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Abstract: The security of the Internet of Things (IoT) ecosystem has become a critical challenge due to a tremendous 
increase in the vulnerable connected IoT devices. Software-Defined Network (SDN) becomes a choice for managing IoT 
and offers new approaches to solve security problems. In the recent wave of distributed denial-of-service (DDoS) attacks, 
attackers have shifted their strategy from directly targeting the SDN controller to concentrating on specific links or area, 
causing disruptions in connectivity. These attacks, known as Linking Flooding Attack (LFA) and CrossPath Attack (CPA), 
represent a novel form of DDoS attack. Unlike conventional approaches in the literature that solely rely on automatic 
Machine Learning (ML) model to detect and mitigate DDoS attacks family. In this paper, we introduce a new SDN-based 
strategy to combat DDoS, LFA, and CPA attacks. This approach includes step-by-step network measurements to detect 
and pinpoint unusual link behavior, facilitating the prompt identification of potential attacks. Following this, an ML model 
is applied to verify if these link congestions are indicative of an attack. This method marks a departure from traditional 
techniques that depend entirely on automated ML models. Instead, it starts with an analysis of each link's congestion 
before employing the ML model for attack confirmation. This strategy ensures more efficient use of SDN controller 
resources. Our implementation of this system as an application in the Ryu controller's application layer has shown 
promising results. Through our evaluations, we found that the approach notably improved link performance assessment 
and detection of DDoS, LFA, and CPA attacks. This advancement resulted in a more efficient use of SDN controller 
resources, ultimately enhancing the security of IoT networks. 

Keywords: Software-defined networks (SDN); Cross-Path attack (CPA); Link-flooding attack (LFA); DDOS attack; 
Machine Learning (ML). 

 
1 Introduction 

Software-defined networks (SDN) emerging as one of the most promising new era network technologies with its 
centralized and easily programmable nature. SDN transforms network devices into fundamental packet forwarding 
elements by decoupling the control plane from the data plane. These devices are subsequently configured by a centrally 
located unit referred to as the SDN controller, making use of standardized protocols such as OpenFlow [1, 2]. With the 
introduction of this separation between the control plane and data plane, the SDN architecture empowers network 
management with advanced control capabilities, ultimately simplifying the creation of intelligent and automated 
networks [3]. Furthermore, this separation fosters greater flexibility, making it more convenient to implement 
innovative network applications and services [2]. 

Although widely adopted, SDN-based networks persistently face vulnerabilities due to diverse network intrusions and 
are confronted with the ever-changing realm of security threats and attacks [4]. Among these threats are CPA and LFA, 
representing a novel category of DDoS attacks that can affect the robustness and dependability of SDN networks. In the 
SDN paradigm, the development of attack detection and mitigation techniques is made more manageable due to SDN's 
ability to provide a comprehensive network view, effortless collection of flow statistics, and support for dynamic flow 
entry updates [5]. In traditional networks, accomplishing this task becomes significantly more challenging as devices 
need to exchange substantial amounts of information with the other parts of the network partially. As a result, this leads 
to restricted visibility and, consequently, limited detection capabilities. 

In DDoS attacks, the typical approach involves utilizing multiple compromised machines to flood the target machine or 
SDN controller with an enormous amount of traffic. This overwhelming influx of resource demands renders the targeted 
device incapable of performing its intended functions. LFA attacks can significantly disrupt connectivity for a specific 
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link or area without detection since they target specific links rather than a specific target machine or SDN controller [6]. 
This makes them more difficult to detect than DDoS attacks. Similar to LFA, CPA disrupts SDN control channel links 
by taking advantage of shared links between control and data traffic paths [7]. Rather than sending an extensive volume 
of control traffic directly to the controller, it generates precisely designed data traffic on shared links, implicitly 
interfering with the control traffic delivery. Consequently, real time control messages exchanged between the SDN 
controller, and the switches experience significant delays or are dropped, as the data traffic fails to reach the controller. 
Thus, the timely detection and prevention of CPA attacks represents critical concerns for SDN network. 

The core motivation behind this research lies in addressing a primary challenge of SDN, which involves the side effects 
resulting from shared links between control and data traffic paths. This sharing exposes a vulnerability that attackers 
can exploit to disrupt the control channel, using malicious data traffic to execute CPA. Considering the control 
channel's responsibility for granting centralized control to the controller over each network switch, it becomes relatively 
easy for an attacker to compromise all network functions, especially due to the abundance of SDN applications running 
on the controller. To prevent CPA and ensure SDN network security, it is vital to monitor and measure the delay in 
shared links. If the delay increases, it could indicate congestion on the link, signaling a potential CPA targeting that 
specific connection. E2E delay measurement provides an overall perspective of path delay but does not offer details 
about delays in individual links within the path. While some solutions can measure the E2E delay of the path, they lack 
the capability to pinpoint the bottleneck link (congested link) along that path. As CPA leads to link congestion and does 
not target all links in the path, a more effective approach to detect CPA is by measuring the delay of each individual 
link in the network instead of measuring the E2E delay of the path. Researchers have suggested various methods for 
detecting DDoS attacks, LFA, and CPA on SDN networks [7-12]. Although these methods have demonstrated 
efficiency, detecting CPA attacks on SDN networks still poses a significant challenge. Most of these approaches 
involve adding more functionality to the SDN switch or creating additional overhead on both the controller and the 
network. 

