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Abstract: By successively employing the interval search method, we developed the proposed algorithm MPSO, introducing three
creative position vectors to replace the three worst fitness particles among the population in the PSO, to overcome the premature
convergence situation that occurs when a problem with a large number of variables and (or) multiple optima is solved.
The results obtained by applying the MPSO and the PSO on 6 benchmark functions show that, except for the randomly shifted
Rosenbrock functions, the MPSO can successfully secure a solution that is close to the exact solution for each of the remaining
five functions. We also showed that all benchmark functions are solvable by the MPSO if the maximum number of generations is raised
to be as high as possible. With regard to the PSO′s performance for the three different numbers of variables, it fails to obtain a solution
that is close to the exact solution for all of the tested functions except for the Sphere function with 30 variables.
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1. Introduction

The population-based evolutionary computation
technique of Particle Swarm Optimization (PSO) was
originally developed by Kennedy and Eberhart [1],
inspired by animal social behaviors such as bird flocking
and fish schooling. When a bird in a flock tries to find
food, it uses its own knowledge and experience as well as
its neighbors experience. Hence, the birds in a flock are
analogous to particles in the context of PSO - particles
that are initially selected randomly within the search
space of a problem of interest. In PSO, the motion of each
particle is determined mainly by its velocity, which is
updated for each generation according to three main
features: habit, self-cognition and sociality.

As a simple and easily implemented mathematical
model, the PSO algorithm is applicable for a wide range.
However, the strong cohesive traction amid the particles
in PSOs always cause them to aggregate quickly, and
hence, their ability to explore outside of the aggregation is
reduced. This feature often results in a final solution
which converges to a local optimum rather than a global
optimum when multi-modal problems are solved.
Moreover, the PSO gives favorable results only for a
problem with a small number of variables; for a problem
with a large number of variables, it has difficulty in

obtaining a solution that is close to the problems exact
solution. Thus, there are many variants of the PSO that
have been developed to improve its performance by
modifying its searching strategy or by tuning the relevant
parameters and some of these variants are described
briefly below.

Suganthan [2], in 1999, and Ratnaweera et al. [3], in
2004, discussed learning factors, linearly decreasing
inertia weights and the constriction factor of generational
adjustment to improve a global search; Chatterjee and
Siarry [4], in 2004, proposed a non-linear dynamic inertia
weight. Liu et al. [5], in 2005, suggested a chaotic system
that modifies the inertia weight according to the
relationship between every particle and the average fitness
value. Bin et al. [6], in 2006, proposed using a random
number between 0 and 1 to increase the inertia weight
disturbance values. Yang et al. [7], in 2007, proposed a
dynamic adjustment scheme for the inertia weight,
assigning every particle its own inertia weight. Xiang et
al. [8], in 2006, proposed a time delay to control the
diversification of the particle swarm and, thereby, to
maintain the swarm activity. In 2006, Fan and Zahara [9]
proposed a hybrid of the simplex method and the PSO,
using the individual moving mode l of the simplex
method to replace the particle moving model of the PSO.
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Yeh [10] incorporated a local search method into the PSO
algorithm to construct a hybrid PSO, in which the parallel
population-based evolutionary ability of the PSO and the
local searching behavior are reasonably combined.

The above PSO performance-enhancing strategies can
be categorized in three different ways: adjusting both the
inertia weight and the learning factors, combining the
PSO with other numerical algorithms to form a hybrid
PSO, and introducing a local search technique to increase
the particles searching performance. The variants of the
PSO from the three strategies have improved the
performance of the original PSO, but unfortunately, a
limited level of improvement has been reached so far.

It is believed that the relationship among the variables
of a problem of interest, separable or non-separable,
would definitely challenge the performance of an
optimization solver.

If a separable problem is considered, then a successive
interval search method is suggested and is directly applied
in search of the problems solution; this approach would
obtain a solution that is closest to the exact solution. The
successive interval method is derived in the study from an
interval search method [11], which is only for a
one-variable optimization problem. In implementing the
successive interval search method, the solution of each
variable can be screened by fixing the remaining variables
with given values by successively narrowing the search
domain of the variable until the size of the latest domain
satisfies the criteria set. The details of how to extend the
interval search method into the successive interval search
method is to be described in the next paragraph.

The proposed algorithm is similar to one using the
above-mentioned second strategies for enhancing the
PSOs performance. The successive interval search
method in the proposed algorithm is implemented after
numerous PSO generations to generate three position
vectors that replace the worst three fitness particles in the
population. The new three particles then act as stimulant
agents that provide traction to pull the other particles in
the population out of the stagnant situation for exploration
in the direction of the problems exact solution. Depending
on a problems characteristics or the number of variables
in a problem of interest, in the evolutionary process of
searching the solution closest to the problems exact
solution by the proposed algorithm, the successive
interval method could be implemented a number of times.

