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Abstract: This work proposes a novel approach to analyze the stability characteristics for the dynamic coefficients of a herringbone-
grooved journal bearing. Based on the perturbation method at the equilibrium position of a journal bearing, this study expresses
the variation of critical mass as the derivation of eight dynamic coefficients: four stiffness and four damping coefficients. Since the
relationship between the critical mass and the eight dynamic coefficients is very complicated, it is difficult to judge the influence in
previous studies of an individual dynamic coefficient on stability. The method presented in this paper can investigate quantitatively
which dynamic coefficients dominate stability. The results show that the coefficients Kxx and Kyx increase and improve the stability
as the eccentricity ratio increases. As the groove geometry changes, the coefficients governing stability depend on the parameters
of groove geometry: groove depth, groove width, and groove angle. When the groove angle changes, variations in Kxy always exert
negative influences on stability. When the groove depth or the groove width increases, the change in Dyy exerts a significant negative
influence on stability. With an increase in the groove angle or groove pattern, the negative effect of Dyy on the bearing decreases.
Accordingly, the influence of variations in the groove depth is similar to that of variations in the groove width.
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1. Introduction

Herringbone-grooved journal bearings (HGJBs) have
been applied frequently in the computer information
storage industry for high rotating speed performance,
such as hard disk drives for computers and fans for
mobiles. Moreover, employing herringbone grooves on
the journal bearing increases spindle stiffness [1] and
enhances the mechanical damping of a bearing system.
The requirements for large-capacity data storage have
increased markedly, making it essential to improve the
stability characteristics of the bearing system when a
magnetic head is reading or recording on a magnetic disk.
Therefore, the effects of herringbone grooves on highly
stable journal bearings warrant investigation.

The important dynamic characteristics of journal
bearings can be broken down into the spring and damping
properties. In general, the bearing’s force-displacement
relationship is collinear. Thus, a simple rotor bearing

system uses the isotropic force model to describe the
bearing’s force-deflection behavior. The displacement of a
hydrodynamic journal bearing, however, is not linearly
dependent on the hydrodynamic resistance force.

When a hydrodynamic journal bearing is displaced
from its equilibrium position, the characteristics of the
bearing’s reaction can be represented by the means of four
stiffness and four damping coefficients. Kirk [2] indicated
that the cross-coupling terms Kxy and Kyx are the major
sources of instability, while the cross-coupling damping
terms Dxy and Dyx are the minor factors in determining
stability. As shown in figure 1.1, cross-coupled stiffness
produces a tangential force proportional to the shaft
deflection [3]. When they considered journal bearing with
herringbone grooves, Bonneau and Absi presented the
stiffness coefficients associated with changes of the
groove geometry and the eccentricity ratio [4]. However,
their contributions are not applicable to investigate the
relationship between dynamic coefficients and stability. In
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Refs. [2,5], the authors mentioned that the principal
stiffness terms Kxx and Kyy exerted positive effects on
stability. In addition, that literature pointed out that the
cross-coupled stiffness influences stability: when Kxy is
negative and opposite in sign to Kyx, that combination
leads to instability. Therefore, the two coefficients Kxy
and Kyx are the two dominant factors for instability. In
addition, Ref. [6] mentioned that when the negative sign
of Kxy turns positive, Kxy then contributes to the stability
of the bearing. The methods described in the references
described above determined the degree of influence on
stability based on the value of the dynamic coefficients.
Notably, the studies above discussed the dynamic
coefficients of a plain journal bearing.

Figure 1.1 Cross-coupling stiffness in a journal bearing

In a study by Lund, he suggested that the dynamic
coefficients are impractical for design purposes [7] and
reviewed the stability criteria of the system associated
with the concept of critical mass. Since the relationships
between the critical mass and the eight dynamic
coefficients are very complicated, it is difficult to judge
the influence of an individual dynamic coefficient on
stability.

To design the configuration of HGJBs, it is necessary
first to understand the influence of groove parameters on
stability. Zirkelback and San Andres [8] discussed the
effects on the dynamic coefficients and the critical mass
of HGJBs from changing the groove geometry. However,
their contributions are not applicable to investigate the
correlations between the coefficients and stability, nor the
relationship between the groove angle and critical mass.
Rao and Sawiski [9] clearly showed that HGJBs have a
higher critical speed for concentric operation than plain
journal bearings do, but how the shape of groove might
affect the stability is still needed to be examined.