Furthermore, as a common practice in most ML detection methods, flow entries are collected from OpenFlow switches 
at predetermined time intervals established by the controller. The exact definition of this interval carries significant 
importance. If data collection occurs infrequently, it will lead to delayed attack detection, and as a result, a longer time 
for potential mitigation. In contrast, a too short data collection time interval results in heightened overhead for the 
detection mechanism. For example, in [13], the authors implemented a 5-second interval to acquire a more 
comprehensive understanding of network traffic. 

To overcome this challenge, we propose in this paper an approach to detect and mitigate CPA in SDN networks. This 
approach takes advantage of the fundamental features of SDN to detect and address CPA. This approach has been 
implemented as an application within the Ryu controller. The implementation comprises three modules, which include a 
link congestion monitoring module, an ML-based CPA detection module, and a mitigation module. At regular intervals 
(with a polling frequency of every 5 seconds), the link congestion monitoring module analyzes link delays to pinpoint 
congested links within the network. When congested links are detected, the CPA detection module is executed to 
identify the root cause, distinguishing between CPA and legitimate traffic. Implementing link congestion detection 
provides a notable advantage, allowing the ML detection module to adapt its polling interval behavior or gather flow 
statistics over a longer time period (in our case, 15 seconds). This interval surpasses that of other solutions, typically set 
at every 5 seconds. Consequently, the cost of collecting traffic in our approach is reduced. The criteria for making these 
adjustments depend on recognizing congested links, which frequently indicate an ongoing network attack. This strategic 
adaptation helps reduce overhead within the detection mechanism. When the attack is detected, the mitigation module is 
activated to counteract the attack. This paper's contributions are out-lined below: 

§ The novelty of this paper lies in the introduction of an SDN detection system for online, real-time detection of 
CPA, as well as LFA, and DDoS attacks. The system utilizes a probing technique for efficient congestion 
measurement in each link and triggers an ML model when congestion surpasses a predefined threshold.  

§ An SDN cost-efficient module, based on machine learning, is utilized to automatically detect and mitigate attacks. 

The remainder of this paper is organized as follows: The background and related work presented in Section 2, and 
Section 3 respectively, we give an overview of proposed system architecture in section 4. Sections 5 illustrate the 
Implementation of the proposed approach for detecting and mitigating CPA attack. Section 6 presents the evaluation. 
Section 7, present conclusion, and future work. 

2 Background  

In this section, we present a summary of the SDN architecture, explore the function of SDN controllers and the 
OpenFlow protocol, and highlight the significance of ML-based approaches in SDN networks. Additionally, we 
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examine various attacks, such as DDoS, LFA, and CPA. 

2.1 Software-Defined Networking 

SDN introduces a network architecture that fundamentally transforms the conception and management of modern 
network layouts. In this paradigm, all networking devices are centrally controlled, managed, and configured through a 
single controller [15]. Figure 1 provides a visual representation of the SDN architecture, commonly illustrated using 
three layers: forwarding or infrastructure, control, and applications. 

The SDN controller, which is logically centralized, undertakes functions like analyzing, managing, and gathering 
statistics from incoming network traffic packets. Positioned as the central point, the controller bears the responsibility of 
guiding all network packets and making decisions informed by the accumulated data. Interactions with switches are 
enabled via southbound application APIs, like OpenFlow, whereas northbound APIs are utilized by SDN applications 
such as load balancers and firewalls. Several SDN controllers are available in the market, including Trema, Ryu, NVP, 
Floodlight, and BNC. Open-Flow enables the establishment of a communication protocol between the control and 
forwarding planes of SDN networks [15]. 

 
Fig. 1: SDN-Enabled IoT Networks Architecture. 

SDN frequently achieves packet control through a flow mechanism centered on OpenFlow switches. This approach 
involves employing flow tables that house specific flow rules. The task of installing these rules into the flow table is 
overseen by the controller, which takes into account both network logic and an abstract representation of the network. 
When a new packet arrives at the OpenFlow switch, it triggers a search for pertinent rules within the flow table. If a 
matching rule is discovered, the switch proceeds to process the packet in alignment with the corresponding flow rule. 
However, in the absence of a match, the switch forwards the packet to the controller for further necessary actions. The 
controller assesses whether the packet should be forwarded or discarded, and then proceeds to include the flow rule into 
the flow table of the relevant switch. 

2.2 DDOS Attack 

DDoS attacks are orchestrated by networks of compromised zombie hosts with the aim of rendering target machines or 
network resources unavailable to their intended users. These attacks have become increasingly complex due to several 
distinctive characteristics. In contrast to benign traffic, traffic subjected to DDoS attacks exhibits discernible patterns, 
including higher volume, often surpassing that of normal traffic, brief duration, with abnormal flows being short lived, 
and increased port variability. In the case of DDoS attacks, the growth rate of various ports exceeds that observed in 
typical scenarios. Additionally, to compound the damage, multiple attack flows targeting the same target often occur 
simultaneously. Therefore, it is crucial to anticipate and proactively mitigate these traffic attacks [11,12]. 

