2.1) 

where, j  is the resolution level and k is spatial 

position. Such definition of dyadic grid points 
j

V  is 

ended to the 
1, ,2j k j k

x x
−

= condition and the 

multiresolution representation core: i.e., 
1j j

V V
−

⊂ . 

A function ( )f x , defined in 
maxJ

V , is assumed 

(i.e., 
maxJ

x V∈ ). Regarding the multi-resolution 

representation, it is possible to show that any 

continuous function ( )f x can be described as 

follows [1, 10]: 
min

max

min min

min

12 2

, , , ,

0 0

( ) . ( ) . ( )

J jJ

J l J l j n j n

l j J n

f x c x d xϕ ψ
−

= = =

= +∑ ∑ ∑                     (2.2) 

where, ( )xϕ  and ( )xψ  are scaling and wavelet 

functions, respectively; 
,

( )
j k

xϕ  and 
,

( )
j k

xψ are the 

dilated and shifted versions of ( )xϕ  and ( )xψ , 

respectively, i.e.: 
, ( ) (2 )j

j k
x x kϕ ϕ= − , and 

, ( ) (2 )j

j k
x x kψ ψ= − . 

,j k
c  and 

,j k
d  are approximation 

and detail coefficients, respectively. These 

coefficients can generally be obtained by projection 

method by considering orthogonally or bi-

orthogonally feature of wavelet families [10]. 

Regarding interpolation properties of D-D 
families, alternative simple procedure can be 

provided for 
min ,J kc  and 

,j n
d  evaluations. The 

approximation coefficients are equal to sampled 

values of ( )f x at points 
min ,J k

x  (the points included 

in 
minJ

V ), i.e., 
min min, ,

( )
J l J l

c f x=  [1,10], by considering 

the interpolating property.  

The detail coefficients are evaluated using multi-
resolution analysis and interpolation feature of 

wavelet function. Namely, due to the properties 

min max1J j j J
V V V V

+
⊂ ⊂ ⊂ ⊂ ⊂L L  and 

,
( )

n k
n kϕ δ− = . 

Due to the fact that , ,
( ) ( )

j j k j k
Pf x f x= , and 

, 1,2j k j k
x x += ; then it is clear that: 

, 1 1,2 1,2
( ) ( ) ( )

j j k j j k j k
Pf x Pf x f x

+ + +
= = . 

where 
2

, ,

0

. ( )

j

j j l j l

l

Pf c xϕ
=

=∑  shows the approximation 

of ( )f x , defined in grid points 
j

V . For odd-

numbered grid points 
1,2 1j k

x
+ +

 including in 
1j

V
+

, in 

general, 
1 1,2 1 1,2 1
( ) ( )

j j k j k
pf x f x

+ + + + +
≠ . The differences 

between 
1,2 1

( )
j k

f x
+ +

 and 
1 1,2 1
( )

j j k
Pf x

+ + +
 are measured 
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as the magnitudes of detail coefficients. This 

difference measures locally the smoothness of the 

function at point 
1,2 1j k

x
+ +

. The values of 

1 1,2 1
( )

j j k
Pf x

+ + +
 are estimated by locally Lagrange 

interpolation by the known even-numbered grid 

points in 
1j

V
+

 (i.e., the points belong to 
j

V  and 
1j

V
+

). 

The interpolation is done by 2M (for the D-D 

wavelet family of order 2 1M − ) most neighbor 

points in the vicinity of 1,2 1j kx + + ; the points are: 

1,2 2
{ } { 1, 2, , }

j k n
x n M M M

+ −
∈ − + − + L . Finally the 

coefficients 
,j n

d  are evaluated as [1]: 

, 1,2 1 1 1,2 1
( ) ( )

j n j n j j n
d f x Pf x

+ + + + +
= −                               (2.3) 

For adaptation a grid, at first a predefined 

threshold ε  is assumed, then in each level of 

resolution
min min max

{ , 1, , 1}j J J J∈ + −L  where 

max
( )

J
f x V∈ , odd-numbered points 

1,2 1j n
x

+ +
 are 

omitted from the calculating grid points, if 

corresponding ,j n
d  satisfy the condition ,j n

d ε< . It 

should be mentioned that wavelet coefficients and 

grid points have one-to-one correspondence. This 

relationship is illustrated if Fig. 1(a) for a grid of 

length
7

2 1+ . In this figure, solid points represent 

distribution of grid points at different levels of 

resolution. There, points at levels 3-6 are wavelet 

coefficient locations; the coefficients in level j  

span j th detail space. Besides, points in the first 

level show locations of scale coefficients, which 

span the smooth approximation space; these points 

are also known as the base-grid (back ground) 

points. In brief, each point only belongs to a 

specific level of resolution. In Fig. 2, lines emphasis 

that the points have dyadic form. 