To verify the proposed algorithm, we selected 6
benchmark functions with dependent or independent
variables, for which six of the functions possess a single
optimum, and the remaining five have multiple optima.
Additionally, to understand the performance of the
proposed algorithm in relation to the increasing numbers
of variables, three different numbers of variables were
considered (30, 50 and 100).

2. Related measures that were used when
developing the proposed algorithm

2.1. Definition of Separable and Non-separable
functions

A function possessing variables that are independent of
one another is called a separable function; otherwise, it is
a non-separable function. This distinction, in the
mathematical terms given below, was recently defined by
Yang et al. [12].

Definition : f (x) is called a separable function if ∀k ∈
{1,m} and

x ∈ ℜ, x = {x1, · · · ,xk, · · · ,xm}
x′ ∈ ℜ, x = {x1, · · · ,x′k, · · · ,xm}

}
⇒ f (x)≤ f (x′)

Imply

y ∈ ℜ, y = {y1, · · · ,yk, · · · ,ym}
y′ ∈ ℜ, y = {y1, · · · ,y′k, · · · ,ym}

}
⇒ f (y)≤ f (y′)

Otherwise, f (x) is called a non-separable function.
In the application of evolutionary algorithms, the

interaction among the variables of a non-separable
function has been considered to be the main culprit in
incurring the curse of dimensionality, which implies that
the performance of the algorithms deteriorates rapidly as
the dimensionality of the search space increases.

Therefore, if one can distinguish a problem as being
separable or non-separable, then this distinction will
provide helpful information on what computational
algorithm should be employed for the problems solution
to be effective and efficient.

2.2. Successive Interval Search Method (SIS)

The interval search method described above is then
extended, in this study, to a problem with n variables, in
other words, f (x1, . . . ,xn) and xi ∈ [ai,bi] , and the
extended search mechanism is called the successive
interval search method, abbreviated as SIS.

In the SIS, we define the number of sub-intervals that
are divided at each search stage for each variable denoted
by ndi. The variables x1, . . . ,xn are initially randomly
selected, corresponding to their respective specified
domains.

Next, we apply the interval search method on the first
variable x1 by fixing the remaining variables with given
values. Then, the variable vector of the problem changes
with changes in its first component x1. Therefore, similar
to the process of the interval search method for the
function with a single variable, we can gradually zero in
on the best value of x1, denoted as x1b, with which the
variable vector obtained will give the minimum function
value. Next, we proceed with the same procedure for the
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second variable x2 to determine the value of x2b.
Similarly, we keep implementing the interval search
method on one variable at a time, and we can determine
x3b,x4b, . . . ,xnb.

If a problem of interest possesses variables that are
non-interacting with each other, then the vector
determined by the SIS method xb = {x1b,x2b, . . . ,xnb} is
actually the problems optimum solution. Conversely, for a
problem with variables that interact with each other, the
solution by SIS xb = {x1b,x2b, . . . ,xnb} is no longer the
optimal solution; however, we propose that the solution
could provide information when the particles in the PSO
are trapped. We then attempt to incorporate this strategy
into the PSO algorithm for the proposed algorithm.

3. The Modified Particle Swarm
Optimization (MPSO)

In optimizing a problem, we found that if it is possible to
determine whether a problem is separable or
non-separable prior to attempting to solve the problem,
then one can determine a reliable solution more
effectively and efficiently. For a separable problem, we
suggest that the SIS is the best solver compared with
other heuristic evolutionary algorithms. However, for a
non-separable problem, the mutual dependence among
the variables cripples the fundamental structures of the
SIS, which is thus not an appropriate solver for the
problem. For a non-separable problem, one usually
resorts to employing a heuristic evolutionary algorithm.

Among all of the types of well-known algorithms, the
PSO is a simple, fast and easily implemented evolution
algorithm, but its performance usually provides an
unreliable result when a complicated problem is solved,
such as a multi-modal problem or a problem with a large
number of variables. Therefore, many variants of PSOs
have been developed to improve its performance on
complicated problems by modifying the parameters
defined in the PSO or by introducing local search
methods or cooperating with other computational
algorithms.

Because the SIS is well suited for separable problems,
the possibility of combining the SIS with the PSO for
problems that are either separable or non-separable is
proposed here. Moreover, the mechanisms for applying
the solution obtained by the SIS are given, and a helpful
guidance strategy for the particles in the population of the
PSO is also created.