One of the most effective solutions for the early detection of DDoS attacks involves utilizing traffic engineering to 
identify vulnerable links that, if attacked, would result in similar outcomes to rendering the target machine unavailable.  

2.3 Link-flooding attack 

The LFA has recently garnered attention as a significant focus, presenting a novel classification of DDoS attacks [6]. 
This attack methodology revolves around identifying target links and comprises a set of three initial steps: initially, 
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utilizing core links within the network as the chosen target links; subsequently, detecting devices (bots) with the 
capacity to generate traffic that moves through these target links; and finally, overwhelming the designated target 
links/area with legitimate traffic to trigger an overload. In contrast to standard DDoS attacks, LFA displays various 
notable attributes. Firstly, the targeted entity differs. When it comes to traditional DDoS attacks, attackers release 
substantial and unexpected traffic directly towards the target server. In contrast, in LFA attackers strategically mobilize 
a multitude of bots to generate low speed traffic directed at decoy servers, all with the intention of overwhelming 
crucial links that link a target area to the wider expanse of the Internet. Hence, the target remains unaware of the 
ongoing attack. Secondly, in contrast to conventional DDoS attacks that usually result in the unavailability of a single 
server, LFA disables all servers within the designated area, thereby blocking their internet access. Thirdly, DDoS 
defense systems aim to eradicate undesirable network traffic, whereas the bots employed in LFA generate legitimate 
and intended data streams. As a result, traditional DDoS defense mechanisms face challenges in effectively 
distinguishing between attack traffic and normal network activity. 

2.4 Cross-Path attack 

This section highlights the impact of CPA on disrupting the SDN control channel. What is CPA?  How does it differ 
from LFA and DDoS attacks? Additionally, a method is introduced to accurately identify a target path containing 
shared links, i.e., both data traffic and control traffic links. 

The objective of the CPA is to disrupt the control channel of SDN by exploiting the shared links that connect paths for 
both control and data traffic. This is achieved by generating data traffic that traverses these shared links, causing 
interference with the transmission of control traffic. As a result, there are delays or drops in the delivery of real-time 
control messages through the control channel. Since the SDN controller exerts centralized control over switches through 
the control channel, an attacker can potentially dismantle nearly all network functionalities facilitated by SDN through 
the implementation of this attack. To successfully execute this strategy, the attacker needs to first locate the 
intersections between data traffic and control traffic paths. Once this information is gathered, the attacker can proceed to 
dispatch disruptive traffic onto these shared paths, effectively disrupting the normal operation of the control channel. 

Figure 2 shows an example to explain CPA. In this network, there are ten switches. Let's assume that an attacker has 
compromised a host at switch S8 and can send crafted LDoS traffic to two hosts at switch S6. Since the control link 
between S5 and S8 is shared with data links in the attack path, the attack will impact switches S7, S8, S9, and S10. 
Control messages exchanged between these switches and the SDN controller may experience significant delays or be 
dropped, resulting in abnormal network behavior. 

In this work, our primary focus is not on how the attacker can discover shared links; rather, our sole concentration is on 
detecting CPA within the SDN network. Nevertheless, to enhance reader comprehension, we provide an explanation of 
the method by which the attacker can identify these shared links. 

Find attack path: For a successful attack launch, the attacker needs to accurately select a path with shared links as the 
target. However, identifying such target paths within SDN presents a significant challenge. Within the context of SDN, 
the allocation of links for control traffic is limited in number. This leads to only a finite set of data paths incorporating 
the links shared with control routes. In order to discover these data paths, the attacker requires knowledge of the 
network topology and routing information. However, these critical details are securely stored within the SDN controller, 
rendering them inaccessible and invisible to the attacker. 

 
Fig. 2: Cross-Path attack example. 

To address the challenges mentioned above, Xie et al. [7] proposed a technique aimed at identifying target data paths 

  

                Attacker                          SDN (Controller and Data plan layer)                         IoT 
Layer 
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that share links with control paths. The technique is inspired by a pivotal observation: the delay of a control path rises 
when a short-term burst of data traffic passes through the shared links. Consequently, an attacker can exploit a host 
within the SDN to precisely determine critical data paths. This is accomplished by generating data traffic and 
monitoring the resulting fluctuations in delay along the control paths. If significant variations in delay are detected, it 
indicates that the data path being investigated intersects with specific control paths. On the other hand, the absence of 
noticeable variations provides no evidence of the data path crossing any control paths. The authors of this paper 
leverage the benefits of SDN, where packets that cannot find a match in a switch follow extended forwarding paths, 
leading to increased delays. This happens because such packets are directed to the controller to request flow rules. By 
analyzing the delays experienced by these packets, it becomes feasible to estimate the delays in control paths that have 
shared links with data paths. 

3 Related Works 

This section reviews the existing approaches for detecting DDoS, LFA, and CPA attacks in SDN networks.  