This paper analyzes the influences on critical mass of
changing dynamic coefficients by altering the eccentricity
ratio and the HGJB’s groove parameters, and discusses
the variations of the dynamic coefficients with the
changes of critical mass. In order to calculate the pressure
distribution of the fluid film, we solve the Reynolds

equation by the spectral element method [10]. In addition,
we use the perturbation method to work out the stability
parameters of the bearings, i.e. the dynamic coefficients
and the stability threshold. As the eccentricity ratio or the
groove geometry changes, we analyze the variation in the
critical mass through the changes of eight coefficients,
conclude whether their contributions had a positive or
negative influence on stability. Using the methods
described, we analyze the consequence at the equilibrium
position of changing the groove parameters, such as
groove angle, groove depth, and groove width.

2. Analysis
Governing Equation Figure 2.1 displays the coordinate
system and geometry of HGJBs. The curvature of the film
in journal bearings is ignored. Since the film thickness h
is relatively small, compared with the radius of the
bearing r, the fluid film can be unwrapped into a plane.
The Reynolds equation for the steady state, laminar,
isothermal and incompressible flow is:

1
r2

∂
∂ϕ

[
h3

12µ
∂ p
∂ϕ

]
+

∂
∂ z

[
h3

12µ
∂ p
∂ z

]
=

ω
2

∂h
∂ϕ

, (1)

Figure 2.1 Geometry of herringbone grooved journal bearing

where the coordinate system (ϕ , z) is fixed to the bearing, p
is the pressure in the fluid film, ω is the angular velocity, µ
is the coefficient of viscosity. The fluid thickness h in the
ridge and the groove regions, in terms of circumferential
coordinates ϕ , are:

h = c(1+ ε cosϕ) (2)
in the ridge, and

h = cg + c(1+ ε cosϕ) (3)

in the groove, with clearance c, groove depth cg, and
eccentricity ratio ε . The pressure field is continuous in the
circumferential direction

p(ϕ ,z) = p(ϕ +2π,z), (4)
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and the pressure boundary conditions at bearing edges are

p(ϕ ,
L
2
) = p(ϕ ,−L

2
) = 0 (5)

The cavitation algorithm is based on the Swift-Stieber
condition [11].

pcav =
∂ p
∂θ

∣∣∣∣
cav

= 0 (6)

Once Eq. (1) is solved for the pressure in the
equilibrium state, the radial and tangential loads can be
obtained by integrating over the bearing area,

Wt =
∫

A
pr sin(π −ϕ)dzdϕ (7)

Wr =
∫

A
pr cos(π −ϕ)dzdϕ (8)

and the load can be expressed as

W = (W 2
t +W 2

r )
1/2 (9)

Perturbation method When the journal position
changes slightly from the equilibrium state, the load also
changes immediately; this may result in instability.
Therefore, this paper uses the perturbation method [7] to
study stability conditions. By assuming that a small
reaction occurs about the equilibrium state, the pressure
and the fluid film thickness displacement can be
expressed as a first-order function of small perturbation

pp = p0 + px∆x+ py∆y+ pẋ∆ ẋ+ pẏ∆ ẏ (10)

hp = h0 +∆xcosϕ +∆ycosϕ (11)

Substituting Eq. (10)and Eq. (11) into Eq. (1), the
changes in the pressure of a journal near the equilibrium
position can be calculated

1
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∂
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(12)

Once the perturbation pressure is known, dynamic
coefficients can be calculated by integration over the
bearing area [12]. For example, the dimensionless
coefficient Kxx can be obtained by

Kxx =
c

W

∫
y

∫
ϕ

px cosϕrdzdϕ , (13)

and the pressure px is solved by collecting the terms of
O(∆x) in Eq. (12)
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Note that the linear perturbed equation (12) is similar
to Eq. (1), so the numerical code developed for the
equilibrium state in the authors’ previous study [10] can
be applied directly. The dimensionless critical mass Mcr
and whirl frequency ω0 are [12]

Mcr =
κ0

ω2
0

(15)

ω2
0 =

(Kxx −κ0)(Kyy −κ0)−KxyKyx

DxxDyy −DxyDyx
(16)

with

κ0 =
KxxDyy +KyyDxx −KxyDyx −KyxDxy

Dxx +Dyy
(17)