Therefore, we have developed an algorithm, called the
modified Particle Optimization (MPSO), which begins
with distinguishing a problem type by figures and then
follows the improvement of the PSO performance with
the assistance of the SIS. The flowchart of the MPSO is
shown in Fig. 1.

3.1. Three different position vectors

In the proposed algorithm, we introduce three creative
positions, which are denoted by xpbest

avg , xSIS and xDisturb ,
to replace the three poorest fitness particles among the
population of particles in the PSO. This replacement aims
to improve both the exploitation and the exploration of
the particles, which stay in a stagnant situation.

3.2. Parameters set in the MPSO

When implementing the MPSO, the parameters used in
the PSO must be specified for the weight coefficient ω ,
the learning coefficients c1 and c2 , and the number of
particles in the population Np; in SIS, the replacement
rate Nrplc and the number of points ndi to divide the
search space for each variable must be used. Additionally,
the convergence conditions, the maximum number of
generations Nmax , and the convergence criterion ε are
included as well.

4. Experimental Results and Discussion

4.1. Benchmark functions

To verify the MPSO, we selected 6 man-made benchmark
problems, which are displayed as follows. The domains
and exact solutions of each functions are listed in Table 1.
The last two functions are randomly shifted functions with
z = x−xo , where the vector xo is randomly created.

F1 : Sphere

F1(x) =
n

∑
i=1

x2
i

F3 : Rosenbrock

F3(x) =
n−1

∑
i=1

[
100(x2

i − xi+1)
2 +(xi −1)2]

F4 : Ackley

F4(x) = − 20exp

(
−0.2

√
1
n

n

∑
i=1

x2
i

)

− exp

(
1
n

n

∑
i=1

cos(2πxi)

)
+20+ e

F7 : Schwefel

F7(x) =
n

∑
i=1

xisin
(√

|xi|
)

F10 : Random Shifted Rosenbrock

F10(z) =
n−1

∑
i=1

[
100(z2

i − zi+1)
2 +(zi −1)2]
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Table 1 Domains and exact solutions of benchmark functions.

Function Domains Exact
i = 1,2, . . . ,n solution

F1 −100 ≤ xi ≤ 100 F1(0) = 0
F3 −30 ≤ xi ≤ 30 F3(1) = 0
F4 −32 ≤ xi ≤ 32 F4(0) = 0
F7 −500 ≤ xi ≤ 500 F7(−420.97) =−418.98×n

F10 −30 ≤ xi ≤ 30 F10(z) = 0
F11 −32 ≤ xi ≤ 32 F11(z) = 0

F11 : Random Shifted Ackley

F11(z) = − 20exp

(
−0.2

√
1
n

n

∑
i=1

z2
i

)

− exp

(
1
n

n

∑
i=1

cos(2πzi)

)
+20+ e

4.2. In Comparison with the original PSO

In the computation, the relevant parameters were given
values as follows: the number of particles in the
population Np=80; the weight coefficient ω = 0.6; the
learning coefficients c1 = 1.5 and c2 = 2.0; the number of
subintervals ndi=9 ; the replacement rate Nrplc=250; the
maximum number of generations Nmax=50,000; and the
convergence criteria ε = 10−6. There are three different
numbers of variables that were used for the comparison:
n = 30, n = 50, and n = 100.

4.3. Effect of the number of variables

Because the proposed algorithm MPSO is developed for
the purpose of improving the PSO algorithm, the results
determined by MPSO are compared with those of the
PSO. To avoid a bias in the results, we performed each
function by both of the algorithms, through 30
independent runs. To present the performance of both
algorithms, we define a parameter favg , which averages
the final solutions of the 30 runs, and a parameter fb ,
which represents the best value among the 30 finished
function values. Obviously, the less difference between fb
and favg, the more reliable the algorithm is. Moreover, we
define the success rate as the rate of the number of final
solutions that met the convergence criterion ε over the
total of 30 runs.

Therefore, the optimization results obtained by both
MPSO and PSO for all of the 6 functions with 30
variables, 50 variables and 100 variables are presented,
respectively, in Table 2, Table 3, and Table 4.

For the optimization results of the functions with 30
variables, shown in Table 2, we found that the MPSO can

Figure 1 The flowchart for implementing MPSO.

determine the solution definitely (a success rate of 100%)
and is close to the exact solution for each function except
for the function F5, for which the MPSO determined a
solution close to the exact solution with a success rate of
60%, meaning that the number of solutions close to the
exact solution takes only 18 times among 30 runs.
Concerning the results optimized by the PSO, only one
function, F1, among the 6 tested functions satisfies the
goal of a success rate of 100 %. Moreover, the PSO gives
a success rate with a value of less than 50% for the
functions F2 and F3. Additionally, the results for the last
five functions, F4 to F6, indicate that the PSO cannot
address solving these functions at all.