Khashab et al. [13] introduced a technique for detecting and mitigating the impact of DDoS attacks in SDN through an 
analysis of network traffic attributes. They applied a range of six algorithms, encompassing Random Forest (RF), 
Logistic Regression, Naïve Bayes, K-Nearest Neighbors (K-NN), Support Vector Machine (SVM), and Decision Trees 
(DTs). The outcomes of their approach highlighted RF as the superior performer among these algorithms, rendering it 
the optimal choice for their methodology. Nevertheless, the execution of this proposed approach within the SDN 
controller leads to heightened resource utilization during instances of DDoS attacks. Sudar et al. [8] conducted a 
research study that explored the utilization of SVM and DTs for detecting DDoS attacks in SDN networks. They 
assessed the effectiveness of their proposed method using the KDD CUP dataset. However, their approach yielded 
unsatisfactory results, with DTs achieving an accuracy rate of only 78%. In their study, Santos et al. [9] utilized the 
Multiple Layer Perceptron (MLP), RF, SVM, and DTs to classify different types of DDoS attacks, including point 
attacks, flow table switch attacks, SDN controller attacks, and bandwidth attacks. The effectiveness of their approach 
was evaluated using a realistic dataset. Nevertheless, the results indicated suboptimal performance for both MLP and 
SVM in accurately identifying controller attacks, with an accuracy rate of only 90%. Celesova et al. [10] introduced a 
technique utilizing a Deep Neural Network (DNN) to enhance the security of data planes and counteract DDoS attacks 
within SDN networks. However, they employed the UNSW-NB15 dataset, which lacks specific adaptation to the SDN 
network context, for the purpose of training, testing, and evaluating their proposed system. This led to the method 
displaying unsatisfactory performance when evaluated in terms of computational metrics. On the contrary, Deepa et al. 
[11] presented a hybrid algorithm that merges SVM and Self-Organizing Map (SOM) to identify DDoS attacks within 
SDN networks. This hybrid model accomplished a detection rate of 90.45%, a precise detection rate of 96.77%, and a 
false alarm rate of 0.032%. Nevertheless, the suggested method exhibited diminished accuracy and detection rate 
performance. 

Zhang et al. [12] put forward a novel approach known as the spatiotemporal heterogeneous bandwidth allocation 
(STBA) mechanism, which aims to mitigate DDoS attacks by facilitating domain-level resource management. The 
study conducted by Wang et al. [6] introduced LFADefender, a system based on Software-Defined Networking (SDN) 
with a primary objective of effectively countering link flooding attacks. This proposed approach incorporates a diverse 
range of indispensable technologies, with a particular emphasis placed on the critical components of congestion link 
detection and rerouting. By integrating these essential elements into its functionality, LFADefender demonstrates its 
capability to identify and mitigate the impact of link flooding attacks, ensuring the integrity and smooth operation of the 
network infrastructure. Zheng et al. [16] proposed a system designed to detect anomalous flows by comparing the flow 
rates of statistical changes with those of aggregated flows traversing vulnerable links. As a subsequent step, the system 
takes measures to impede the traffic by utilizing a blacklist. In order to prevent the inadvertent exclusion of legitimate 
traffic, the system employs a technique known as maxmin fairness packet dropping. This approach treats packets that 
closely resemble characteristics of the attack traffic with suspicion, categorizing them as part of the attack traffic only 
when their quantity exceeds the throttling threshold established for each OpenFlow port. In their work, Allakany et al. 
[14] present an innovative IoT network framework built on SDN, specifically designed to address LFA mitigation. The 
framework's architecture seamlessly integrates an SDN controller with SDN switches, which, in turn, are inter-
connected with IoT gateways. Additionally, their study puts forth a proactive approach that employs hop-by-hop 
network measurement to identify abnormal link patterns associated with LFA. This strategy is further bolstered by the 
implementation of centralized traffic engineering, aiming to resolve potential link congestion and mitigate the effects of 
LFA. However, it's worth noting that the paper does not propose a solution to definitively verify whether the identified 
congested link is indeed attributed to LFA. Rezazad, et al. [17] presents a novel approach to detect a specific type of 
DDoS attack called the Crossfire attack. The paper discusses the challenges in detecting this attack and presents 
analytical and emulated results that demonstrate vulnerabilities in the execution of the attack. Furthermore, the paper 
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proposes the use of supervised machine learning approaches, such as SVM and RF, for the classification of network 
traffic into normal and abnormal traffic categories, i.e., attack traffic. The machine learning models have been trained in 
various scenarios using link volume as the main feature set. In a recent study, Xie, et al. [7] presented a novel CrossPath 
attack method for disrupting the control channel of SDN by capitalizing on shared links within paths of both control and 
data traffic. This innovative attack strategy involves manipulating data traffic to indirectly impede the forwarding of 
control traffic through shared links. Notably, the stealthy nature of this technique enables it to evade easy detection by 
SDN controllers, as the manipulated data traffic avoids direct entry into the control channel. To facilitate the 
identification of susceptible paths for this type of attack, a novel approach called adversarial path reconnaissance was 
developed. The feasibility and effectiveness of this approach were established through a combination of theoretical 
analysis and empirical validation. This research contributes to the understanding of potential vulnerabilities in SDN 
control channels, shedding light on the implications of exploiting shared links in disrupting network operations. 