Derivation of critical mass The dimensionless
critical mass is a complicated function of eight dynamic
coefficients. As the operation condition or the groove
parameters, denoted by f, of the journal bearing change,
the change of critical mass with the property f can be
written as

dMcr
d f = ∂Mcr

∂Kxx

dKxx
d f + ∂Mcr

∂Kxy

dKxy
d f + ∂Mcr

∂Kyx

dKyx
d f + ∂Mcr

∂Kyy

dKyy
d f

+ ∂Mcr
∂Bxx

dDxx
d f + ∂Mcr

∂Dxy

dDxy
d f + ∂Mcr

∂Dyx

dDyx
d f + ∂Mcr

∂Dyy

dDyy
d f

(18)
where f could be groove angle, groove depth, groove
width, or any operating parameters of the hydrodynamic
journal bearing. There are eight components on the
right-hand side (RHS) of Eq. (18). Each component on
the RHS of Eq. (18) can be considered as the contribution
to the change of critical mass by an individual dynamic
coefficient. For example, the first term, ∂Mcr

∂Kxx

dKxx
d f , is the

contribution of dynamic coefficient Kxx to the critical
mass as the property f changes slightly. If the value
∂Mcr
∂Kxx

dKxx
d f is positive, that means that the contribution of

dynamic coefficient Kxx to the stabilization of the system
is positive. If the component of an individual dynamic
coefficient is negative, that dynamic coefficient
destabilizes the system. This work adopts a commercial
code Mathematica for computation of partial derivatives
of the critical mass with respect to an individual dynamic
coefficient; i.e., the eight components on the RHS of Eq.
(18).

3. Results and Discussion

We investigate the effects on stability of the variations in
dynamic coefficients, based on the operating parameters
that change as the critical mass changes. We also discuss
how coefficients impact the critical mass by changing the
operational features, such as the eccentricity ratio and the
geometric shape of the grooves. The simulation for this
paper is performed considering 17 circumferential
elements and eight axial elements. Table 1 shows the
geometrical parameters of HGJBs.
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Table 1 Parameters of the HGJB

Clearance 6 [µm]
Radius 0.002 [m]
Length 0.004 [m]
Fluid viscosity 0.00124 [Pa-s]
Number of grooves 8
Groove angle 20-70 [deg]
Groove depth ratio 0.5-1.5
Groove width ratio 0.3-0.7
Ambient pressure 0 [N/m2]

In the following sections, we first discuss how
variations in the operational conditions of the plain
journal bearing affect stability. By changing some of the
operational conditions of the journal bearing—namely,
the eccentricity ratio and the length of the
bearing—variations in critical mass can be observed.
From these observations, we can infer the influence on
stability of variations in the eccentricity ratio and the
length of the bearing. Specifically, we can infer whether
the bearing is more stable or unstable. Furthermore, when
operational parameters change, we can observe variations
with every dynamic coefficient. Thus, large variation is
the coefficient that mainly affects critical mass and exerts
a large influence on stability. In this approach, we can
identify the main dynamic coefficient that affects stability.

In considering the stability of a plain journal bearing,
we discuss the influence of changing the shape of the
groove in the bearing to make it a herringbone groove.
This study also discusses the main dynamic coefficient
that affects stability—the relationship of groove
shapes—as well as the contributions of the dynamic
coefficients to determining critical masses. Furthermore,
this paper compares the main coefficients that affect
stability when changing the groove angle, the groove
width, and the groove depth of a HGJB in order to
determine the difference or similarity between the main
coefficients that affect stability.

Validation The calculated numerical results are
verified by comparison with experimental load and
critical mass data. Figure 3.1 shows that the bearing load
capacity agrees well with the experimental data from Hirs
[13]. Figure 3.2 demonstrates that the critical mass of
each different eccentricity ratio approaches the exact
solution for a short bearing [13] as bearing length L
decreases. Thus the numerical program developed for
stability in an equilibrium state is accurate.

Effect on critical mass of changing the length of a
plain journal bearing In this section, we explore how to
determine the influences of the eccentricity ratio and the
length of the bearing on the critical mass. The length of
the bearing is changed to reduce the length-diameter ratio
1/λ to 1/16 from 1. As shown in figures 3.2 and 3.3, when
the eccentricity ratio is greater than 0.5, increasing the
eccentricity ratio increases the critical mass under every

Figure 3.1 Comparison of load with the study [13]

Figure 3.2 Validation on critical mass with Hamrock [13]

length-diameter ratios of the bearing. On the other hand,
the critical mass at a length-diameter ratio of 1/4 is almost
the same when the bearing has a length-diameter ratio of
1/16. As a result, for short bearings, the critical mass is
insensitive to varying the length of the bearing.