In the following a test function 
2

( ) ( 2000( 0.5) )f x Exp x= − −  is selected, where [0,1]x ∈ . 

The function is illustrated in Fig. 1(b) with gray 

line. It is assumed that 
max 7

( ) ( )
J

f x f x
=

=  (i.e., the 

sampling step is 
7

1 / 2  or number of grid points is 
7

2 1xN = + ). The discrete data is adapted by the D-D 

wavelet of order 3 ( 2M = ) with predefined 

threshold 
5

10ε
−

= . The adapted grid is shown in 

Fig. 2(b) by solid point. In the Fig. 1(c), the dyadic 

grid point locations and adapted points 

corresponding to ( )f x  are shown respectively by 

solid points and empty circles. There, j  denotes the 

level of resolution. The results indicate that the 

adapted points are correctly concentrated in high 

gradient zones. 

  
Fig. 1. dyadic grid points and corresponding adapted points; a) distribution of dyadic grid points in the different levels of resolution; b) a test 

function 
2

( ) ( 2000( 0.5) )f x Exp x= − −  and corresponding adapted grid points, (c) dyadic grid points at different levels of resolution (solid 

point) and adapted grid points (circles). In figures (b-c), it is assumed that: 
5

10ε
−

= . 
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The aforementioned procedure is applied for data of 

infinite length. For finite data the boundary 

wavelets, introduced by Donoho [11], could be used 

in the vicinity of edge points. 

The above mentioned transform and reduction 

techniques can easily be extended to 2D grid points 

based on 1D algorithm [2]. 

For resolution of PDE in vector system, the 

previous procedure is modified to reflect the 

behavior of the solutions in all equations. Namely, 

the resultant adapted grid is simply the 

superposition of all adapted grids.  

 

 

3 Tikhonov Regularization and Smoothing Splines  

A problem is called ill-posed if it violates one of 

the following conditions: 

I. The solution exists, 

II. The solution is unique, 

III. The solution is stable; namely, any 

perturbation of coefficients, parameters, 

initial or boundary conditions cause a little 

change in answers [12]. 

Many ill-posed problems could be occurred in 

numerical computations; some of which are: 

evaluation of derivatives in noisy data; estimation 

of a data and corresponding derivatives in 

irregularly sampled data.   

Indeed, ill-posed problems have certain 

solutions; however, they should be obtained with 

especial treatments. The solutions of these problems 

are captured by regularization schemes. In these 

methods extra information are used to estimate real 

answers. By using the regularization methods, ill-

posed problems are replaced with nearly well-posed 

ones. In the famous Tikhonov regularization 

method, the regulated (stable) answer is obtained by 

minimizing a functional which is a linear 

combination of residual norm ( ( )
22

2estimate
y y yρ = − ) 

and additional information ( ( )
2

yΩ ), where y  is the 

real solution, and 
estimate

y  is the estimated one. In the 

Tikhonov regularization scheme the functional 

which must be minimized is [8,10]: 

( ) ( )
2 2

min
y

y yρ λ+ × Ω =  

where λ  ( 0 λ≤ < ∞ ) is the regularization 

(smoothing) parameter which controls trade-off 

between smoothing and error in estimation [9, 12]. 

To investigate this relationship, residual norms in 

estimations are presented against regularization 

(semi) norms in Log-Log scales; x-axis and y-axis 

correspond to residual and regularization norms 

respectively. This visual method is known as the L-

curve scheme [9]. 

If it is assumed that ( )
22

( ( ) / )m mf d f x dx dxΩ = ∫ , 

then the method leads to the smoothing spline of 

order 2 1m −  [4]. To confine regularization 

parameter range between 0 and 1, it can be assumed 

that: (1 ) /p pλ = − , where 0 1p≤ ≤ ; in general, 

smaller p  values leads to smoother estimations. To 

minimize curvature in estimation, here, cubic 

smoothing spline is used, i.e., 2m =  [4]. 