The above-mentioned approaches offer effective solutions for detecting and mitigating DDoS, LFA, and CPA attacks. 
However, these approaches have different limitations. For instance, some of them require modifications to OpenFlow 
switches, which add more cost and hinder widespread deployment. Other approaches introduce overhead to both the 
controller and network devices in order to detect the localization of bottleneck links within the network. Lastly, the 
majority of research on these topics employs ML to detect and mitigate attacks, without adequately considering link 
delay as a crucial parameter that indicates link congestion, a potential sign of a link under attack. Several ML-driven 
detection approaches increase network and controller overhead, resulting in the collection of flow entries from 
OpenFlow switches at predetermined periodic intervals by the controller. To achieve fast detection, they assign a 
collection time interval that is too short, which leads to an increase in overhead. The limitations of the aforementioned 
approaches are addressed in this paper. A probing technique is utilized to measure link congestion with minimal cost. 
Subsequently, an ML model is employed if the congestion surpasses a specified threshold. 

4 System Overview  

 
Fig. 3: Overview of SDN framework for detection and mitigation of CPA. 

In this section, we introduce a comprehensive SDN framework that effectively leverages the inherent capabilities of 
SDN. This encompassing framework incorporates several key features, namely a global network view, the ability for 
dynamic reconfiguration, and advanced flow traceability for enhanced network management, to effectively identify and 
mitigate the CPA. This approach is implemented as an application within the Ryu controller, ensuring seamless 
integration into the existing SDN infrastructure. Three modules have been developed to address different aspects of the 
research: the Link Congestion Module, the Detection of CPA Module, and the mitigation Module. Figure 3 shows the 
architecture of the proposed framework. 

Firstly, the Link Congestion Monitor Module runs periodically every 5 seconds to identify congested links in the 
network by measuring the delay of each link. Secondly, the CPA Detecting Module runs at intervals of 15 seconds. 
However, if congested links are detected, this module will be executed even if before the 15-second. This module 
determines whether the congestion in the links is due to CPA or legitimate traffic by applying an ML algorithm. Finally, 
the Mitigation Module comes into play upon detecting a CPA, working to mitigate the attack by blocking its source. 
Our proposed solution involves measuring the delay of each link as an indicator of normal or abnormal link. This 
enables us to efficiently apply an ML module at longer time intervals for optimizing the collection of flow statistics in 
the SDN network. 
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5 System Implementation 

In this section, we introduce the implementation of the proposed SDN framework for the detection and mitigation of 
CPA. The details of the threat model, link congestion module, CPA detection module, and attack mitigation module are 
presented in the following sub-sections. The interactions between these modules are shown in Figure 4, and algorithm 
details in Figure 5. First, the link congestion detection module measures the delay of each individual link, it sends a 
probing packet of size 24 byte [18], every 5 seconds and calculates the delay [14]. If link congestion is detected, the ML 
model will be executed. In the CPA detection module, the flow statistics are collected, then characteristics values 
extracted and ML module test if there are attacks or not. When no link congestion is detected, the CPA detection 
module will gather flow statistics every 15 seconds. Based on OpenFlow specifications, the flow statistics collection 
consumes 122 bytes for the request message, while the reply message consumes 174 bytes for each flow. Finally, if the 
CPA is detected, then the mitigation module blocks the source of the attack. The cost efficiency of this proposed system 
will become evident through the packet sizes in both the delay detection module and the CPA detection module, taking 
into account the intervals at which these packets are sent. This will be demonstrated in the evaluation section. 

 
Fig. 4: CPA attack detection and mitigation process. 

5.1 Threat Model 

We operate under the assumption that an attacker can gain control over at least one network connected host. In the 
context of the scenario depicted in Figure 2, the attacker has indeed successfully compromised a host connected to 
switch S8. The specific control channel we are concerned with is the one connecting S8 and S5, while the hosts 
vulnerable to this targeted attack are linked to switch S6. The primary goal of the attacker is to manipulate data traffic in 
order to disrupt the SDN control channel responsible for transmitting control traffic. Compromising controllers, 
applications, or switches is not a prerequisite for the CPA to manipulate control messages. Additionally, we assume that 
controllers, switches, and applications are adequately safeguarded. 

Algorithm 1: CPA Defense Algorithm 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

Input: 

NetToplogy :          Network topology 

LinkShared_List:     List of shared links in NetToplogy,  

LinkList:              All individual links in NetToplogy,  

T1 = interval_time for flow collection in the ML module 

T2 = interval_time for calculating congestion on network links 

every T1 do 

collect flows statistics 

every T2 do 

calculate link congestion                                  /* T2 < T1*/ 

If Link_congestion detected do 

Collect flow statistics and run ML module. 

If ML detected the attack then 
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14 

15 

16 

17 

18 

Find and block the flows caused that attack. 

else 

Normal flow table 

EndIf 

EndIf 

Fig. 5: Attacks defense algorithm. 

5.2 Link congestion detection module 

In the scope of SDN, monitoring techniques can be broadly grouped into two categories: active, which involve 
periodically sending probing packets, and passive, which entail collecting traffic statistics from network forwarding 
components. Recently, several methods have been proposed that make use of ML algorithms to aggregate traffic 
statistics obtained from SDN controllers in order to identify different attack types. Nevertheless, there are other traffic 
indicators, such as link delay, which lose their effectiveness when acquired through passive methods. Since attackers in 
LFA and CPA have a specific link as their target, employing an active method to measure delay in each individual link 
proves to be an efficient means of detecting these attacks. 