When the eccentricity ratio is greater than 0.5,
increasing the eccentricity ratio results in significantly
increasing the critical mass. In next sections, this paper
explore whether variations in groove appearances make a
particular dynamic coefficient contribute more
significantly to an increase or decrease of the critical
mass.

Figure 3.4 shows the relationship between the
variation in the coefficients and the variation in the
critical mass. When the length-diameter ratio is 1 and the
eccentricity ratio is greater than 0.5, the Kxx and Kyx
components in Eq. (18) increase the critical mass
significantly as the eccentricity ratio increases. As a
result, when the eccentricity ratio is large, Kxx and Kyx are
the dominant dynamic coefficients to promote stability.
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Figure 3.3 Critical mass at different groove diameter-length
ratio

Figure 3.4 The variation of dynamic coefficients on critical
mass at different length-diameter ratios

These dynamic coefficients benefiting stability are same
as those obtained in the studies by Refs [2,5].

In a similar manner, this work also identifies the
dynamic coefficients that affect stability negatively.
Variation in Dyy reduces the critical mass when the
eccentricity ratio is large, resulting in a negative effect on
stability. In addition, we found that the effect on stability
of some dynamic coefficients is not always positive or
always negative. When the eccentricity ratio increases,
variation in Kxy promotes stability, by affecting the
critical mass when variation in Kxy is over zero, and

promotes instability when variation in Kxy is below zero.
Therefore, Kxy’s influence on the critical mass reverses
from positive to negative when the eccentricity ratio
increases, while Dxx’s influence on the critical mass turns
from negative to positive when the eccentricity ratio
increases. Therefore, by observing the influence of the
variations in dynamic coefficients on the critical mass, the
method described in this paper provides a clearer
perspective of the degree to which the variations of
dynamic coefficients under different operating conditions
influence stability. Notably, critical mass is a complicated
parameter as shown in Eqs. (15)–(17). Accordingly, by
applying the present method—the variable of each
dynamic coefficient is partially differentiated with respect
to the operational conditions—the values contributed by
each dynamic coefficient can be compared. Observing the
variation in the critical mass resulting from different
operational conditions, we can find which dynamic
coefficients contribute to the increase or decrease in the
critical mass.

The following section discusses how adopting a
herringbone pattern for the groove in the bearing affects
the main dynamic coefficients that benefit or harm
stability, and compares the result with that of plain journal
bearing. Ultimately, we discuss whether adding the
herringbone-pattern grooves changes the major dynamic
coefficients that exert positive or negative influence on
stability. In addition, employing the methodology in this
study can understand the stability characteristics of
journal bearings with other groove patterns [14–16].

Effect on the critical mass of changing the groove
angle of HGJBs Table 1 presents the geometrical
parameters of the HGJBs used in this study. The groove
angle alters from 20 deg to 70 deg; other groove
parameters remain unchanged. We discuss the influence
of varying the groove angle and the eccentricity ratio on
the critical mass, and then discuss the changes in the
critical mass arising from the dynamic coefficients.
Moreover, we can determine the degree of influence on
the critical mass exerted by the dynamic coefficients.

a. Changing the eccentricity ratio while the groove
angle remains fixed

As shown in figure 3.5, when the eccentricity ratio is
in the range between 0.1 and 0.3, the critical mass differs
only slightly under different groove angles. When the
eccentricity ratio is greater than 0.3, peak value of the
critical mass occurs at a groove angle 20 deg. On the
other hand, when the groove angle is greater than 50 deg,
the critical masses differ only slightly. After observing
how variations in the dynamic coefficients influence
stability, we find that changing the groove angle and the
eccentricity ratio changes the influences. When the
groove angle is less than 30 deg and the eccentricity ratio
is greater than 0.5, increasing the eccentricity ratio
increases the critical mass.

As shown in figure 3.6, dynamic coefficients that profit
from the critical mass are contributed mainly by Kxx and
Kyx. Furthermore, the smaller the groove angle is, the more
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Figure 3.5 Critical mass of different groove angles α

these two coefficients contribute to increasing the critical
mass.