 

 

4 Wavelet-based Adaptive-grid Method for Solving 

PDEs 

At the time step (
n

t t= ), if the solution of PDE 

is ( , )f x t , then the procedure for PDE wavelet-based 

adaptive solution is: 

1) Determining the grids, adapted by adaptive 

wavelet transform, using 1( , )nf x t −  

(step 1n − ). The values of points 

without
1

( , )
n

f x t
−

, are obtained by locally 

interpolation (for example, by cubic spline 

method); 

2) Computing the spatial derivatives in the 

adapted grid using local Lagrange 

interpolation scheme, improved by anti-

symmetric end padding method [4]. In this 
regard, extra non-physical fluctuations, 

deduced by one sided derivatives, are 

reduced. Here, five points are locally 

chosen to calculate derivatives and 

therefore a high-order numerical scheme is 

achieved; 

3) Discretizing PDEs in spatial domain first, 

and then solving semi-discrete systems. The 

standard time-stepping methods such as 

Runge-Kutta schemes can be used to solve 

ODEs at the time 
n

t t= ; 

4) Denoising the spurious oscillations directly 

performed in non-uniform grid by 

smoothing splines; 

5) Repeating the steps from the beginning. 

For 1-D data of length n , smoothing spline of 

2 1m −  degree, needs 
2
.m n  operations [7], and a 

wavelet transform (employing pyramidal algorithm) 
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uses n  operations. Therefore both procedures are 

both fast and effective enough. However for cost 

effective simulation, the grid is adapted after several 

time steps (e.g. 10-20 steps) based on the velocity 

of moving fronts. In this case, the moving fronts are 

properly captured by adding some extra points to 

the fronts of adapted grid at each resolution level 

(e.g., 1 or 2 points to each end at each level). 

 

 

5 Benchmark Problem  

In the following, performance of the proposed 

method and another common approach, 

generalized- α  dissipative time integration method 

[5], are compared with respect to their smoothness 

and accuracy properties. The considered problem is 

wave propagation in an elastic unit length rod, 

containing a nearly discontinuous solution is 

considered. It is assumed that, the rod is only 

subjected to an imposed initial displacement 0( )u x  

(i.e., 
0
( ) 0u x =& ); the displacement is: 

0

{ (0.4 )} / ; 0.4 0.4

1; 0.4 0.6
( )

1 {( (0.6 )) / }; 0.6 0.6

0;

x d d d x

x
u x

x d d x d

else where

− − − ≤ ≤

< <
=

− − + ≤ ≤ +








           (5.1) 

where the wave velocity in rod is 1c = . 

The common approach is the finite element 

formulation employing dissipative time integration 

algorithm to filter high frequency component of 

solutions. In this temporal integration, symbolsα , 

β  and γ  are free parameters which control the 

stability and numerical dissipation of the algorithm. 

For case 0.5γ >  numerical dissipation is presented; 

and for ( )
2

0.25 0.5β γ≥ +  the mentioned algorithm 

is unconditionally stable [5]. In simulations, it is 

assumed that: {0.52,0.6,0.7}γ ∈  and 

( )
2

0.25 0.5β γ= + . The assumed α  range for each 

γ  value is: 1) for 0.52γ = , 
0 0

0.15 0.001α α α≤ ≤ ; 2) 

for 0.6γ = , 
0 0

1.5 0.5α α α≤ ≤ ; 3) for 0.7γ = , 

0 0
1.55 0.3α α α≤ ≤ ; where 

0
0.0683α = − . 

Here 257 grid points (for the proposed scheme) 

and 257 finite elements of linear shape functions are 

utilized in simulations. The performance of the two 

aforementioned methods, with respect to 

smoothness and error in estimation, is presented in 

Fig. 2 at 0.2t = . There, in case of finite element 

based simulation, another temporal time integration 

scheme, 4
th

 order Runge-Kutta method is also 

studied (see Fig. 2). The results show that for a 

distinct error in estimation, smoothing spline based 

method leads to the smoothest results. 

 

5 Numerical Examples  

The following examples are to study the 

effectiveness of the proposed method concerning 

some phenomena in elastodynamic problems. The 

wave propagation phenomena (single or systems of 

PDEs) are studied in three cases: rectangle 

membrane with four fixed sides, two-layered media 

(fluid-solid configuration), and an infinite-media 

with fluid-filled crack.  

 

 
Fig. 2. Representation of smoothness ( 2

2
Ω ) against solution error ( 2

2
ρ ) for the smoothing spline (SS) based method (the proposed scheme), 

implicit α - generalized dissipative time integration based method ( α -GDTI), and 4th order Runge-Kutta based scheme. 
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Regarding using multiresolution adaptive 

algorithm, the simulation of wave-fields can 

properly be performed in the media especially with 

localized sharp transition of physical properties. 

The examples of such media are fluid-solid 

configurations and the ones with fluid-filled cracks. 

In fact, to be analyzed by traditional uniform grid-

based methods, these media show major challenges. 