In our framework, we will employ a probing technique, which is an active method used to measure link delay, similar to 
the approach outlined in [14] for measuring queue delay. The queue delay, a variable component, serves as an indicator 
of network congestion dynamics within the path. Consequently, we anticipate enhanced precision in identifying 
congested links within the network. Instead of measuring E2E delay, a process that generates redundancy and adds 
network overhead due to the monitoring of multiple paths between node pairs, we use a method that assesses each 
individual link in the network with minimal impact on SDN switches, thus mitigating network overhead. This method 
operates by crafting a specialized control packet, time-stamped as a 'probe packet,' and introducing it into the data-path. 
At the path's terminus, the receiving node assesses the path's delay by measuring the time taken for the probe packet to 
traverse the entire route. Typically, this method employs relatively petite probe packet sizes, frequently employing 24-
byte packets within Ethernet frames to ascertain link latency [18]. 

The details of the link congestion detection algorithm are shown in Figure 6. The algorithm starts by requesting the 
Topology Discovery Module to discover the network topology and generate the topology graph G. Then, the Link 
Congestion Module constructs the tree that covers all links in the network and minimizes the total number of links in 
each path. The proposed algorithm is essentially an adapted form of the Minimum Spanning Tree (MST) algorithm. It 
prevents the repetition of any node within a given path, although nodes may still be duplicated across distinct paths 
within the tree. This is due to our utilization of the tree for deriving individual paths. Subsequently, we partitioned the 
tree into levels. The initial level (Level 1) commences at the root node of the tree. Progressing from the root to the 
second node (the first link in the path) of each path signifies Level 2. Similarly, moving from the second node to the 
third node (the second link in the path) designates Level 3, and so on. 

Taking advantage of OpenFlow capabilities, we aim to inject packets into the network to assess path delay. For every 
path extracted from the tree, we systematically inject packets at the root node. This guarantees that the probe packet 
precisely traverses the same path, and upon reaching the final node, it is sent back to the controller. To calculate the 
departure time at the initial node and the arrival time at the last node in the path, our approach involves calculating the 
delay from the controller to the first node, RTT Controller→Node (RRT is Round-Trip Time) from the controller to node, also 
from the last node to controller we calculate RTT Node→Controller. Then we use Equation 1 and Equation 2 to calculate 
departure time at first node and arrival time at last node, respectively. 

TimeFirst−Node = TimeSend + (RTT Controller→Node)/2 (1) 

TimeLast−Node = TimeArrival + (RTT Node→Controller)/2 (2) 

Here TimeSend represents the time of sending probe packet form the controller, and   TimeArrival represents the arrival 
time of the packet to the controller. The output of both Tree Construction and Path Latency procedures will be used to 
calculate link delay. The details of these two procedures are in Algorithm 2 and shown in Figure 6. In the end, the link 
delay of each link will be calculated, and if any of those links exceed the threshold, an alarm will be sent to the CPA 
detection module. 

5.3 CPA detection module 

This research aims not to enhance the accuracy of or alter existing machine learning techniques but rather to present a 
novel, cost-effective approach for detecting and mitigating CPA. This module possesses the capability to identify 
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attacks through the application of ML techniques. If link congestion is detected, this module will activate. Otherwise, it 
will periodically collect traffic flow data from all switches within the preceding 15 seconds. To accomplish this, the 
controller sends out flow-stats requests. As a result, each switch provides a flow-stats reply message, including all flow 
entries in its individual flow table. In accordance with OpenFlow specification 1.3 [19,20], the polling request 
message's length for a single flow poll is 122 bytes, with a reply to length of 174 bytes. Consequently, a reduction in the 
interval time for collecting traffic statistics will lead to higher network costs. 

These features are subsequently employed by a detection module for the purpose of categorizing each flow as either 
normal or anomalous, utilizing a binary classification ML algorithm. The initial step is to create a model using a 
classification ML algorithm, followed by using this model to classify network flows. It's important to acknowledge that 
there are multiple classification ML algorithms available for building the detection model, such as LR, NB, KNN, 
SVM, DT, and RF [13]. In our specific implementation, we employed the DT algorithm. In the event of attack 
detection, the module promptly initiates blocking measures against the attack source.  

An essential component is a flow-based labeled dataset that represents network traffic. The selection of features for 
model training plays a pivotal role, as it exerts a substantial influence on the performance of ML algorithms. We have 
opted for a set of five specific features for constructing our model: pkt_count, byte_count, pkt_size, same_host, and 
same_host_port. Using these features, the module will assess specific flow IDs for anomalies, leveraging the model we 
have developed. Flows classified as normal require no further action. In this research, we employed a dataset similar to 
the one used for detecting DDoS attacks [13]. It is noteworthy that both CPA and LFA fall under the same category of 
DDoS attacks, differing solely in their attack targets: LFA and CPA target network links, while traditional DDoS 
attacks focus on end devices or servers. 