As a result, increasing groove angle decreases the
contribution of Kxx and Kyx to stability. By the same
token, variation in Dyy should influence stability
negatively. In addition, at different eccentricity ratios, the
dynamic coefficients can produce both positive and
negative influences on stability in HGJBs; this is also
observed in plain journal bearings. For instance, when the
eccentricity ratio increases, variation in Kxy, which
determines the critical mass, promotes stability when it is
above zero and destabilize the bearing when it is below
zero. That is to say, the influence turns from positive to
negative; and the influence of Dxx on the critical mass
turns from negative to positive. Hence, when the
eccentricity ratio changes for bearings with grooves, the
main dynamic coefficients that promote negative and
positive effects on stability at different groove angles stay
the same as those of a plain journal bearing. However, the
magnitude of variations in dynamic coefficients with
changes in the eccentricity ratio is different under
different groove angles. The sum of these differences is
the discrepancy of the critical mass.

On the other hand, when the eccentricity ratio is fixed,
this study determines the influence of the groove angle on
stability by examining which dynamic coefficients are
responsible for the change in the critical mass that
accompanies the change in the groove angle.

b. Changing the groove angle while the eccentricity
ratio is fixed

Examining the influence of dynamic coefficients on
stability (figure 3.7), it is found that when the eccentricity
ratio increases, the negative effect of Kxy on stability
increases with an increase of the groove angle.
Furthermore, Kxy exerts no positive influence on stability
under any eccentricity ratio. In addition, under the same
eccentricity ratio, dynamic coefficients of different groove
angles could exert either positive or negative influence on
stability. When the groove angle is small, Dyx exerts

Figure 3.6 The variation of dynamic coefficients on critical
mass at different groove angles

positive influence on stability, and this positive influence
decreases as the groove angle increases. Contrariwise,
when the groove angle is large, Dyx exerts negative
influence on stability. Similarly, the influence of Dyy, on
stability turns from negative to positive with as the groove
angle increases.

Figure 3.7 The variation of dynamic coefficients on critical
mass at different eccentricity ratios ε when groove angle changes

From the comparisons in the preceding two sections,
we conclude that when the eccentricity ratio is fixed while
the groove angle changes, the main coefficients that affect
the critical mass are different from those that affect the
critical mass when the groove angle is fixed and the
eccentricity ratio changes.

Effect on the critical mass of changes in the groove
depth of HGJBs In this section, we discuss the influence
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on the critical mass resulting from changing the groove
depth ratio and the eccentricity ratio. The groove depth
ratio changes from 0.5 to 1.5 while other groove
parameters remain unchanged.

a. Changing the eccentricity ratio with fixed groove
depth

When the depth ratio is less than 1 and the
eccentricity ratio is greater than 0.5, the variation in Kxx
and Kyx results in a significant increase in critical mass
(figure 3.8). Therefore, the dynamic coefficients Kxx and
Kyx are the dominant factors in promoting stability when
the eccentricity ratio is large. By the same token, figure
3.8 shows that when the eccentricity ratio changes, the
influence on stability of variation in Dyy is negative. With
an increasing eccentricity ratio, the influence of Kxy on
the critical mass changes from positive to negative, while
the influence of Dxx on critical mass changes from
negative to positive.

When the groove depth ratio is fixed and the
eccentricity ratio changes, the main dynamic coefficients
that promote negative and positive effects on stability are
the same with those that affect the plain journal bearing:
under different groove depths, main dynamic coefficients
that promote negative and positive effects on stability will
differ with changes in the eccentricity ratio. On the other
hand, we can also determine the influences of the groove
depth on stability by examining which dynamic
coefficients are responsible for the change in the critical
mass accompanying changes to the groove depth at a
fixed eccentricity ratio.

Figure 3.8 The variation of dynamic coefficients on critical
mass at different depth ratios

b. Changing the groove depth with the eccentricity
ratio fixed

When the eccentricity ratio is fixed and the groove
depth is shallow, variation in Dyx exerts a significantly
positive influence on stability (figure 3.9). However, as
the groove depth increases, the positive effect on stability
of Dyx decreases. That is, when the groove depth is small,
Dyx is sensitive to changes in the groove depth. When the
eccentricity ratio increases, the change in Dyy exerts
significant negative influence on stability, but as the depth
of the grooves increases, the negative effect on stability of
Dyy decreases. Thus, Dyy is more sensitive to changes in
the depth of the bearing when the groove depth is small.