The main assumptions are: 1- applying D-D 

interpolating wavelet of order 3; 2- decomposing 

the grid (sampled at 81/ 2 spatial step in the finest 

resolution) in three levels; 3- repeating re-

adaptation and smoothing processes every ten time 

steps. 

 

 
Example 1  

To investigate smoothing and anti-symmetric 
end-padding effects, in the following, a tensioned 

square membrane subjected to an initial imposed 

deformation is considered. The equation of motion 

is: 

( )2

0 , , ,
, [0,1] [0,1] 0

( , , 0) ( , ), ( , , 0) 0

(0, , ) (1, , ) 0; , ( , 0, ) ( ,1, ) 0

xx zz tt
PDE c u u u t

ICs u x z U x z u x z

BCs u z t u z t u x t u x t

+ = Ω ∈ × ≤ < ∞

= =

= = = =

& (6.1) 

where the initial deformation is: 
2 2( , ) exp( 500{( 0.5) ( 0.5) })U x z x z= − − + − .The 

evaluating assumptions are: 
0 1c = , 510ε −= , and 

0.00015dt = .  

Four numerical solutions are carried out using 

different assumptions; they are: 

I. Simulating without using smoothing 

technique ( 1p = ) while utilizing end-

padding scheme (anti-symmetric end 

padding one), 

II. Using both slightly amount of smoothing 

( 0.98p = ) and end-padding scheme, 

III. Utilizing enough amount of smoothing 

( 0.8p = ), while do not using end-padding 

method, 

IV. Employing both enough amount of 

smoothing ( 0.8p = ), and end-padding 

scheme. 

For case I, the solution at time 0.439 is shown in 

Fig. 3(a); Fig. 3(b) is the zoomed in solution at 

middle media (where waves propagated outward). It 

is obvious that small spurious oscillations still 

remain in such zones.  

Considering assumptions I-IV, the 

corresponding adapted grids are illustrated in Fig. 4 

at time 0.35. There, Fig. 4(a) is the solution and 

Figs. 4(b) through 4(e) correspond to assumptions I 

to IV, respectively. It is clear that due to non-

physical oscillations in case 1p = , the adaptation is 

failed (Fig. 4(b)).  

Existence of even small amount of smoothing, 

significantly improves the adaptation ((Figs. 4(c) & 

4(d)). The enhanced adaptation procedure could be 

captured by using end-padding methods ((Fig. 4(e)). 

 
 

Example 2  

In this example, the wave-fields are presented in 

two-layered media with sharp transition of physical 

properties in fluid-solid configurations. The 

numerical methods which do not increase the 

number of grid points around the interface have 

difficulties with the problems of fluid-solid 

contacts. In such problems, the speeds of elastic 

waves are largely different. The incident waves, P 

or S, coming from inside solid layer source can be 

reflected from interface in the form of P and S 

waves. It means that the incident P wave is reflected 

as PPr & PSr and the incident SV wave as SPr & 

SSr. Where, Pr and Sr are the reflected P and S 

waves, respectively. However, only P waves are 
transmitted to the fluid layer in the form of PPt & 

SPt waves, for incident P and SV waves, 

respectively; where, Pt is the transmitted P wave. 

The schematic shape of the media and the 

description of fluid-solid configuration are 

illustrated in Fig. 5. 

In the numerical simulation it is assumed that: 

0.8p =  and 50.5 10ε −= × , furthermore, the medium 

is subjected to an initial imposed deformation, at 

point S in the solid layer. 

This deformation is shown by: 
2 2

( , , 0) exp( 500(( 0.35) ( 0.525) ))
z

u x z t x z= = − − + − . 

Here, the absorbing boundary condition is 

considered explicitly for simulation infinite 

boundaries. Therefore, the wave equation is 

modified by a damping term ( , ). ( , , )Q x z u x z t&  where, 

( , )Q x z  is an attenuation factor. This factor is zero in 

computation domain and increases gradually 

approaching to the artificial boundaries [13]. 

Consequently, the waves incoming towards these 

boundaries are gradually diminished.  
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Fig. 3. The solution and corresponding spurious oscillations at time 0.439, a) the solution, b) the zoomed in solution.  

 

 

Fig. 4. The solution and corresponding adapted grid points for different assumptions, a) the numerical solution, b-e) adapted grids of Figs. (b) to (e) 
correspond to assumptions I through IV, respectively. 