Next, the optimization results of the tested functions
that had 50 variables are shown in Table 3. The results
present almost the same performance for both MPSO and
PSO as they did for 30 variables, except that the success
rate determined by MPSO for the function F5 to 36.66%
from 60%. Undoubtedly, the number of variables
increases the difficulty of screening the solution by the
MPSO. However, if we remove the limitation of the
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Table 2 The results for the 6 tested functions, each with 30
variables.

PSO
function fav fb Sucess Rate

F1 8.37E-07 5.89E-07 100%
F3 1.82E+04 1.00E-06 3.3%
F4 1.30E+01 8.46E-07 23.3%
F7 -6.71E+03 -8.11E+03 0
F10 4.31E+07 5.03E+06 0
F11 1.56E+01 2.03E+00 0

MPSO
function fav fb Sucess Rate

F1 8.76E-07 6.81E-07 100%
F3 1.20E-06 9.88E-07 100%
F4 6.48E-07 8.88E-16 100%
F7 -1.26E+04 -1.26E+04 100%
F10 6.74E+00 9.75E-07 60%
F11 9.32E-07 7.87E-07 100%

Table 3 The results for the 6 tested functions, each with 50
variables.

PSO
function fav fb Sucess Rate

F1 9.32E-07 7.46E-07 100%
F3 2.18E+04 9.98E-07 10%
F4 1.89E+01 9.63E-07 3.33%
F7 -1.06E+04 -1.33E+04 0
F10 1.59E+08 1.90E+07 0
F11 1.81E+01 1.49E+01 0

MPSO
function fav fb Sucess Rate

F1 7.22E-07 0.00E+00 100%
F3 9.99E-07 9.95E-07 100%
F4 8.88E-16 8.88E-16 100%
F7 -2.09E+04 -2.09E+04 100%
F10 1.85E+01 9.75E-07 36.66%
F11 9.54E-07 7.74E-07 100%

number of maximum generations, we then succeed in
obtaining a solution that is close to the exact solution.

When the number of variables is equal to 100, the
optimization results shown in Table 4 indicate that, for
this case, the PSO presents a success rate of zero for 4 of
the 6 tested functions and even for the remaining two
gives a success rates of less than 20%. With respect to the
MPSO for this case, the success rates for the functions F5
drop to between 10% and 20% as the number of variables
is increased from 50 to 100; however, the MPSO still
performs with a 100% success rate for the remaining
functions.

According to the above optimization results for a
different number of variables, the MPSO performs
perfectly, with a success rate 100%, for the separable
functions and is never affected by the number of

Table 4 The results for the 11 tested functions, each with 100
variables.

PSO
function fav fb Sucess Rate

F1 1.71E+04 9.97E-07 16.66%
F3 5.15E+07 9.99E-07 6.66%
F4 1.99E+01 1.99E+01 0
F7 -2.13E+04 -2.48E+04 0
F10 6.57E+08 2.52E+08 0
F11 2.00E+01 1.89E+01 0

MPSO
function fav fb Sucess Rate

F1 0.00E+00 0.00E+00 100%
F3 1.00E-06 9.97E-07 100%
F4 8.88E-16 8.88E-16 100%
F7 -4.18E+04 -4.18E+04 100%
F10 3.70E+01 9.97E-07 13.33%
F11 9.71E-07 8.63E-07 100%

variables. Furthermore, for the multiple modal benchmark
functions, such as F3, F4 and F6, the particles that are
found to be stagnant in a certain place during the
application of the PSO are driven by the MPSO′s strategy
of introducing the three position vectors to replace the
three particles with the worst fitness.

5. Conclusions

In conclusion, we developed a modified PSO (MPSO)
algorithm by leveraging successive interval search
method and replacing the three worst fitness particles with
three creative position vectors. This MPSO algorithm was
shown to be able to overcome the premature convergence
situation that occurs when a problem with a large number
of variables and (or) multiple optima is solved.

Our results showed that our MPSO algorithm
successfully secure a solution that is close to the exact
solution for 5 of the 6 benchmark functions, except for
the randomly shifted Rosenbrock functions. By
increasing the maximum number of generations for our
MPSO algorithms, we showed that all benchmark
functions can be solved. In comparison to the PSO
algorithm utilizing three different numbers of variables, it
failed to obtain a solution that is close enough to the exact
solution for all of the tested functions except for the
Sphere function with 30 variables.
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