Figure 3.9 The variation of dynamic coefficients on critical
mass at different eccentricity ratios when groove depth ratio
changes

We conclude in previous section that even at a fixed
eccentricity ratio, dynamic coefficients may exert
opposite influence on stability for different groove angles.
In contrast, as the groove depth changes, every dynamic
coefficient consistently exerts either a positive or a
negative influence on stability, which differs from the
result when the groove angle changes.

Effect on critical mass of changing the width of
grooves of HGJBs The following section will discuss the
influence on the critical mass and dynamic coefficients
resulting from changing the groove width ratio and the
eccentricity ratio of HGJBs.

a. Changing the eccentricity ratio while the groove
width remains fixed

Figure 3.10 indicates the magnitude of the
contribution to stability made by varying the dynamic
coefficients when the eccentricity ratio changes. When
the groove width ratio is less than 0.5, changing the
eccentricity ratio to above 0.5 will cause variations in Kxx
and Kyx, resulting in a significant increase of the critical
mass. Accordingly, when the eccentricity ratio is large,
the dynamic coefficients of Kxx and Kyx are the dominant
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Figure 3.10 The variation of dynamic coefficients on critical
mass at different width ratios σ

factors that promote stability. By the same token, when
the eccentricity ratio changes, the variation in Dyy
negatively affects stability. When the eccentricity ratio
increases, the influence of Kxy on the critical mass turns
from promoting stability when it is over zero, to causing
instability when it is below zero. In contrast, the influence
ofDxxon the critical mass changes from negative to
positive. From the preceding result, we have shown that
when the groove width ratio is fixed and the eccentricity
ratio changes, the dynamic coefficients that mainly affect
stability are the same as those determined in several
previous sections.

b. Changing the groove width with a fixed eccentricity
ratio

Figure 3.11 shows the influence of the variation in
dynamic coefficients on the critical mass when the groove
width changes while the eccentricity ratio remains fixed.
When the eccentricity ratio is small, the critical masses
under different groove widths are close to each other.
Thus, the influence of dynamic coefficients on critical
mass differs little under various groove widths.

After observing how variations in dynamic
coefficients influence stability when the eccentricity ratio
is large, we found that Dyx will exert a significant positive
influence on stability when the groove width is small.
However, increasing the width of the groove will decrease
the positive effect on stability of Dyx. This means that
under a fixed eccentricity ratio, Dyx is sensitive to changes
in the bearing width when the groove width is small. The
opposite phenomenon holds for Dyy: when the
eccentricity ratio is high, Dyy will exert a significant
negative influence on stability. With an increase in the
width of the groove, the negative effect on stability of Dyy

will decrease. As a result, when the groove width is small,
Dyy is sensitive to change in the groove width. In addition,
every dynamic coefficient consistently exerts either
positive or negative influence on stability when the
groove width changes. This is the same as our finding
when the groove depth changes. Thus, the result of
changing the groove width is the similar to the effect on
stability of HGJBs when the groove depth varies.

Figure 3.11 The variation of dynamic coefficients on critical
mass at eccentricity ratio when groove width ratio σ changes

4. Conclusion

This paper investigates the characteristics of dynamic
coefficients of HGJBs as they related to stability.
Observing how variations in the dynamic coefficients
affect the critical mass, this study determines which
dynamic coefficients are the dominant factors in exerting
positive and negative effects on stability, as follows:

1. When the eccentricity ratio is large, changes in that
ratio will result in the increase of the dynamic coefficients
Kxx and Kyx that exert significant positive influences on
stability. On the contrary, variations in Dyy exert negative
influence on stability. When the eccentricity ratio
increases, the influence of Kxy on the critical mass
changes from positive to negative, while the influence of
Dxx changes from negative to positive.