Algorithm 2: Link Congestion Detection 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

Input: 

NetToplogy :           Network topology 

LinkShared_List:      List of shared links in NetToplogy,  

LinkList:              All individual links in NetToplogy,  

DelayThreshold:     The delay Threshold 

RootTree:             Node represent the root of the constructed tree 

NodeList:              List of nodes in NetToplogy 

EdgeList:                    List of Edge in NetToplogy 

Procedure Tree_Constraction (RootTree, NetToplogy, LinkShared, or LinkList) Drive a tree 
covering LinkShared_List or LinkList 

Tree = RootTree 

d[RootTree] ← 0; 𝑑[𝑢] 	← 	∞; 𝑝𝑟𝑒𝑑[𝑖] 	← 	𝑛𝑖𝑙: For each 𝑢	 ≠ RootTree; 𝑢	𝜀	NodeList 

while 𝑄	 ≠ 	𝜑 do 

for each 𝑢	𝜀	NodeList do 

insert u with key 𝑑[𝑢] into the priority queue 𝑄 

𝑗	 ← 𝐸𝑥𝑡𝑟𝑎𝑐𝑡	 − 	𝑀𝑖𝑛(𝑄) 

for every node	𝑖, 𝑖	𝜀 Tree and 𝑖 is adjacent to 𝑗 do 

𝑎𝑙𝑡	 = 	𝑑[𝑗] 	+ Edgeweight (j, i)                     /* Edgeweight (j, i) is edge weight =1 */ 

for all edge in EdgeList do 

𝑑[𝑖] 	← 	𝑎𝑙𝑡  

𝑝𝑟𝑒𝑑[𝑖] 	← 	𝑗                                    /* set i as a child node of j */ 

if edge (i, j)ε Tree then 

add the edge into Tree 
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24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

Endif 

Procedure Measure_Link_Delay (Tree, DelayThreshold) 

Partitioned tree into levels (1, N)                     /*N, number of level form RootTree at 
level 0  */ 

for 𝑚 = 1	𝑡𝑜	𝑁 do 

for 𝑒𝑣𝑒𝑟𝑦	𝑝𝑎𝑡ℎ	𝑖𝑛	𝑙𝑒𝑣𝑒𝑙	𝑚 do 

inject Probe Packet from treeroot travels path to m 

𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒	𝑅𝑇𝑇 Controller→Node              /* Round-Trip Time*/ 

𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒	𝑅𝑇𝑇 Node→Controller 

from 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛	1&2	𝑐𝑙𝑎𝑐𝑢𝑙𝑎𝑡𝑒:		𝐿𝑖𝑛𝑘_𝐷𝑒𝑙𝑎𝑦 = TimeLast_Node − TimeFirst_node 

if 𝐿𝑖𝑛𝑘_𝐷𝑒𝑙𝑦	 > 	𝐷𝑒𝑙𝑎yThreshold then 

Sent alarm to CPA_Detection_Module 

                         Endif 

Fig. 6: Link congestion detection algorithm. 

5.4 Attack mitigation module 

The primary purpose of the Anomaly Mitigation module is to initiate mitigation measures once the detection module 
confirms the presence of a malicious flow. This is essential to prevent disruptions in the network and potential 
performance degradation. Within our framework, we actively block the source of the detected attack. As a part of future 
research, we plan to implement a traffic engineering module that will enable us to configure network flows with the 
assistance of the controller, aiming to mitigate such attacks. 

6 Simulation and results 

The evaluation of the system includes the evaluation of the costs required in our proposed method with other methods, 
in addition to efficiency of using link congestion as indicator to CPA. For that we first established an SDN topology 
using Mininet [21] emulator and Ryu controller. We built a custom network topology as shown in Figure 2. After the 
SDN network topology was set up, we used a python script to generate normal and attack traffic. In our results, we 
calculate the average of five experimental runs. The following sections will discuss the evaluation of our method.  

The communication cost of collecting traffic statistics for detecting CPA in our system is shown Table 1, and 2.  In 
Table 1, we analyze the communication cost required for gathering flow statistics and the communication cost needed 
to calculate link congestion. We assume a fixed number of switches (10 switches) while increasing the number of flows. 
Initially, the network is initialized with 6 flows chosen randomly, and for each subsequent step, we add 2 flows with 
random sources and destinations. As depicted in the table, the communication cost required to calculate flow statistics is 
significantly higher than the cost required to calculate the delay of each link in the network. This indicates that our 
proposed system, capable of adeptly balancing these two approaches, leads to a reduction in communication costs 
associated with CPA detection.  

In Table 2, we examined networks of varying sizes (5, 10, and 15 switches) while keeping the number of flows constant 
(6 flows in each network), with the flow generation being random. It becomes apparent that a more addition of 5 
switches to the network size leads to a noteworthy escalation in communication costs during the collection of flow 
statistics. On the other hand, when measuring link delay through probing techniques, the cost increase is comparatively 
modest. 