 

The mentioned above modification, performed 

for P-SV wave equations is as follows: 

( ) ( )

( ) ( )
, , ,

, , ,

( 2 ) ( ) ( ( , ). )

( 2 ) ( ) ( ( , ). )

x xx x zz z xz x x

z zz z xx x xz z z

u u u u Q x z u

u u u u Q x z u

λ µ µ λ µ ρ

λ µ µ λ µ ρ

+ + + + = +

+ + + + = +

&& &

&& &

 

           (6.2) 

where 30x za a= = , and 110, 70x zb b= − = − .  

Here, it is assumed that:  
2 2 2. .(1 ) .(1 )

( ) ( )x x zb x b x b z

x z
Q a e e a e

− −= + + , 

The snapshots of solutions 
x

u  and 
z

u  are shown in 

Figs. 6 and 7, respectively.  

In each figure, the results are obtained at 0.036, 0.1, 

0.168, and 0.2 sec, illustrated in figures (a) through 

(f), respectively. The reflected and transmitted 

waves are marked in Fig. 7 for studying the 

interface effects. 

The adapted grid points, obtained by components 

xu  and zu  are illustrated in Fig. 8. It is clear that 

the grid points are properly concentrated in the high 

gradient and fluid-solid contact zones. 

 
Example 3  

Here, the wave propagation is modeled in a medium 

with high and abrupt variation in its physical 

parameters. 
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Fig. 5. Schematic plot of two layered-medium. Initial imposed deformation is subjected at point S.  

 

  

Fig. 6. Snapshots of solution xu  at 0.036, 0.1, 0.168, and 0.2 sec., illustrated in figures (a) through (d), respectively. 

The medium has a narrow fluid-filled crack. Each P 

or S incident waves are reflected and transmitted as 

explained in example 2. 

However, the P wave is diffracted from the crack 

into the solid media in the form of PPd & PSd. 

Where, Pd and Sd are the diffracted P and S waves, 

respectively. 

The schematic shape of media along with the 

description of fluid-solid configuration is illustrated 

in Fig. 9. 

In the numerical simulation it is assumed that: 

0.8, 0p α= =  and 510ε −= , furthermore, the medium 

is subjected to an initial imposed deformation at the 

point S in the solid layer. This deformation is shown 

by: 
2 2( , , 0) exp( 500(( 0.4) ( 0.75) ))

z
u x z t x z= = − − + −  
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Fig. 7. Snapshots of solution zu  at 0.036, 0.1, 0.168, and 0.2 sec., illustrated in figures (a) through (d), respectively. 

 

  

Fig. 8. Snapshots of adapted grids correspond to the solutions xu  and zu  at 0.036, 0.1, 0.168 and 0.2 sec., illustrated in figures (a) through 

(d), respectively. 

 

 

The snapshots of 
x

u  and 
z

u  are shown in Figs. 

10 and 11, respectively. In each figure, the solutions 
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are obtained at 0.036, 0.1, 0.168, and 0.2 sec, 

illustrated in figures (a) through (d), respectively. 

The adapted grids, corresponded to the above 

mentioned figures, are illustrated in Fig. 12. 

According to the results, the adapted grids are 

properly concentrated both in high gradient zones 

and in the vicinity of fluid-filled crack. 

 

6 Conclusion 
In this work, some wave propagation problems 

are simulated via wavelet-based adaptive grid 

method. The results show that the improved method 

can properly concentrate adapted points in the 

vicinity of both propagating fronts and zones 

containing abrupt changing in physical properties. 

 
Fig. 9. Schematic shape of a fluid-filled crack in infinite media. Initial imposed deformation is subjected at point S.  

  

 

 

Fig. 10. Snapshots of solution xu  at 0.0737, 0.143, 0.175, and 0.205 sec., illustrated in figures (a) through (d), respectively. 



 

H. Yousefi, A. Noorzad, J. Farjoodi, M. Vahidi: Multiresolution-Based .....    

 

57

 

 
Fig. 11. Snapshots of solution 

z
u  at 0.0737, 0.143, 0.175 and 0.205 sec., illustrated in figures (a) through (d), respectively.  

  

 

 
Fig. 12. Snapshots of adapted grids correspond to the solutions 

x
u  and 

z
u  at 0.0737, 0.143, 0.175 and 0.205 sec., illustrated in figures (a) 

through (d), respectively.  
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In addition, the results indicate that using both 

smoothing method and anti-symmetric end-padding 

scheme leads to a proper adaptation procedure. 

Finally, it is shown that the proposed method leads 

to the smoothest possible solution for a distinct 

error in estimation. This is because a Tikhonov 

based regularization scheme is utilized to remove 

spurious oscillations from numerical simulations. 
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