2. The components of the dynamic coefficients in Eq.
(18) that predominantly affect stability when the groove
parameters change, under any fixed eccentricity ratio, are
different from those under fixed groove parameters with a
changing eccentricity ratio.
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(1) When the groove angle changes, the component for Kxy
of Mcr always exerts negative influences on stability. When
the groove angle is small, Dyx exerts a positive influence
on stability; however, with an increase in the angle, the
positive effects of Dyx on stability decrease. Conversely,
when the groove angle is large, variation in Dyx exhibits a
negative influence on stability. In contrast, with an increase
in the angle, the influence on stability of Dyy changes from
negative to positive.
(2) When the groove depth or groove width changes, the
dynamic coefficients will consistently exert a positive or
negative influence on HGJBs. When the groove depth or
width is small, Dyx exerts a significant positive influence
on stability, but an increase in the groove depth or the
groove width, will decrease the positive effects of Dyx.
However, the opposite phenomenon occurs to Dyy. When
the groove depth or the groove width increases, the
change in Dyy exerts a significant negative influence on
stability. With an increase in the groove depth or groove
width, the negative effect of Dyy on the bearing decreases.
Accordingly, the influence of variations in the groove
depth is similar to that of the groove width. Therefore, the
present approach clearly supplies the missing method to
investigate the groove parameters of HGJBs that affect
the critical mass.

Acknowledgement

The authors gratefully appreciate the financial support
provided to this study by the National Science Council of
Taiwan under Grant NSC 101-2221-E-194-065.

References

[1] P. C. P. Chao, and J. S. Huang, Tribology Letters 19, 99-109
(2005).

[2] R. G. Kirk, and E. J. Gunter, Journal of Engineering for
Industry-Transactions of the ASME 98, 576-592 (1976).

[3] J. M. Vance, Rotordynamics of turbomachinery, Wiley, John
& Sons, 1988.

[4] D. Bonneau, and J. Absi, Journal of Tribology, Transactions
of the ASME 116, 698-704 (1994).

[5] E. J. Gunter, Dynamic stability of rotor-bearing systems.
Technical Report NASA SP-113, National Aeronautics and
Space Administration, 1966.

[6] J. Gomez-Mancilla, V. R. Nosov, and G. Silva-Navarro,
International Journal of Rotating Machinery 1, 16-22 (2005).

[7] J. W. Lund, Journal of Tribology, Transactions of the ASME
109, 37-41 (1987).

[8] N. Zirkelback, and L. San Andres, Journal of Tribology,
Transactions of the ASME 120, 234-240 (1998).

[9] T. V. V. L. N. Rao, and J. T. Sawicki, Journal of Tribology,
Transactions of the ASME 126, 281-287 (2004).

[10] C.-Y. Chen, R.-H. Yen, and C.-C. Chang, International
Journal for Numerical Methods in Fluids 66, 1116-1131
(2010).

[11] A. Z. Szeri, Fluid film lubrication, Cambridge University
Press, 1998.

[12] B. J. Hamrock, Fundamentals of fluid film lubrication,
McGraw-Hill, 1994.

[13] G. G. Hirs, ASLE Transactions 8, 296-305 (1965).
[14] R.-H. Yen, and C.-Y. Chen, Proceedings of the Institution

of Mechanical Engineers Part J-Journal of Engineering
Tribology 224, 259-269 (2010).

[15] R.-H. Yen, and C.-Y. Chen, Journal of Tribology,
Transactions of the ASME 133, 011704 (2011).

[16] C.-S. Liu, M.-C. Tsai, R.-H. Yen, P.-D. Lin, and C.-Y. Chen,
Journal of the Chinese Society of Mechanical Engineers. 31,
137-144 (2010).

Chien-Yu Chen
received the MS degree and
PhD degree in mechanical
engineering from National
Taiwan University. He
is currently a postdoctoral
fellow of the department
of materials science and
engineering at National
Cheng Kung University,

Taiwan. His research interests are in the areas of
elasto-hydrodynamic lubrication, computational fluid
dynamics, and biomimics.

Ruey-Hor Yen received
the PhD degree in aerospace
engineering from West
Virgina University. He has
been a professor since 1985
in department of mechanical
engineering, National
Taiwan University, Taiwan.
His research interests are in
the areas of fluid mechanics,

computational fluid dynamics, and heat transfer.

Chien-Sheng Liu
received his PhD degree from
the department of mechanical
engineering at National
Cheng Kung University,
Tainan, Taiwan in 2010.
He worked at the Industrial
Technology Research
Institute (ITRI), Taiwan, as
a mechanical design engineer

from 2003 to 2010. He has been the assistant professor in
the department of mechanical engineering at National
Chung Cheng University, Chiayi, Taiwan since 2012. His
research interests include voice coil motors, spindle
motors, fluid dynamic bearing, laser-based auto-focusing
module, pulse laser photography, and opto-electronics
sensing.

c⃝ 2013 NSP
Natural Sciences Publishing Cor.