Table 1: Number of flows with fixed number of switches. 
Number of flows 6 8 10 12 
flow approach 5624 7992 9768 11544 
Proposed Probing approach 912 1296 1584 1872 
 Communication cost (Bytes) 
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Table 2: Number of switches with a fixed number of flows. 
Number of switches 5 10 15 
flow approach 7104 9768 12728 
Proposed Probing approach 1152 1584 2064 
 Communication cost (Bytes) 

In Table 3 and 4, we analyze the communication cost required in our proposed system and compare it with approaches 
that depend solely on flow statistics, as proposed in [13, 22]. The network consists of 10 switches and 10 flows 
generated randomly.  

Table 3 highlights an initial observation: the cost associated with our proposed solution is slightly higher than that of the 
flow-based alternative [13,22]. This discrepancy arises because our method simultaneously calculates the costs related 
to flow statistic collection and link delay measurement at 5-second intervals, whereas other methods solely rely on flow 
statistics. However, over time, we observe a significant improvement in our method's performance. This enhancement 
can be attributed to our approach, which collects flow statistics every 10 seconds and measures link delay every 5 
seconds, as opposed to other methods that collect flow statistics every 5 seconds.  

Table 3: The communication cost: in other schemes collecting flow statistics every 5 seconds, while in our proposed 
scheme, flow statistics collected every 10 seconds and delay measurements every 5 seconds. 

Times (S) 5 10 15 20 25 30 35 40 45 
[13], [22] 9768 19536 29304 39072 48840 58608 68367 78144 87912 
Proposed 11352 12936 24228 25872 37224 38808 50160 51744 63096 
 Communication cost (Bytes) 

Table 4: The communication cost: in other schemes involves collecting flow statistics every 5 seconds, while in our 
proposed scheme, flow statistics collected every 15 seconds and perform delay measurements every 5 seconds. 

Times (S) 5 10 15 20 25 30 35 40 45 50 55 60 65 
[13], [22] 9768 19536 29304 39072 48840 58608 68367 78144 87912 97680 107448 117216 126984 
Proposed 11352 12936 14520 25872 27456 29040 40392 41976 43560 54912 56496 58080 69432 
 Communication cost (Bytes) 

In Table 4, our method extends the interval for collecting flow statistics from 10 seconds to 15 seconds, while 
maintaining a consistent 5-second interval for measuring link delay costs. Conversely, the alternative solution retains a 
fixed 5-second interval for gathering flow statistics. As depicted in the table, we can observe a substantial improvement 
in the communication cost associated with our proposed solution as we increase the interval for collecting flow 
statistics. To provide an example, in Table 3, at the 45-second mark, our method incurs a communication cost of 
approximately 63,000 bytes, whereas the other solutions result in 88,000 bytes. However, at the same 45-second mark 
in Table 4, our costs are reduced to 43,500 bytes, while the other solution remains at 88,000 bytes.  

The results in Table 5, represent the communication cost, as in Table 4, However, in this experiment, we perform 
attacks several times against the network at times 30, 35, and 60. As depicted in the figure, at the time of the attacks, the 
communication cost increases compared to the communication cost in Table 3. This occurs because when link 
congestion is detected, an alarm is sent to the CPA detection module, which then collects flow statistics even if the 
interval time (15 seconds) has not yet elapsed. However, our proposed method still outperforms other methods in terms 
of the total communication cost. 

Table 5: The communication cost while the network under attacks at different interval times (at time: 30, 45, and 60): 
in pair flow approaches collecting flow statistics every 5 seconds, while in our proposed scheme, flow statistics 
collected every 15 seconds and perform delay measurements every 5 seconds. 

Times (S) 5 10 15 20 25 30 35 40 45 50 55 60 65 
[13], [22] 9768 19536 29304 39072 48840 58608 68367 78144 87912 97680 107448 117216 126984 
Proposed 11352 12936 14520 25872 27456 38808 50160 51744 63096 74448 76032 87384 98736 
 Communication cost (Bytes) 

7 Conclusions 

In this research, we addressed the security challenges in SDN and focused on combating CPA, which are novel forms of 
DDoS attacks targeting SDN control channels. Our proposed SDN-based security solution utilizes hop-by-hop network 
measurement and ML to detect CPA effectively. We demonstrated that our approach optimizes the utilization of SDN 
controller resources by activating the ML model at longer time intervals or only when abnormalities in links are 
detected, thereby reducing communication costs associated with CPA detection. Furthermore, we extended our 
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investigation to evaluate the impact of various network parameters on communication costs and the effectiveness of our 
approach during network attacks. Our results show that our proposed solution performs favorably in terms of 
communication cost, especially when increasing the interval for collecting flow statistics. During network attacks, the 
system exhibits an increase in communication cost due to the activation of CPA detection mechanisms but continues to 
outperform other methods. Moreover, we observed that latency, particularly link latency, serves as a valuable parameter 
for detecting link congestion and abnormal network behavior during attacks. This observation highlights the 
effectiveness of our proposed approach in addressing security challenges in SDN environments. 

In conclusion, our research presents a promising security solution for SDNs, offering effective CPA detection and 
optimized resource utilization. This work contributes to enhancing the security and reliability of SDNs in the face of 
evolving threats. In our future work, we plan to use a traffic engineering module to reconfigure the network, mitigate 
the attack, and compare its performance with the mitigation module used in this paper. 
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